File: zhessen.c

package info (click to toggle)
gwc 0.22.04-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,676 kB
  • sloc: ansic: 40,072; sh: 797; makefile: 661; perl: 37
file content (162 lines) | stat: -rwxr-xr-x 4,159 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

/**************************************************************************
**
** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
**
**			     Meschach Library
** 
** This Meschach Library is provided "as is" without any express 
** or implied warranty of any kind with respect to this software. 
** In particular the authors shall not be liable for any direct, 
** indirect, special, incidental or consequential damages arising 
** in any way from use of the software.
** 
** Everyone is granted permission to copy, modify and redistribute this
** Meschach Library, provided:
**  1.  All copies contain this copyright notice.
**  2.  All modified copies shall carry a notice stating who
**      made the last modification and the date of such modification.
**  3.  No charge is made for this software or works derived from it.  
**      This clause shall not be construed as constraining other software
**      distributed on the same medium as this software, nor is a
**      distribution fee considered a charge.
**
***************************************************************************/


/*
		File containing routines for determining Hessenberg
	factorisations.

	Complex version
*/

static	char	rcsid[] = "$Id: zhessen.c,v 1.2 1995/03/27 15:47:50 des Exp $";

#include	<stdio.h>
#include	"zmatrix.h"
#include        "zmatrix2.h"


/* zHfactor -- compute Hessenberg factorisation in compact form.
	-- factorisation performed in situ
	-- for details of the compact form see zQRfactor.c and zmatrix2.doc */
ZMAT	*zHfactor(A, diag)
ZMAT	*A;
ZVEC	*diag;
{
	STATIC	ZVEC	*tmp1 = ZVNULL, *w = ZVNULL;
	Real	beta;
	int	k, limit;

	if ( ! A || ! diag )
		error(E_NULL,"zHfactor");
	if ( diag->dim < A->m - 1 )
		error(E_SIZES,"zHfactor");
	if ( A->m != A->n )
		error(E_SQUARE,"zHfactor");
	limit = A->m - 1;

	tmp1 = zv_resize(tmp1,A->m);
	w    = zv_resize(w,   A->n);
	MEM_STAT_REG(tmp1,TYPE_ZVEC);
	MEM_STAT_REG(w,   TYPE_ZVEC);

	for ( k = 0; k < limit; k++ )
	{
	    zget_col(A,k,tmp1);
	    zhhvec(tmp1,k+1,&beta,tmp1,&A->me[k+1][k]);
	    diag->ve[k] = tmp1->ve[k+1];
	    /* printf("zHfactor: k = %d, beta = %g, tmp1 =\n",k,beta);
	    zv_output(tmp1); */
	    
	    _zhhtrcols(A,k+1,k+1,tmp1,beta,w);
	    zhhtrrows(A,0  ,k+1,tmp1,beta);
	    /* printf("# at stage k = %d, A =\n",k);	zm_output(A); */
	}

#ifdef	THREADSAFE
	ZV_FREE(tmp1);	ZV_FREE(w);
#endif

	return (A);
}

/* zHQunpack -- unpack the compact representation of H and Q of a
	Hessenberg factorisation
	-- if either H or Q is NULL, then it is not unpacked
	-- it can be in situ with HQ == H
	-- returns HQ
*/
ZMAT	*zHQunpack(HQ,diag,Q,H)
ZMAT	*HQ, *Q, *H;
ZVEC	*diag;
{
	int	i, j, limit;
	Real	beta, r_ii, tmp_val;
	STATIC	ZVEC	*tmp1 = ZVNULL, *tmp2 = ZVNULL;

	if ( HQ==ZMNULL || diag==ZVNULL )
		error(E_NULL,"zHQunpack");
	if ( HQ == Q || H == Q )
	    error(E_INSITU,"zHQunpack");
	limit = HQ->m - 1;
	if ( diag->dim < limit )
		error(E_SIZES,"zHQunpack");
	if ( HQ->m != HQ->n )
		error(E_SQUARE,"zHQunpack");


	if ( Q != ZMNULL )
	{
	    Q = zm_resize(Q,HQ->m,HQ->m);
	    tmp1 = zv_resize(tmp1,H->m);
	    tmp2 = zv_resize(tmp2,H->m);
	    MEM_STAT_REG(tmp1,TYPE_ZVEC);
	    MEM_STAT_REG(tmp2,TYPE_ZVEC);
	    
	    for ( i = 0; i < H->m; i++ )
	    {
		/* tmp1 = i'th basis vector */
		for ( j = 0; j < H->m; j++ )
		    tmp1->ve[j].re = tmp1->ve[j].im = 0.0;
		tmp1->ve[i].re = 1.0;
		
		/* apply H/h transforms in reverse order */
		for ( j = limit-1; j >= 0; j-- )
		{
		    zget_col(HQ,j,tmp2);
		    r_ii = zabs(tmp2->ve[j+1]);
		    tmp2->ve[j+1] = diag->ve[j];
		    tmp_val = (r_ii*zabs(diag->ve[j]));
		    beta = ( tmp_val == 0.0 ) ? 0.0 : 1.0/tmp_val;
		    /* printf("zHQunpack: j = %d, beta = %g, tmp2 =\n",
			   j,beta);
		    zv_output(tmp2); */
		    zhhtrvec(tmp2,beta,j+1,tmp1,tmp1);
		}
		
		/* insert into Q */
		zset_col(Q,i,tmp1);
	    }
	}

	if ( H != ZMNULL )
	{
	    H = zm_copy(HQ,zm_resize(H,HQ->m,HQ->n));
	    
	    limit = H->m;
	    for ( i = 1; i < limit; i++ )
		for ( j = 0; j < i-1; j++ )
		    H->me[i][j].re = H->me[i][j].im = 0.0;
	}

#ifdef	THREADSAFE
	ZV_FREE(tmp1);	ZV_FREE(tmp2);
#endif

	return HQ;
}