1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
|
/**************************************************************************
**
** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
**
** Meschach Library
**
** This Meschach Library is provided "as is" without any express
** or implied warranty of any kind with respect to this software.
** In particular the authors shall not be liable for any direct,
** indirect, special, incidental or consequential damages arising
** in any way from use of the software.
**
** Everyone is granted permission to copy, modify and redistribute this
** Meschach Library, provided:
** 1. All copies contain this copyright notice.
** 2. All modified copies shall carry a notice stating who
** made the last modification and the date of such modification.
** 3. No charge is made for this software or works derived from it.
** This clause shall not be construed as constraining other software
** distributed on the same medium as this software, nor is a
** distribution fee considered a charge.
**
***************************************************************************/
#include <stdio.h>
#include "matrix.h"
#include "zmatrix.h"
static char rcsid[] = "$Id: zvecop.c,v 1.3 1997/10/07 16:13:54 stewart Exp stewart $";
/* _zin_prod -- inner product of two vectors from i0 downwards
-- flag != 0 means compute sum_i a[i]*.b[i];
-- flag == 0 means compute sum_i a[i].b[i] */
#ifndef ANSI_C
complex _zin_prod(a,b,i0,flag)
ZVEC *a,*b;
unsigned int i0, flag;
#else
complex _zin_prod(const ZVEC *a, const ZVEC *b,
unsigned int i0, unsigned int flag)
#endif
{
unsigned int limit;
if ( a==ZVNULL || b==ZVNULL )
error(E_NULL,"_zin_prod");
limit = min(a->dim,b->dim);
if ( i0 > limit )
error(E_BOUNDS,"_zin_prod");
return __zip__(&(a->ve[i0]),&(b->ve[i0]),(int)(limit-i0),flag);
}
/* zv_mlt -- scalar-vector multiply -- may be in-situ */
#ifndef ANSI_C
ZVEC *zv_mlt(scalar,vector,out)
complex scalar;
ZVEC *vector,*out;
#else
ZVEC *zv_mlt(complex scalar, const ZVEC *vector, ZVEC *out)
#endif
{
/* unsigned int dim, i; */
/* complex *out_ve, *vec_ve; */
if ( vector==ZVNULL )
error(E_NULL,"zv_mlt");
if ( out==ZVNULL || out->dim != vector->dim )
out = zv_resize(out,vector->dim);
if ( scalar.re == 0.0 && scalar.im == 0.0 )
return zv_zero(out);
if ( scalar.re == 1.0 && scalar.im == 0.0 )
return zv_copy(vector,out);
__zmlt__(vector->ve,scalar,out->ve,(int)(vector->dim));
return (out);
}
/* zv_add -- vector addition -- may be in-situ */
#ifndef ANSI_C
ZVEC *zv_add(vec1,vec2,out)
ZVEC *vec1,*vec2,*out;
#else
ZVEC *zv_add(const ZVEC *vec1, const ZVEC *vec2, ZVEC *out)
#endif
{
unsigned int dim;
if ( vec1==ZVNULL || vec2==ZVNULL )
error(E_NULL,"zv_add");
if ( vec1->dim != vec2->dim )
error(E_SIZES,"zv_add");
if ( out==ZVNULL || out->dim != vec1->dim )
out = zv_resize(out,vec1->dim);
dim = vec1->dim;
__zadd__(vec1->ve,vec2->ve,out->ve,(int)dim);
return (out);
}
/* zv_mltadd -- scalar/vector multiplication and addition
-- out = v1 + scale.v2 */
#ifndef ANSI_C
ZVEC *zv_mltadd(v1,v2,scale,out)
ZVEC *v1,*v2,*out;
complex scale;
#else
ZVEC *zv_mltadd(const ZVEC *v1, const ZVEC *v2, complex scale, ZVEC *out)
#endif
{
/* register unsigned int dim, i; */
/* complex *out_ve, *v1_ve, *v2_ve; */
if ( v1==ZVNULL || v2==ZVNULL )
error(E_NULL,"zv_mltadd");
if ( v1->dim != v2->dim )
error(E_SIZES,"zv_mltadd");
if ( scale.re == 0.0 && scale.im == 0.0 )
return zv_copy(v1,out);
if ( scale.re == 1.0 && scale.im == 0.0 )
return zv_add(v1,v2,out);
if ( v2 != out )
{
tracecatch(out = zv_copy(v1,out),"zv_mltadd");
/* dim = v1->dim; */
__zmltadd__(out->ve,v2->ve,scale,(int)(v1->dim),0);
}
else
{
tracecatch(out = zv_mlt(scale,v2,out),"zv_mltadd");
out = zv_add(v1,out,out);
}
return (out);
}
/* zv_sub -- vector subtraction -- may be in-situ */
#ifndef ANSI_C
ZVEC *zv_sub(vec1,vec2,out)
ZVEC *vec1,*vec2,*out;
#else
ZVEC *zv_sub(const ZVEC *vec1, const ZVEC *vec2, ZVEC *out)
#endif
{
/* unsigned int i, dim; */
/* complex *out_ve, *vec1_ve, *vec2_ve; */
if ( vec1==ZVNULL || vec2==ZVNULL )
error(E_NULL,"zv_sub");
if ( vec1->dim != vec2->dim )
error(E_SIZES,"zv_sub");
if ( out==ZVNULL || out->dim != vec1->dim )
out = zv_resize(out,vec1->dim);
__zsub__(vec1->ve,vec2->ve,out->ve,(int)(vec1->dim));
return (out);
}
/* zv_map -- maps function f over components of x: out[i] = f(x[i])
-- _zv_map sets out[i] = f(x[i],params) */
#ifndef ANSI_C
ZVEC *zv_map(f,x,out)
#ifdef PROTOYPES_IN_STRUCT
complex (*f)(complex);
#else
complex (*f)();
#endif
ZVEC *x, *out;
#else
ZVEC *zv_map(complex (*f)(complex), const ZVEC *x, ZVEC *out)
#endif
{
complex *x_ve, *out_ve;
int i, dim;
if ( ! x || ! f )
error(E_NULL,"zv_map");
if ( ! out || out->dim != x->dim )
out = zv_resize(out,x->dim);
dim = x->dim; x_ve = x->ve; out_ve = out->ve;
for ( i = 0; i < dim; i++ )
out_ve[i] = (*f)(x_ve[i]);
return out;
}
#ifndef ANSI_C
ZVEC *_zv_map(f,params,x,out)
#ifdef PROTOTYPES_IN_STRUCT
complex (*f)(void *,complex);
#else
complex (*f)();
#endif
ZVEC *x, *out;
void *params;
#else
ZVEC *_zv_map(complex (*f)(void *,complex), void *params,
const ZVEC *x, ZVEC *out)
#endif
{
complex *x_ve, *out_ve;
int i, dim;
if ( ! x || ! f )
error(E_NULL,"_zv_map");
if ( ! out || out->dim != x->dim )
out = zv_resize(out,x->dim);
dim = x->dim; x_ve = x->ve; out_ve = out->ve;
for ( i = 0; i < dim; i++ )
out_ve[i] = (*f)(params,x_ve[i]);
return out;
}
/* zv_lincomb -- returns sum_i a[i].v[i], a[i] real, v[i] vectors */
#ifndef ANSI_C
ZVEC *zv_lincomb(n,v,a,out)
int n; /* number of a's and v's */
complex a[];
ZVEC *v[], *out;
#else
ZVEC *zv_lincomb(int n, const ZVEC *v[], const complex a[], ZVEC *out)
#endif
{
int i;
if ( ! a || ! v )
error(E_NULL,"zv_lincomb");
if ( n <= 0 )
return ZVNULL;
for ( i = 1; i < n; i++ )
if ( out == v[i] )
error(E_INSITU,"zv_lincomb");
out = zv_mlt(a[0],v[0],out);
for ( i = 1; i < n; i++ )
{
if ( ! v[i] )
error(E_NULL,"zv_lincomb");
if ( v[i]->dim != out->dim )
error(E_SIZES,"zv_lincomb");
out = zv_mltadd(out,v[i],a[i],out);
}
return out;
}
#ifdef ANSI_C
/* zv_linlist -- linear combinations taken from a list of arguments;
calling:
zv_linlist(out,v1,a1,v2,a2,...,vn,an,NULL);
where vi are vectors (ZVEC *) and ai are numbers (complex)
*/
ZVEC *zv_linlist(ZVEC *out,ZVEC *v1,complex a1,...)
{
va_list ap;
ZVEC *par;
complex a_par;
if ( ! v1 )
return ZVNULL;
va_start(ap, a1);
out = zv_mlt(a1,v1,out);
while (par = va_arg(ap,ZVEC *)) { /* NULL ends the list*/
a_par = va_arg(ap,complex);
if (a_par.re == 0.0 && a_par.im == 0.0) continue;
if ( out == par )
error(E_INSITU,"zv_linlist");
if ( out->dim != par->dim )
error(E_SIZES,"zv_linlist");
if (a_par.re == 1.0 && a_par.im == 0.0)
out = zv_add(out,par,out);
else if (a_par.re == -1.0 && a_par.im == 0.0)
out = zv_sub(out,par,out);
else
out = zv_mltadd(out,par,a_par,out);
}
va_end(ap);
return out;
}
#elif VARARGS
/* zv_linlist -- linear combinations taken from a list of arguments;
calling:
zv_linlist(out,v1,a1,v2,a2,...,vn,an,NULL);
where vi are vectors (ZVEC *) and ai are numbers (complex)
*/
ZVEC *zv_linlist(va_alist) va_dcl
{
va_list ap;
ZVEC *par, *out;
complex a_par;
va_start(ap);
out = va_arg(ap,ZVEC *);
par = va_arg(ap,ZVEC *);
if ( ! par ) {
va_end(ap);
return ZVNULL;
}
a_par = va_arg(ap,complex);
out = zv_mlt(a_par,par,out);
while (par = va_arg(ap,ZVEC *)) { /* NULL ends the list*/
a_par = va_arg(ap,complex);
if (a_par.re == 0.0 && a_par.im == 0.0) continue;
if ( out == par )
error(E_INSITU,"zv_linlist");
if ( out->dim != par->dim )
error(E_SIZES,"zv_linlist");
if (a_par.re == 1.0 && a_par.im == 0.0)
out = zv_add(out,par,out);
else if (a_par.re == -1.0 && a_par.im == 0.0)
out = zv_sub(out,par,out);
else
out = zv_mltadd(out,par,a_par,out);
}
va_end(ap);
return out;
}
#endif
/* zv_star -- computes componentwise (Hadamard) product of x1 and x2
-- result out is returned */
#ifndef ANSI_C
ZVEC *zv_star(x1, x2, out)
ZVEC *x1, *x2, *out;
#else
ZVEC *zv_star(const ZVEC *x1, const ZVEC *x2, ZVEC *out)
#endif
{
int i;
Real t_re, t_im;
if ( ! x1 || ! x2 )
error(E_NULL,"zv_star");
if ( x1->dim != x2->dim )
error(E_SIZES,"zv_star");
out = zv_resize(out,x1->dim);
for ( i = 0; i < x1->dim; i++ )
{
/* out->ve[i] = x1->ve[i] * x2->ve[i]; */
t_re = x1->ve[i].re*x2->ve[i].re - x1->ve[i].im*x2->ve[i].im;
t_im = x1->ve[i].re*x2->ve[i].im + x1->ve[i].im*x2->ve[i].re;
out->ve[i].re = t_re;
out->ve[i].im = t_im;
}
return out;
}
/* zv_slash -- computes componentwise ratio of x2 and x1
-- out[i] = x2[i] / x1[i]
-- if x1[i] == 0 for some i, then raise E_SING error
-- result out is returned */
#ifndef ANSI_C
ZVEC *zv_slash(x1, x2, out)
ZVEC *x1, *x2, *out;
#else
ZVEC *zv_slash(const ZVEC *x1, const ZVEC *x2, ZVEC *out)
#endif
{
int i;
Real r2, t_re, t_im;
complex tmp;
if ( ! x1 || ! x2 )
error(E_NULL,"zv_slash");
if ( x1->dim != x2->dim )
error(E_SIZES,"zv_slash");
out = zv_resize(out,x1->dim);
for ( i = 0; i < x1->dim; i++ )
{
r2 = x1->ve[i].re*x1->ve[i].re + x1->ve[i].im*x1->ve[i].im;
if ( r2 == 0.0 )
error(E_SING,"zv_slash");
tmp.re = x1->ve[i].re / r2;
tmp.im = - x1->ve[i].im / r2;
t_re = tmp.re*x2->ve[i].re - tmp.im*x2->ve[i].im;
t_im = tmp.re*x2->ve[i].im + tmp.im*x2->ve[i].re;
out->ve[i].re = t_re;
out->ve[i].im = t_im;
}
return out;
}
/* zv_sum -- returns sum of entries of a vector */
#ifndef ANSI_C
complex zv_sum(x)
ZVEC *x;
#else
complex zv_sum(const ZVEC *x)
#endif
{
int i;
complex sum;
if ( ! x )
error(E_NULL,"zv_sum");
sum.re = sum.im = 0.0;
for ( i = 0; i < x->dim; i++ )
{
sum.re += x->ve[i].re;
sum.im += x->ve[i].im;
}
return sum;
}
/* px_zvec -- permute vector */
#ifndef ANSI_C
ZVEC *px_zvec(px,vector,out)
PERM *px;
ZVEC *vector,*out;
#else
ZVEC *px_zvec(PERM *px, ZVEC *vector, ZVEC *out)
#endif
{
unsigned int old_i, i, size, start;
complex tmp;
if ( px==PNULL || vector==ZVNULL )
error(E_NULL,"px_zvec");
if ( px->size > vector->dim )
error(E_SIZES,"px_zvec");
if ( out==ZVNULL || out->dim < vector->dim )
out = zv_resize(out,vector->dim);
size = px->size;
if ( size == 0 )
return zv_copy(vector,out);
if ( out != vector )
{
for ( i=0; i<size; i++ )
if ( px->pe[i] >= size )
error(E_BOUNDS,"px_vec");
else
out->ve[i] = vector->ve[px->pe[i]];
}
else
{ /* in situ algorithm */
start = 0;
while ( start < size )
{
old_i = start;
i = px->pe[old_i];
if ( i >= size )
{
start++;
continue;
}
tmp = vector->ve[start];
while ( TRUE )
{
vector->ve[old_i] = vector->ve[i];
px->pe[old_i] = i+size;
old_i = i;
i = px->pe[old_i];
if ( i >= size )
break;
if ( i == start )
{
vector->ve[old_i] = tmp;
px->pe[old_i] = i+size;
break;
}
}
start++;
}
for ( i = 0; i < size; i++ )
if ( px->pe[i] < size )
error(E_BOUNDS,"px_vec");
else
px->pe[i] = px->pe[i]-size;
}
return out;
}
/* pxinv_zvec -- apply the inverse of px to x, returning the result in out
-- may NOT be in situ */
#ifndef ANSI_C
ZVEC *pxinv_zvec(px,x,out)
PERM *px;
ZVEC *x, *out;
#else
ZVEC *pxinv_zvec(PERM *px, ZVEC *x, ZVEC *out)
#endif
{
unsigned int i, size;
if ( ! px || ! x )
error(E_NULL,"pxinv_zvec");
if ( px->size > x->dim )
error(E_SIZES,"pxinv_zvec");
if ( ! out || out->dim < x->dim )
out = zv_resize(out,x->dim);
size = px->size;
if ( size == 0 )
return zv_copy(x,out);
if ( out != x )
{
for ( i=0; i<size; i++ )
if ( px->pe[i] >= size )
error(E_BOUNDS,"pxinv_vec");
else
out->ve[px->pe[i]] = x->ve[i];
}
else
{ /* in situ algorithm --- cheat's way out */
px_inv(px,px);
px_zvec(px,x,out);
px_inv(px,px);
}
return out;
}
/* zv_rand -- randomise a complex vector; uniform in [0,1)+[0,1)*i */
#ifndef ANSI_C
ZVEC *zv_rand(x)
ZVEC *x;
#else
ZVEC *zv_rand(ZVEC *x)
#endif
{
if ( ! x )
error(E_NULL,"zv_rand");
mrandlist((Real *)(x->ve),2*x->dim);
return x;
}
|