1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
|
/*****************************************************************************
* Gnome Wave Cleaner Version 0.19
* Copyright (C) 2001 Jeffrey J. Welty
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*******************************************************************************/
/* denoise.c */
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include "gwc.h"
#include <math.h>
#include <float.h>
#include <unistd.h>
#include <sys/time.h>
//struct timeb start_time, middle_time, end_time ;
struct timeval start_time, middle_time, end_time ;
struct timezone tzp;
void start_timer(void)
{
gettimeofday(&start_time,&tzp);
}
void stop_timer(char *message)
{
gettimeofday(&end_time,&tzp) ;
{
double fstart = start_time.tv_sec + (double)start_time.tv_usec/1000000.0 ;
double fend = end_time.tv_sec + (double)end_time.tv_usec/1000000.0 ;
fprintf(stderr, "%s in %7.3lf real seconds\n", message, fend-fstart) ;
}
}
#ifdef OLD_TIMER
struct timeb start_time, middle_time, end_time ;
void start_timer(void)
{
ftime(&start_time) ;
}
void stop_timer(char *message)
{
ftime(&end_time) ;
{
double fstart = start_time.time + (double)start_time.millitm/1000.0 ;
double fend = end_time.time + (double)end_time.millitm/1000.0 ;
fprintf(stderr, "%s in %7.3lf real seconds\n", message, fend-fstart) ;
}
}
#endif
double bark_z[DENOISE_MAX_FFT] ;
double window_coef[DENOISE_MAX_FFT] ;
double sum_window_wgts[DENOISE_MAX_FFT] ;
double jg_upper[DENOISE_MAX_FFT][11] ;
double jg_lower[DENOISE_MAX_FFT][11] ;
/* double *two_way_probs[DENOISE_MAX_FFT] ; */
void compute_bark_z(int FFT_SIZE, int rate)
{
int k ;
/* compute the bark z value for this frequency bin */
for(k = 1 ; k <= FFT_SIZE/2 ; k++) {
double freq = (double)rate / 2.0 /(double)(FFT_SIZE/2)*(double)k ;
bark_z[k] = 7.0*log(freq/650.0 + sqrt(1 + (freq/650.0)*(freq/650.0))) ;
}
}
void compute_johnston_gain(int FFT_SIZE, double tonality_factor)
{
int k ;
for (k = 1; k <= FFT_SIZE/2 ; ++k) {
int j ;
for(j = k-1 ; j > 0 ; j--) {
double bark_diff = bark_z[k] - bark_z[j] ;
double johnston = 15.81 + 7.5*(bark_diff+.474) - 17.5*sqrt(1.0+(bark_diff+0.474)*(bark_diff+0.474)) ;
double johnston_masked = johnston - (tonality_factor*(14.5+bark_z[j])+5.5*(1.0 - tonality_factor)) ;
double gain = pow(10.0, johnston_masked/10.0) ;
jg_lower[k][k-j] = gain ;
if(k - j > 10) break ;
}
for(j = k ; j <= FFT_SIZE/2 ; j++) {
double bark_diff = bark_z[j] - bark_z[k] ;
double johnston = 15.81 + 7.5*(bark_diff+.474) - 17.5*sqrt(1.0+(bark_diff+0.474)*(bark_diff+0.474)) ;
double johnston_masked = johnston - (tonality_factor*(14.5+bark_z[j])+5.5*(1.0 - tonality_factor)) ;
double gain = pow(10.0, johnston_masked/10.0) ;
jg_upper[k][j-k] = gain ;
if(j - k > 10) break ;
}
}
}
int get_window_delta(struct denoise_prefs *pDnprefs)
{
if(pDnprefs->window_type == DENOISE_WINDOW_HANNING_OVERLAP_ADD) {
return pDnprefs->FFT_SIZE/2 ;
#ifdef DENOISE_TRY_ONE_SAMPLE
} else if(pDnprefs->window_type == DENOISE_WINDOW_ONE_SAMPLE) {
return 1 ;
#endif
} else {
if(pDnprefs->window_type == DENOISE_WINDOW_BLACKMAN)
return pDnprefs->FFT_SIZE/pDnprefs->smoothness ;
else
return 3*pDnprefs->FFT_SIZE/4 ;
}
}
void compute_sum_window_wgts(struct denoise_prefs *pDnprefs)
{
int delta = get_window_delta(pDnprefs) ;
int i, k ;
for(i = 0 ; i < pDnprefs->FFT_SIZE ; i++) {
sum_window_wgts[i] = 0.0 ;
for(k = i ; k < pDnprefs->FFT_SIZE+i ; k += delta) {
sum_window_wgts[i] += window_coef[k%pDnprefs->FFT_SIZE] ;
}
}
/* for(i = 0 ; i < pDnprefs->FFT_SIZE ; i++) { */
/* g_print("i:%d sww:%lf\n", i, sum_window_wgts[i]) ; */
/* } */
}
double gain_weiner(double Yk2, double Dk2)
{
double gain ;
double Xk2 = Yk2 - Dk2 ;
if(Yk2 > Dk2)
gain = (Xk2) / (Xk2+Dk2) ;
else
gain = 0.0 ;
return gain ;
}
double gain_power_subtraction(double Yk2, double Dk2)
{
double level = MAX(Yk2-Dk2, 0.0) ;
if(Yk2 > DBL_MIN)
return level/Yk2 ;
else
return 0.0 ;
}
double alpha_lorber(double snr)
{
double snr_db = 10.*log10(snr) ;
double alpha ;
if(snr_db > 20) return 1.0 ;
alpha = MIN((3.0 - 0.10*snr_db), 3.5) ;
return alpha ;
}
#define SLOW_EM
#ifdef SLOW_EM
double hypergeom(double theta)
{
double i0(double), i1(double) ;
if(theta < 7.389056)
return exp(-theta/2.0)*(1.0+theta*i0(theta/2.0)+theta*i1(theta/2.0)) ;
else
return exp(0.09379 + 0.50447*log(theta)) ;
}
double gain_em(double Rprio, double Rpost, double alpha)
{
/* Ephraim-Malah classic noise suppression, from 1984 paper */
double gain = 0.886226925*sqrt(1.0/(1.0+Rpost)*(Rprio/(1.0+Rprio))) ;
gain *= hypergeom((1.0+Rpost)*(Rprio/(1.0+Rprio))) ;
return gain ;
}
#else
double gain_em(double Rprio, double Rpost, double alpha)
{
/* Ephraim-Malah noise suppression, from Godsill and Wolfe 2001 paper */
double r = MAX(Rprio/(1.0+Rprio),DBL_MIN) ;
double V = Rprio/(1.+Rprio)*Rpost ;
return sqrt( r * (1.0+V)/Rpost ) ;
}
#endif
double blackman(int k, int N)
{
double p = ((double)(k))/(double)(N-1) ;
return 0.42-0.5*cos(2.0*M_PI*p) + 0.08*cos(4.0*M_PI*p) ;
}
double hanning(int k, int N)
{
double p = ((double)(k))/(double)(N-1) ;
return 0.5 - 0.5 * cos(2.0*M_PI*p) ;
}
double blackman_hybrid(int k, int n_flat, int N)
{
if(k >= (N-n_flat)/2 && k <= n_flat+(N-n_flat)/2-1) {
return 1.0 ;
} else {
double p ;
if(k >= n_flat+(N-n_flat)/2-1) k -= n_flat ;
p = (double)(k)/(double)(N-n_flat-1) ;
return 0.42-0.5*cos(2.0*M_PI*p) + 0.08*cos(4.0*M_PI*p) ;
}
}
double welty_alpha(double w, double x)
{
double alpha = ( log(acos(-2.0*w+1)) - log(M_PI) ) / log(1.0 - x) ;
/* d_print("Welty alpha=%g\n", alpha) ; */
return alpha ;
}
/* double welty(int k, int N, double alpha) */
/* { */
/* double n2 = (double)N/2.0 ; */
/* double x = fabs(((double)k - n2) / (n2)) ; */
/* double tx = pow(1.0-x, alpha)*M_PI ; */
/* double w = -( cos(tx)-1.0 )/2.0 ; */
/* d_print("Welty x=%g, w=%g, k=%d N=%d\n", x, w, k, N) ; */
/* } */
double fft_window(int k, int N, int window_type)
{
if(window_type == DENOISE_WINDOW_BLACKMAN) {
return blackman(k, N) ;
} else if(window_type == DENOISE_WINDOW_BLACKMAN_HYBRID) {
return blackman_hybrid(k, N-N/4, N) ;
#ifdef DENOISE_TRY_ONE_SAMPLE
} else if(window_type == DENOISE_WINDOW_ONE_SAMPLE) {
return hanning(k, N) ;
#endif
} else if(window_type == DENOISE_WINDOW_HANNING_OVERLAP_ADD) {
return hanning(k, N) ;
}
return 0.0 ;
}
double db2w(double db)
{
return pow(10,db/10) ;
}
double ceramic_mic_response(double f)
{
double db = 0.0 ;
if(f < 4000.0) {
db = 0.0 ;
} else if(f < 7000.0) {
db = (f-4000.0)/7000.0*2.0 ;
} else if(f < 20000.0) {
db = 2.0 - ((f-7000.0)/13000.0)*12.0 ;
} else {
db = -10.0 ;
}
return db2w(db) ;
}
void cdivide(double *a, double *b, double c, double d)
{
double denom = (c*c + d*d) ;
double anew, bnew ;
if(denom < 1.e-60) {
*a = 0.0 ;
*b = 0.0 ;
return ;
}
anew = (*a*c + *b*d) / denom ;
bnew = (*b*c - *a*d) / denom ;
}
#define bin2freq(r,s,k) ((double)r / 2.0 /(double)(s/2)*(double)k)
int prev_sample[2] ;
static fftw_real windowed[DENOISE_MAX_FFT] ;
static fftw_real out[DENOISE_MAX_FFT] ;
#ifdef HAVE_FFTW3
static void fft_remove_noise(fftw_real sample[], fftw_real noise_min2[], fftw_real noise_max2[], fftw_real noise_avg2[],
FFTW(plan) *pFor, FFTW(plan) *pBak,
#else /* HAVE_FFTW3 */
void fft_remove_noise(fftw_real sample[], fftw_real noise_min2[], fftw_real noise_max2[], fftw_real noise_avg2[],
rfftw_plan *pFor, rfftw_plan *pBak,
#endif /* HAVE_FFTW3 */
struct denoise_prefs *pPrefs, int ch)
{
int k ;
fftw_real noise2[DENOISE_MAX_FFT/2+1] ;
fftw_real noise[DENOISE_MAX_FFT/2+1] ;
fftw_real Y2[DENOISE_MAX_FFT/2+1] ;
fftw_real Y[DENOISE_MAX_FFT/2+1] ;
fftw_real masked[DENOISE_MAX_FFT/2+1] ;
fftw_real gain_k[DENOISE_MAX_FFT] ;
static fftw_real bsig_prev[2][DENOISE_MAX_FFT],bY2_prev[2][DENOISE_MAX_FFT/2+1],bgain_prev[2][DENOISE_MAX_FFT/2+1] ;
fftw_real *sig_prev,*Y2_prev,*gain_prev ;
static int debug_frame = 1 ;
double SFM, tonality_factor ;
sig_prev = bsig_prev[ch] ;
Y2_prev = bY2_prev[ch] ;
gain_prev = bgain_prev[ch] ;
if(0 || pPrefs->window_type == DENOISE_WINDOW_HANNING_OVERLAP_ADD) {
/* with overlap-add pre-window the sample */
for(k = 0 ; k < pPrefs->FFT_SIZE ; k++) {
windowed[k] = sample[k]*window_coef[k] ;
//if(debug_frame == 3) g_print("k:%d window_coef:%lf windowed:%lf\n", k, window_coef[k], windowed[k]) ;
}
} else {
/* with other methods don't window the sample for FFT,
but window the result back into the original
sample the FFT noise-removal process */
for(k = 0 ; k < pPrefs->FFT_SIZE ; k++) {
windowed[k] = sample[k] ;
}
}
#ifdef HAVE_FFTW3
FFTW(execute)(*pFor);
#else /* HAVE_FFTW3 */
rfftw_one(*pFor, windowed, out);
#endif /* HAVE_FFTW3 */
{
double sum_log_p = 0.0 ;
double sum_p = 0.0 ;
double kinv = 1./(double)(pPrefs->FFT_SIZE/2.0) ;
for (k = 1; k <= pPrefs->FFT_SIZE/2 ; ++k) {
noise2[k] = noise_max2[k] ;
noise2[k] = noise_min2[k] + 0.5*(noise_max2[k] - noise_min2[k]) ;
noise2[k] = noise_avg2[k] ;
noise[k] = sqrt(noise2[k]) ;
if(k < pPrefs->FFT_SIZE/2) {
Y2[k] = out[k]*out[k] + out[pPrefs->FFT_SIZE-k]*out[pPrefs->FFT_SIZE-k] ;
Y[k] = sqrt(Y2[k]) ;
} else {
Y2[k] = out[k]*out[k] ;
Y[k] = out[k] ;
}
sum_log_p += log10(Y2[k]) ;
sum_p += Y2[k] ;
}
SFM = 10.0*( kinv*sum_log_p - log10(sum_p*kinv) ) ;
tonality_factor = MIN(SFM/-60.0, 1) ;
}
if(pPrefs->noise_suppression_method == DENOISE_LORBER) tonality_factor = 0.0 ;
/* g_print("SFM:%f tonality:%lf\n", SFM, tonality_factor) ; */
if(pPrefs->noise_suppression_method == DENOISE_LORBER) {
for (k = 1; k <= pPrefs->FFT_SIZE/2 ; ++k) {
double sum = 0 ;
double sum_wgts = 0 ;
int j ;
int j1 = MAX(k-10,1) ;
int j2 = MIN(k+10,pPrefs->FFT_SIZE/2) ;
for(j = j1 ; j <= j2 ; j++) {
double d = ABS(j-k)+1.0 ;
double wgt = 1./sqrt(d) ;
sum += Y2[j]*wgt ;
sum_wgts += wgt ;
}
masked[k] = sum / (sum_wgts+1.e-300) ;
}
}
/* if(pPrefs->noise_suppression_method == DENOISE_LORBER || pPrefs->noise_suppression_method == DENOISE_WOLFE_GODSILL) { */
if(pPrefs->noise_suppression_method == DENOISE_WOLFE_GODSILL) {
for (k = 1; k <= pPrefs->FFT_SIZE/2 ; ++k) {
int j ;
masked[k] = 0.0 ;
for(j = k-1 ; j > 0 ; j--) {
#ifdef OLD_N_SLOW
double bark_diff = bark_z[k] - bark_z[j] ;
double johnston = 15.81 + 7.5*(bark_diff+.474) - 17.5*sqrt(1.0+(bark_diff+0.474)*(bark_diff+0.474)) ;
double johnston_masked = johnston - (tonality_factor*(14.5+bark_z[j])+5.5*(1.0 - tonality_factor)) ;
double gain = pow(10.0, johnston_masked/10.0) ;
if(gain < 1.e-2) break ;
#else
double gain = jg_lower[k][k-j] ;
#endif
if(k - j > 10) break ;
masked[k] += MAX((Y2[j]-noise2[j]),0.0)*gain ;
}
for(j = k ; j <= pPrefs->FFT_SIZE/2 ; j++) {
#ifdef OLD_N_SLOW
double bark_diff = bark_z[j] - bark_z[k] ;
double johnston = 15.81 + 7.5*(bark_diff+.474) - 17.5*sqrt(1.0+(bark_diff+0.474)*(bark_diff+0.474)) ;
double johnston_masked = johnston - (tonality_factor*(14.5+bark_z[j])+5.5*(1.0 - tonality_factor)) ;
double gain = pow(10.0, johnston_masked/10.0) ;
#else
double gain = jg_upper[k][j-k] ;
#endif
if(gain < 1.e-2) break ;
if(j - k > 10) break ;
masked[k] += MAX((Y2[j]-noise2[j]),0.0)*gain ;
}
/* if(debug_frame == 3) g_print("k:%d Y:%lf masked:%lf bark:%lf\n", k, Y[k], masked[k], bark_z[k]) ; */
}
}
#ifdef TEST
if(pPrefs->noise_suppression_method == DENOISE_AUDACITY) {
for(i=0; i<=len/2; i++)
plog[i] = log(power[i]);
int half = len/2;
for(i=0; i<=half; i++) {
float smooth;
if (plog[i] < noiseGate[i] + (level/2.0))
smooth = 0.0;
else
smooth = 1.0;
smoothing[i] = smooth * 0.5 + smoothing[i] * 0.5;
}
/* try to eliminate tinkle bells */
for(i=2; i<=half-2; i++) {
if (smoothing[i]>=0.5 &&
smoothing[i]<=0.55 &&
smoothing[i-1]<0.1 &&
smoothing[i-2]<0.1 &&
smoothing[i+1]<0.1 &&
smoothing[i+2]<0.1)
smoothing[i] = 0.0;
}
outr[0] *= smoothing[0];
outi[0] *= smoothing[0];
outr[half] *= smoothing[half];
outi[half] *= smoothing[half];
for(i=1; i<half; i++) {
int j = len - i;
float smooth = smoothing[i];
outr[i] *= smooth;
outi[i] *= smooth;
outr[j] *= smooth;
outi[j] *= smooth;
}
#else
if(0) {
#endif
} else {
if(pPrefs->noise_suppression_method == DENOISE_EXPERIMENTAL) {
/* this whole section is starting to play around with audio *restoration*, i.e. trying
* to guess what was missing, and adding it back in. Think of very old recordings
* with that have a damped high frequency response */
if(0) {
static int first=1 ;
/* try simple deconvolution */
for (k = 0 ; k <= pPrefs->FFT_SIZE/2 ; ++k) {
/* Gk needs to look like the original response filter */
double Gk = hanning(k,pPrefs->FFT_SIZE/2) ;
double freq = bin2freq(pPrefs->rate,pPrefs->FFT_SIZE,k) ;
Gk = ceramic_mic_response(bin2freq(pPrefs->rate,pPrefs->FFT_SIZE,k)) ;
Gk = Gk * Gk ;
if( !(k % 100) && first ) printf("k:%d freq:%0.1f Gk:%f\n", k, freq, Gk) ;
if(k < pPrefs->FFT_SIZE/2) {
/* cdivide(&out[k],&out[pPrefs->FFT_SIZE-k],Gk,0) ; */
out[pPrefs->FFT_SIZE-k] /= Gk ;
out[k] /= Gk ;
} else {
out[k] /= Gk ;
}
out[k] *= Gk ;
}
first=0 ;
} else {
// Step 1. Compute the linear regression coefs(a,b) for the function ln(power2) = a*k + b ;
double sumx = 0.0 ;
double sumy = 0.0 ;
double sumx2 = 0.0 ;
double sumxy = 0.0 ;
double n = 0 ;
double a, b ;
int k_cut_off = 2*pPrefs->FFT_SIZE/8 ;
fftw_real *r = gain_k ;
for (k = 1 ; k <= pPrefs->FFT_SIZE/2 ; ++k) {
r[k] = 1.0 ;
}
for (k = 1 ; k < k_cut_off ; ++k) {
double y = log(Y2[k]) ;
sumx += (double)k ;
sumy += y ;
sumxy += (double)k*y ;
sumx2 += (double)k*(double)k ;
n++ ;
}
a = (n*(sumxy)-sumx*sumy) / (n*sumx2 - sumx*sumx) ;
b = (sumy - a*sumx) / n ;
printf("a,b %f %f\n", a, b) ;
// Step 2. Compute r[k], amount of energy present for each frequency bin relative to predicted
for (k = 1 ; k < k_cut_off ; ++k) {
r[k] = log(Y2[k]) / (a*(double)k+b) ;
}
#define MAX_HARMONIC 3
// Step 3. Compute gain in each bin >= k_cutoff ;
double harmonic_factor[6] = {1.0,1.0,1.0,1.0,1.0,1.0/8.0} ;
int harmonic ;
for(harmonic = 1 ; harmonic < MAX_HARMONIC+1 ; harmonic++) {
double harmonic_fraction = 1.0 - ((double)harmonic / (double)(harmonic+1)) ;
for (k = k_cut_off ; k <= pPrefs->FFT_SIZE/2 ; ++k) {
/* compute j, the index of the fundamental freq of which k is the harmonic */
int j = (int)((double)k * harmonic_fraction + 0.5) ;
double ln_p2_hat = r[j]*(a * (double)k + b) ;
double p2_hat = harmonic_factor[harmonic]*exp(ln_p2_hat) ;
double Gk = sqrt((p2_hat+Y2[k]) / Y2[k]) ;
if (k == pPrefs->FFT_SIZE/2) printf("harmonic, hf, j, p2_hat, Gk[maxfft], ln_p2_hat %d %f %d %f %f %f\n",
harmonic, harmonic_fraction, j, p2_hat, Gk, ln_p2_hat) ;
out[k] *= Gk ;
if(k < pPrefs->FFT_SIZE/2) out[pPrefs->FFT_SIZE-k] *= Gk ;
}
}
}
} else {
for (k = 1; k <= pPrefs->FFT_SIZE/2 ; ++k) {
if(noise2[k] > DBL_MIN) {
double gain, Fk, Gk ;
if(pPrefs->noise_suppression_method == DENOISE_EM) {
double Rpost = MAX(Y2[k]/noise2[k]-1.0, 0.0) ;
double alpha = pPrefs->dn_gamma ;
double Rprio ;
if(prev_sample[ch] == 1)
Rprio = (1.0-alpha)*Rpost+alpha*gain_prev[k]*gain_prev[k]*Y2_prev[k]/noise2[k] ;
else
Rprio = Rpost ;
gain = gain_em(Rprio, Rpost, alpha) ;
/* g_print("Rpost:%lg Rprio:%lg gain:%lg gain_prev:%lg y2_prev:%lg\n", Rpost, Rprio, gain, gain_prev[k], Y2_prev[k]) ; */
gain_prev[k] = gain ;
Y2_prev[k] = Y2[k] ;
} else if(pPrefs->noise_suppression_method == DENOISE_LORBER) {
double SNRlocal = MAX(masked[k]/noise2[k]-1.0, 0.0) ;
double SNRfilt, SNRprio ;
double alpha ;
if(prev_sample[ch] == 1) {
double eta = (1.0 + pPrefs->dn_gamma) / 2.0 ; /* eta seems to be better closer to 1.0 than gamma */
SNRfilt = (1.-pPrefs->dn_gamma)*SNRlocal + pPrefs->dn_gamma*(sig_prev[k]/noise2[k]) ;
SNRprio = SNRfilt ; /* note, could use another parameter, like pPrefs->dn_gamma, here to compute SNRprio */
SNRprio = (1.-eta)*SNRlocal + eta*(sig_prev[k]/noise2[k]) ;
}else {
SNRfilt = SNRlocal ;
SNRprio = SNRfilt ;
}
alpha = alpha_lorber(SNRprio) ;
gain = 1.0 - alpha/(SNRfilt+1) ;
sig_prev[k] = MAX(Y2[k]*gain,0.0) ;
} else if(pPrefs->noise_suppression_method == DENOISE_WOLFE_GODSILL) {
double Rpost = MAX(Y2[k]/noise2[k]-1.0, 0.0) ;
double alpha = pPrefs->dn_gamma ;
double Rprio ;
if(prev_sample[ch] == 1)
Rprio = (1.0-alpha)*Rpost+alpha*gain_prev[k]*gain_prev[k]*Y2_prev[k]/noise2[k] ;
else
Rprio = Rpost ;
Y2_prev[k] = Y2[k] ;
if(Y2[k] > masked[k]) {
gain = MAX(masked[k]/Y2[k], Rprio/(Rprio+1.0)) ;
} else {
gain = 1.0 ;
}
gain_prev[k] = gain ;
} else if(pPrefs->noise_suppression_method == DENOISE_WEINER)
gain = gain_weiner(Y2[k], noise2[k]) ;
else
gain = gain_power_subtraction(Y2[k], noise2[k]) ;
Fk = pPrefs->amount*(1.0-gain) ;
if(Fk < 0.0) Fk = 0.0 ;
if(Fk > 1.0) Fk = 1.0 ;
Gk = 1.0 - Fk ;
out[k] *= Gk ;
if(k < pPrefs->FFT_SIZE/2) out[pPrefs->FFT_SIZE-k] *= Gk ;
gain_k[k] = Gk ;
}
}
}
}
/* the inverse fft */
#ifdef HAVE_FFTW3
FFTW(execute)(*pBak);
#else /* HAVE_FFTW3 */
rfftw_one(*pBak, out, windowed);
#endif /* !HAVE_FFTW3 */
for(k = 0 ; k < pPrefs->FFT_SIZE ; k++)
windowed[k] /= (double)(pPrefs->FFT_SIZE) ;
if(0|| pPrefs->window_type == DENOISE_WINDOW_HANNING_OVERLAP_ADD) {
/** HANNING - OVERLAP - ADD */
/* make sure the tails of the sample approach zero magnitude */
double offset = windowed[0] ;
double hs1 = pPrefs->FFT_SIZE/2 - 1 ;
for(k = 0 ; k < pPrefs->FFT_SIZE/2 ; k++) {
double p = (hs1-(double)k)/hs1 ;
sample[k] = windowed[k] - offset*p ;
}
offset = windowed[pPrefs->FFT_SIZE-1] ;
for(k = pPrefs->FFT_SIZE/2 ; k < pPrefs->FFT_SIZE ; k++) {
double p = ((double)k-hs1)/hs1 ;
sample[k] = windowed[k] - offset*p ;
}
} else {
/* merge results back into sample data based on window function */
for(k = 0 ; k < pPrefs->FFT_SIZE ; k++) {
double w = window_coef[k] ;
sample[k] = (1.0-w)*sample[k] + w*windowed[k] ;
}
}
prev_sample[ch] = 1 ;
debug_frame++ ;
}
int denoise_normalize = 0 ;
#define NO_DEBUG
#ifdef DEBUG
void print_denoise(char *header, struct denoise_prefs *pDnprefs)
{
int k ;
g_print("******** %s ************\n", header) ;
g_print("FFT_SIZE:%d\n", pDnprefs->FFT_SIZE) ;
g_print("n_noise_samples:%d\n", pDnprefs->n_noise_samples) ;
g_print("amount:%lf\n", pDnprefs->amount) ;
g_print("smoothness:%d\n", pDnprefs->smoothness) ;
g_print("window_type:") ;
switch(pDnprefs->window_type) {
case DENOISE_WINDOW_BLACKMAN : g_print("Blackman\n") ; break ;
case DENOISE_WINDOW_BLACKMAN_HYBRID : g_print("Blackman-hybrid\n") ; break ;
case DENOISE_WINDOW_HANNING_OVERLAP_ADD : g_print("Hanning-overlap-add\n") ; break ;
#ifdef DENOISE_TRY_ONE_SAMPLE
case DENOISE_WINDOW_ONE_SAMPLE : g_print("One Sample\n") ; break ;
#endif
default : g_print("!!!!!!!!! UNKNOWN !!!!!!!!!!!!\n") ; break ;
}
g_print("Suppression method:") ;
switch(pDnprefs->noise_suppression_method) {
case DENOISE_LORBER : g_print("Lorber-Hoeldrich\n") ; break ;
case DENOISE_WEINER : g_print("Weiner\n") ; break ;
case DENOISE_EM : g_print("Ephram\n") ; break ;
case DENOISE_WOLFE_GODSILL : g_print("Wolfe-Godsill\n") ; break ;
default : g_print("Spectral Subtraction\n") ; break ;
}
for(k = 0 ; k < pDnprefs->FFT_SIZE ; k++) {
g_print("k:%d wc:%lg\n", k, window_coef[k]) ;
}
}
#else
void print_denoise(char *header, struct denoise_prefs *pDnprefs) {}
#endif
void get_noise_sample(struct sound_prefs *pPrefs, struct denoise_prefs *pDnprefs,
long noise_start, long noise_end,
fftw_real *left_noise_min, fftw_real *left_noise_max, fftw_real *left_noise_avg,
fftw_real *right_noise_min, fftw_real *right_noise_max, fftw_real *right_noise_avg) ;
int denoise(struct sound_prefs *pPrefs, struct denoise_prefs *pDnprefs, long noise_start, long noise_end,
long first_sample, long last_sample, int channel_mask) {
long current ;
int k ;
fftw_real left[DENOISE_MAX_FFT], right[DENOISE_MAX_FFT] ;
fftw_real left_noise_max[DENOISE_MAX_FFT], right_noise_max[DENOISE_MAX_FFT], left_noise_avg[DENOISE_MAX_FFT] ;
fftw_real left_noise_min[DENOISE_MAX_FFT], right_noise_min[DENOISE_MAX_FFT], right_noise_avg[DENOISE_MAX_FFT] ;
fftw_real tmp[DENOISE_MAX_FFT] ;
fftw_real left_prev_frame[DENOISE_MAX_FFT] ;
fftw_real right_prev_frame[DENOISE_MAX_FFT] ;
#ifdef HAVE_FFTW3
FFTW(plan) pForLeft, pForRight ;
FFTW(plan) pFor, pBak ;
#else /* HAVE_FFTW3 */
rfftw_plan pFor, pBak ;
#endif /* HAVE_FFTW3 */
int framenum = 0 ;
double alpha ;
double s_amount ; /* amount, reduced to account for oversampling
due to smoothness */
start_timer() ;
current = first_sample ;
push_status_text("Denoising audio") ;
update_progress_bar(0.0,PROGRESS_UPDATE_INTERVAL,TRUE) ;
#ifdef HAVE_FFTW3
pFor =
FFTW(plan_r2r_1d)(pDnprefs->FFT_SIZE, windowed, out, FFTW_R2HC, FFTW_ESTIMATE);
pBak =
FFTW(plan_r2r_1d)(pDnprefs->FFT_SIZE, out, windowed, FFTW_HC2R, FFTW_ESTIMATE);
#endif /* HAVE_FFTW3 */
#ifdef HAVE_FFTW3
pForLeft =
FFTW(plan_r2r_1d)(pDnprefs->FFT_SIZE, left, tmp, FFTW_R2HC, FFTW_ESTIMATE);
pForRight =
FFTW(plan_r2r_1d)(pDnprefs->FFT_SIZE, right, tmp, FFTW_R2HC, FFTW_ESTIMATE);
#else /* HAVE_FFTW3 */
pFor = rfftw_create_plan(pDnprefs->FFT_SIZE, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE);
pBak = rfftw_create_plan(pDnprefs->FFT_SIZE, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE);
#endif /* HAVE_FFTW3 */
alpha = welty_alpha(0.5, 1.0/(double)pDnprefs->smoothness) ;
alpha = 1.0 ;
for(k = 0 ; k < pDnprefs->FFT_SIZE ; k++) {
window_coef[k] = fft_window(k,pDnprefs->FFT_SIZE, pDnprefs->window_type) ;
d_print("k:%d wc:%lg\n", k, window_coef[k]) ;
left_prev_frame[k] = 0.0 ;
left[k] = 0.0 ;
right_prev_frame[k] = 0.0 ;
right[k] = 0.0 ;
/* two_way_probs[k] = (double *)calloc(pDnprefs->FFT_SIZE,sizeof(double)) ; */
/* if(two_way_probs[k] == NULL) { */
/* fprintf(stderr, "Failed to malloc two_way_probs, %d of %d\n", k+1, pDnprefs->FFT_SIZE) ; */
/* exit(1) ; */
/* } */
}
audio_normalize(denoise_normalize) ;
get_noise_sample(pPrefs, pDnprefs, noise_start, noise_end,
left_noise_min, left_noise_max, left_noise_avg,
right_noise_min, right_noise_max, right_noise_avg) ;
pDnprefs->rate = pPrefs->rate ;
audio_normalize(denoise_normalize) ;
/* if(smoothness <= 4 || window_type == DENOISE_WINDOW_BLACKMAN_HYBRID) */
s_amount = pDnprefs->amount ;
/* else */
/* s_amount = amount/(double)(smoothness-3) ; */
prev_sample[0] = 0 ;
prev_sample[1] = 0 ;
if(pDnprefs->amount > DBL_MIN) {
while(current <= last_sample-pDnprefs->FFT_SIZE) {
long n = pDnprefs->FFT_SIZE ;
long tmplast = current + n - 1 ;
gfloat p = (gfloat)(current-first_sample)/(last_sample-first_sample) ;
n = read_fft_real_wavefile_data(left, right, current, current+pDnprefs->FFT_SIZE-1) ;
if(n < pDnprefs->FFT_SIZE) break ; /* hit the end of all data? */
#ifdef MAC_OS_X
// This usleep fixes a segfault on OS X. Rob Frohne
usleep(2);
#endif
update_progress_bar(p,PROGRESS_UPDATE_INTERVAL,FALSE) ;
/*
*/
if(framenum == 0) {
for(k = 0 ; k < pDnprefs->FFT_SIZE ; k++) {
if(k < pDnprefs->FFT_SIZE/2) {
d_print("OA sum %d:%lg\n", k, window_coef[k]+window_coef[k+pDnprefs->FFT_SIZE/2]) ;
window_coef[k] = 1.0 ;
}
}
compute_sum_window_wgts(pDnprefs) ;
framenum = 1 ;
} else if(framenum == 1) {
for(k = 0 ; k < pDnprefs->FFT_SIZE ; k++) {
window_coef[k] = fft_window(k,pDnprefs->FFT_SIZE, pDnprefs->window_type) ;
}
compute_sum_window_wgts(pDnprefs) ;
framenum = 2 ;
}
if(channel_mask & 0x01)
fft_remove_noise(left, left_noise_min, left_noise_max, left_noise_avg,
&pFor, &pBak, pDnprefs,0) ;
if(channel_mask & 0x02)
fft_remove_noise(right, right_noise_min, right_noise_max, right_noise_avg,
&pFor, &pBak, pDnprefs,1) ;
if(pDnprefs->window_type == DENOISE_WINDOW_HANNING_OVERLAP_ADD) {
for(k = 0 ; k < pDnprefs->FFT_SIZE/2 ; k++) {
if(channel_mask & 0x01) {
/* add in the last half of the previous output frame */
left[k] += left_prev_frame[k+pDnprefs->FFT_SIZE/2] ;
/* save the last half of this output frame */
left_prev_frame[k+pDnprefs->FFT_SIZE/2] = left[k+pDnprefs->FFT_SIZE/2] ;
}
if(channel_mask & 0x02) {
/* add in the last half of the previous output frame */
right[k] += right_prev_frame[k+pDnprefs->FFT_SIZE/2] ;
/* save the last half of this output frame */
right_prev_frame[k+pDnprefs->FFT_SIZE/2] = right[k+pDnprefs->FFT_SIZE/2] ;
}
}
write_fft_real_wavefile_data(left, right, current, current+pDnprefs->FFT_SIZE/2-1) ;
#ifdef DENOISE_TRY_ONE_SAMPLE
} else if(pDnprefs->window_type == DENOISE_WINDOW_ONE_SAMPLE) {
if(current == first_sample) {
write_fft_real_wavefile_data(left, right, current, current+pDnprefs->FFT_SIZE/2-1) ;
} else {
write_fft_real_wavefile_data(left, right, current, current) ;
}
#endif
} else {
write_fft_real_wavefile_data(left, right, current, MIN(tmplast, last_sample)) ;
}
current += get_window_delta(pDnprefs) ;
}
}
#ifdef HAVE_FFTW3
FFTW(destroy_plan)(pForLeft);
FFTW(destroy_plan)(pForRight);
FFTW(destroy_plan)(pBak);
FFTW(destroy_plan)(pFor);
#else /* HAVE_FFTW3 */
rfftw_destroy_plan(pFor);
rfftw_destroy_plan(pBak);
#endif /* HAVE_FFTW3 */
for(k = 0 ; k < pDnprefs->FFT_SIZE ; k++) {
/* free(two_way_probs[k]) ; */
}
audio_normalize(1) ;
update_progress_bar(0.0,PROGRESS_UPDATE_INTERVAL,TRUE) ;
pop_status_text() ;
main_redraw(FALSE, TRUE) ;
stop_timer("DENOISE") ;
return 0 ;
}
/* AJH: print_noise_sample is currently used by the DSP filter dialog's "show response" button; I suspect noise.dat is not an accurate name for the output */
/* but I'm pretty sure we should be graphing the output instead, anyway */
/* Also, there's currently no need for this function to return an int rather than void */
int print_noise_sample(struct sound_prefs *pPrefs, struct denoise_prefs *pDnprefs, long noise_start, long noise_end)
{
int k ;
FILE *fp ;
fftw_real left_noise_max[DENOISE_MAX_FFT], right_noise_max[DENOISE_MAX_FFT], left_noise_avg[DENOISE_MAX_FFT] ;
fftw_real left_noise_min[DENOISE_MAX_FFT], right_noise_min[DENOISE_MAX_FFT], right_noise_avg[DENOISE_MAX_FFT] ;
extern int MAXSAMPLEVALUE ;
double max = MAXSAMPLEVALUE * MAXSAMPLEVALUE ;
get_noise_sample(pPrefs, pDnprefs, noise_start, noise_end,
left_noise_min, left_noise_max, left_noise_avg,
right_noise_min, right_noise_max, right_noise_avg) ;
fp = fopen("noise.dat", "w") ;
if (fp == NULL) {
warning(g_strconcat("Cannot write to ", g_get_current_dir(), "/noise.dat: ", strerror(errno), NULL)); //this check prevents a segfault if we can't write to the file
return 1 ;
}
fprintf(stderr, "FFT_SIZE in print_noise_sample is %d\n", pDnprefs->FFT_SIZE) ;
for(k = 1 ; k <= pDnprefs->FFT_SIZE/2 ; k++) {
double freq = (double)pPrefs->rate / 2.0 /(double)(pDnprefs->FFT_SIZE/2)*(double)k ;
double db_left = 20.0*log10(left_noise_avg[k]/(max/2.0)) ;
double db_right = 20.0*log10(right_noise_avg[k]/(max/2.0)) ;
fprintf(fp, "%10lgHz %12.1lfdB %12.1lfdB\n", freq, db_left, db_right) ;
}
set_status_text(g_strconcat("noise sample written to ", g_get_current_dir(), "/noise.dat", NULL));
fclose(fp) ;
return 0 ;
}
void get_noise_sample(struct sound_prefs *pPrefs, struct denoise_prefs *pDnprefs, long noise_start, long noise_end,
fftw_real *left_noise_min, fftw_real *left_noise_max, fftw_real *left_noise_avg,
fftw_real *right_noise_min, fftw_real *right_noise_max, fftw_real *right_noise_avg)
{
int i, j, k ;
#ifdef HAVE_FFTW3
FFTW(plan) pForLeft, pForRight ;
#else /* HAVE_FFTW3 */
rfftw_plan pFor, pBak ;
#endif /* HAVE_FFTW3 */
fftw_real left[DENOISE_MAX_FFT], right[DENOISE_MAX_FFT] ;
fftw_real tmp[DENOISE_MAX_FFT] ;
#ifdef HAVE_FFTW3
pForLeft =
FFTW(plan_r2r_1d)(pDnprefs->FFT_SIZE, left, tmp, FFTW_R2HC, FFTW_ESTIMATE);
pForRight =
FFTW(plan_r2r_1d)(pDnprefs->FFT_SIZE, right, tmp, FFTW_R2HC, FFTW_ESTIMATE);
#else /* HAVE_FFTW3 */
pFor = rfftw_create_plan(pDnprefs->FFT_SIZE, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE);
pBak = rfftw_create_plan(pDnprefs->FFT_SIZE, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE);
#endif /* HAVE_FFTW3 */
for(k = 0 ; k < pDnprefs->FFT_SIZE ; k++) {
if(0 || pDnprefs->window_type == DENOISE_WINDOW_HANNING_OVERLAP_ADD) {
window_coef[k] = fft_window(k,pDnprefs->FFT_SIZE, pDnprefs->window_type) ;
} else {
window_coef[k] = 1.0 ;
}
left_noise_max[k] = 0.0 ;
right_noise_max[k] = 0.0 ;
left_noise_avg[k] = 0.0 ;
right_noise_avg[k] = 0.0 ;
left_noise_min[k] = DBL_MAX ;
right_noise_min[k] = DBL_MAX ;
}
audio_normalize(denoise_normalize) ;
for(i = 0 ; i < pDnprefs->n_noise_samples ; i++) {
long first = noise_start + i*(noise_end-noise_start-pDnprefs->FFT_SIZE)/pDnprefs->n_noise_samples ;
read_fft_real_wavefile_data(left, right, first, first+pDnprefs->FFT_SIZE-1) ;
for(k = 0 ; k < pDnprefs->FFT_SIZE ; k++) {
left[k] *= window_coef[k] ;
right[k] *= window_coef[k] ;
}
if(0 && pDnprefs->noise_suppression_method == DENOISE_EXPERIMENTAL) {
for(k = 1 ; k <= pDnprefs->FFT_SIZE/2 ; k++) {
for(j = 1 ; j <= pDnprefs->FFT_SIZE/2 ; j++) {
/* two_way_probs[j][k] = 0.0 ; */
}
}
}
#ifdef HAVE_FFTW3
FFTW(execute)(pForLeft);
#else /* HAVE_FFTW3 */
rfftw_one(pFor, left, tmp);
#endif /* HAVE_FFTW3 */
/* convert noise sample to power spectrum */
for(k = 1 ; k <= pDnprefs->FFT_SIZE/2 ; k++) {
double p2 ;
if(k < pDnprefs->FFT_SIZE/2) {
p2 = tmp[k] * tmp[k] + tmp[pDnprefs->FFT_SIZE-k]*tmp[pDnprefs->FFT_SIZE-k] ;
} else {
/* Nyquist Frequency */
p2 = tmp[k] * tmp[k] ;
}
left_noise_min[k] = MIN(left_noise_min[k], p2) ;
left_noise_max[k] = MAX(left_noise_max[k], p2) ;
left_noise_avg[k] += p2 ;
}
if(0 && pDnprefs->noise_suppression_method == DENOISE_EXPERIMENTAL) {
for(k = 1 ; k <= pDnprefs->FFT_SIZE/2 ; k++) {
double p2 ;
if(k < pDnprefs->FFT_SIZE/2) {
p2 = tmp[k] * tmp[k] + tmp[pDnprefs->FFT_SIZE-k]*tmp[pDnprefs->FFT_SIZE-k] ;
} else {
/* Nyquist Frequency */
p2 = tmp[k] * tmp[k] ;
}
for(j = k+k/2 ; j <= pDnprefs->FFT_SIZE/2 ; j++) {
double p2j ;
if(j < pDnprefs->FFT_SIZE/2) {
p2j = tmp[j] * tmp[j] + tmp[pDnprefs->FFT_SIZE-j]*tmp[pDnprefs->FFT_SIZE-j] ;
} else {
/* Nyquist Frequency */
p2j = tmp[j] * tmp[j] ;
}
/* two_way_probs[j][k] = MAX(two_way_probs[j][k],p2j/p2) ; */
}
}
}
#ifdef HAVE_FFTW3
FFTW(execute)(pForRight);
#else /* HAVE_FFTW3 */
rfftw_one(pFor, right, tmp);
#endif /* HAVE_FFTW3 */
/* convert noise sample to power spectrum */
for(k = 1 ; k <= pDnprefs->FFT_SIZE/2 ; k++) {
double p2 ;
if(k < pDnprefs->FFT_SIZE/2) {
p2 = tmp[k] * tmp[k] + tmp[pDnprefs->FFT_SIZE-k]*tmp[pDnprefs->FFT_SIZE-k] ;
} else {
/* Nyquist Frequency */
p2 = tmp[k] * tmp[k] ;
}
right_noise_min[k] = MIN(right_noise_min[k], p2) ;
right_noise_max[k] = MAX(right_noise_max[k], p2) ;
right_noise_avg[k] += p2 ;
}
if(0 && pDnprefs->noise_suppression_method == DENOISE_EXPERIMENTAL) {
for(k = 1 ; k <= pDnprefs->FFT_SIZE/2 ; k++) {
double p2 ;
if(k < pDnprefs->FFT_SIZE/2) {
p2 = tmp[k] * tmp[k] + tmp[pDnprefs->FFT_SIZE-k]*tmp[pDnprefs->FFT_SIZE-k] ;
} else {
/* Nyquist Frequency */
p2 = tmp[k] * tmp[k] ;
}
for(j = k+k/2 ; j <= pDnprefs->FFT_SIZE/2 ; j++) {
double p2j ;
if(j < pDnprefs->FFT_SIZE/2) {
p2j = tmp[j] * tmp[j] + tmp[pDnprefs->FFT_SIZE-j]*tmp[pDnprefs->FFT_SIZE-j] ;
} else {
/* Nyquist Frequency */
p2j = tmp[j] * tmp[j] ;
}
/* two_way_probs[j][k] = MAX(two_way_probs[j][k],p2j/p2) ; */
}
}
}
}
/* average out the power spectrum samples */
for(k = 1 ; k <= pDnprefs->FFT_SIZE/2 ; k++) {
left_noise_avg[k] /= (double)pDnprefs->n_noise_samples ;
right_noise_avg[k] /= (double)pDnprefs->n_noise_samples ;
}
compute_bark_z(pDnprefs->FFT_SIZE, pPrefs->rate) ;
compute_johnston_gain(pDnprefs->FFT_SIZE, 0.0) ;
if(pDnprefs->freq_filter) {
if(pDnprefs->estimate_power_floor) {
double half_freq_w = (pDnprefs->max_sample_freq - pDnprefs->min_sample_freq)/2.0 ;
double sum_left = 0.0 ;
double n_left = 0.0 ;
double sum_right = 0.0 ;
double n_right = 0.0 ;
for(k = 1 ; k <= pDnprefs->FFT_SIZE/2 ; k++) {
double freq = (double)pPrefs->rate / 2.0 /(double)(pDnprefs->FFT_SIZE/2)*(double)k ;
if(freq < pDnprefs->min_sample_freq && freq > pDnprefs->min_sample_freq-half_freq_w) {
sum_left += left_noise_avg[k] ;
n_left += 1.0 ;
sum_right += right_noise_avg[k] ;
n_right += 1.0 ;
}
if(freq > pDnprefs->max_sample_freq && freq < pDnprefs->max_sample_freq+half_freq_w) {
sum_left += left_noise_avg[k] ;
n_left += 1.0 ;
sum_right += right_noise_avg[k] ;
n_right += 1.0 ;
}
}
if(n_left > 1.e-30) sum_left /= n_left ;
if(n_right > 1.e-30) sum_right /= n_left ;
for(k = 1 ; k <= pDnprefs->FFT_SIZE/2 ; k++) {
double freq = (double)pPrefs->rate / 2.0 /(double)(pDnprefs->FFT_SIZE/2)*(double)k ;
if(freq < pDnprefs->min_sample_freq || freq > pDnprefs->max_sample_freq) {
left_noise_avg[k] -= sum_left ;
right_noise_avg[k] -= sum_right ;
}
}
}
for(k = 1 ; k <= pDnprefs->FFT_SIZE/2 ; k++) {
double freq = (double)pPrefs->rate / 2.0 /(double)(pDnprefs->FFT_SIZE/2)*(double)k ;
if(freq < pDnprefs->min_sample_freq || freq > pDnprefs->max_sample_freq) {
left_noise_avg[k] = 0.0 ;
right_noise_avg[k] = 0.0 ;
}
}
}
#ifdef HAVE_FFTW3
FFTW(destroy_plan)(pForLeft);
FFTW(destroy_plan)(pForRight);
#else /* HAVE_FFTW3 */
rfftw_destroy_plan(pFor);
rfftw_destroy_plan(pBak);
#endif /* HAVE_FFTW3 */
audio_normalize(1) ;
}
|