File: interpolation.c

package info (click to toggle)
gwyddion 2.10-1
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 20,448 kB
  • ctags: 17,745
  • sloc: ansic: 155,975; sh: 9,868; xml: 2,941; makefile: 1,949; python: 1,263; pascal: 418; cpp: 283; perl: 154; ruby: 130
file content (999 lines) | stat: -rw-r--r-- 30,730 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
/*
 *  @(#) $Id: interpolation.c 7576 2007-02-25 13:32:22Z yeti-dn $
 *  Copyright (C) 2003 David Necas (Yeti), Petr Klapetek.
 *  E-mail: yeti@gwyddion.net, klapetek@gwyddion.net.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111 USA
 */

#include "config.h"
#include <string.h>
#include <libgwyddion/gwymacros.h>
#include <libgwyddion/gwymath.h>
#include <libprocess/interpolation.h>

enum { SUPPORT_LENGTH_MAX = 4 };

static const gdouble synth_func_values_bspline3[] = {
    2.0/3.0, 1.0/6.0,
};

static const gdouble synth_func_values_omoms3[] = {
    13.0/21.0, 4.0/21.0,
};

static inline void
gwy_interpolation_get_weights(gdouble x,
                              GwyInterpolationType interpolation,
                              gdouble *w)
{
    g_return_if_fail(x >= 0.0 && x <= 1.0);

    switch (interpolation) {
        case GWY_INTERPOLATION_NONE:
        /* Don't really care. */
        break;

        /* Silently use first order B-spline instead of NN for symmetry */
        case GWY_INTERPOLATION_ROUND:
        if (x < 0.5) {
            w[0] = 1.0;
            w[1] = 0.0;
        }
        else if (x > 0.5) {
            w[0] = 0.0;
            w[1] = 1.0;
        }
        else
            w[0] = w[1] = 0.5;
        break;

        case GWY_INTERPOLATION_LINEAR:
        w[0] = 1.0 - x;
        w[1] = x;
        break;

        case GWY_INTERPOLATION_KEY:
        w[0] = (-0.5 + (1.0 - x/2.0)*x)*x;
        w[1] = 1.0 + (-2.5 + 1.5*x)*x*x;
        w[2] = (0.5 + (2.0 - 1.5*x)*x)*x;
        w[3] = (-0.5 + x/2.0)*x*x;
        break;

        case GWY_INTERPOLATION_BSPLINE:
        w[0] = (1.0 - x)*(1.0 - x)*(1.0 - x)/6.0;
        w[1] = 2.0/3.0 - x*x*(1.0 - x/2.0);
        w[2] = (1.0/3.0 + x*(1.0 + x*(1.0 - x)))/2.0;
        w[3] = x*x*x/6.0;
        break;

        case GWY_INTERPOLATION_OMOMS:
        w[0] = 4.0/21.0 + (-11.0/21.0 + (0.5 - x/6.0)*x)*x;
        w[1] = 13.0/21.0 + (1.0/14.0 + (-1.0 + x/2.0)*x)*x;
        w[2] = 4.0/21.0 + (3.0/7.0 + (0.5 - x/2.0)*x)*x;
        w[3] = (1.0/42.0 + x*x/6.0)*x;
        break;

        case GWY_INTERPOLATION_NNA:
        if (x == 0.0) {
            w[0] = w[2] = w[3] = 0.0;
            w[1] = 1.0;
        }
        else if (x == 1.0) {
            w[0] = w[1] = w[3] = 0.0;
            w[2] = 1.0;
        }
        else {
            w[0] = x + 1.0;
            w[1] = x;
            w[2] = 1.0 - x;
            w[3] = 2.0 - x;
            w[0] = 1.0/(w[0]*w[0]);
            w[0] *= w[0];
            w[1] = 1.0/(w[1]*w[1]);
            w[1] *= w[1];
            w[2] = 1.0/(w[2]*w[2]);
            w[2] *= w[2];
            w[3] = 1.0/(w[3]*w[3]);
            w[3] *= w[3];
            x = w[0] + w[1] + w[2] + w[3];
            w[0] /= x;
            w[1] /= x;
            w[2] /= x;
            w[3] /= x;
        }
        break;

        case GWY_INTERPOLATION_SCHAUM:
        w[0] = -x*(x - 1.0)*(x - 2.0)/6.0;
        w[1] = (x*x - 1.0)*(x - 2.0)/2.0;
        w[2] = -x*(x + 1.0)*(x - 2.0)/2.0;
        w[3] = x*(x*x - 1.0)/6.0;
        break;

        default:
        g_return_if_reached();
        break;
    }
}
/**
 * gwy_interpolation_get_dval:
 * @x: requested value coordinate
 * @x1_: x coordinate of first value
 * @y1_: y coordinate of first value
 * @x2_: x coordinate of second value
 * @y2_: y coordinate of second value
 * @interpolation: interpolation type
 *
 * This function uses two-point interpolation
 * methods to get interpolated value between
 * two arbitrary data points.
 *
 * Returns: interpolated value
 **/
gdouble
gwy_interpolation_get_dval(gdouble x,
                           gdouble x1_, gdouble y1_,
                           gdouble x2_, gdouble y2_,
                           GwyInterpolationType interpolation)
{
    if (x1_ > x2_) {
        GWY_SWAP(gdouble, x1_, x2_);
        GWY_SWAP(gdouble, y1_, y2_);
    }

    switch (interpolation) {
        case GWY_INTERPOLATION_ROUND:
        if ((x - x1_) < (x2_ - x))
            return y1_;
        else
            return y2_;
        break;


        case GWY_INTERPOLATION_LINEAR:
        return y1_ + (x - x1_)/(x2_ - x1_)*(y2_ - y1_);
        break;

        default:
        g_warning("Interpolation not implemented yet.\n");
        break;
    }

    return 0.0;
}

/**
 * gwy_interpolation_get_dval_of_equidists:
 * @x: Possibily noninteger position in @data to get value at.
 * @data: Array of 4 values to interpolate between (see below).
 * @interpolation: Interpolation type to use.
 *
 * Computes interpolated value from 2 or 4 equidistant values.
 *
 * For %GWY_INTERPOLATION_NONE no @data value is actually used, and zero is
 * returned.
 *
 * For %GWY_INTERPOLATION_ROUND or %GWY_INTERPOLATION_LINEAR
 * it is enough to set middle two @data values, that to use @data in format
 * {0, data[i], data[i+1], 0} and function computes value at data[i+x]
 * (the outer values are not used).
 *
 * For four value interpolations you have to prepare @data as
 * {data[i-1], data[i], data[i+1], data[i+2]} and function again
 * returns value at data[i+x].
 *
 * Interpolation with non-interpolating bases are silently replaced with an
 * interpolating function with the same support size.  See
 * gwy_interpolation_interpolate_1d() for a function interpolating from
 * interpolation coefficients.
 *
 * Returns: Interpolated value.
 **/
gdouble
gwy_interpolation_get_dval_of_equidists(gdouble x,
                                        gdouble *data,
                                        GwyInterpolationType interpolation)
{
    gint l;
    gdouble w[SUPPORT_LENGTH_MAX];
    gdouble rest;

    x += 1.0;
    l = floor(x);
    rest = x - (gdouble)l;

    g_return_val_if_fail(x >= 1 && x < 2, 0.0);

    if (rest == 0)
        return data[l];

    switch (interpolation) {
        case GWY_INTERPOLATION_NONE:
        return 0.0;
        break;

        case GWY_INTERPOLATION_ROUND:
        case GWY_INTERPOLATION_LINEAR:
        gwy_interpolation_get_weights(rest, interpolation, w);
        return w[0]*data[l] + w[1]*data[l + 1];
        break;

        /* One cannot do B-spline and o-MOMS this way.  Read e.g.
         * `Interpolation Revisited' by Philippe Thevenaz for explanation.
         * Replace them with Key. */
        case GWY_INTERPOLATION_BSPLINE:
        case GWY_INTERPOLATION_OMOMS:
        interpolation = GWY_INTERPOLATION_KEY;
        case GWY_INTERPOLATION_KEY:
        case GWY_INTERPOLATION_NNA:
        case GWY_INTERPOLATION_SCHAUM:
        gwy_interpolation_get_weights(rest, interpolation, w);
        return w[0]*data[l - 1] + w[1]*data[l]
               + w[2]*data[l + 1] + w[3]*data[l + 2];
        break;

        default:
        g_return_val_if_reached(0.0);
        break;
    }
}

/**
 * gwy_interpolation_interpolate_1d:
 * @x: Position in interval [0,1) to get value at.
 * @coeff: Array of support-length size with interpolation coefficients
 *         (that are equal to data values for an interpolating basis).
 * @interpolation: Interpolation type to use.
 *
 * Interpolates a signle data point in one dimension.
 *
 * The interpolation basis support size can be obtained generically with
 * gwy_interpolation_get_support_size().
 *
 * Returns: Interpolated value.
 *
 * Since: 2.2
 **/
gdouble
gwy_interpolation_interpolate_1d(gdouble x,
                                 const gdouble *coeff,
                                 GwyInterpolationType interpolation)
{
    gdouble w[SUPPORT_LENGTH_MAX];
    gint i, suplen;
    gdouble v;

    g_return_val_if_fail(x >= 0.0 && x <= 1.0, 0.0);
    suplen = gwy_interpolation_get_support_size(interpolation);
    if (G_UNLIKELY(suplen == 0))
        return 0.0;
    g_return_val_if_fail(suplen > 0, 0.0);
    gwy_interpolation_get_weights(x, interpolation, w);

    v = 0.0;
    for (i = 0; i < suplen; i++)
        v += w[i]*coeff[i];

    return v;
}

/**
 * gwy_interpolation_interpolate_2d:
 * @x: X-position in interval [0,1) to get value at.
 * @y: Y-position in interval [0,1) to get value at.
 * @rowstride: Row stride of @coeff.
 * @coeff: Array of support-length-squared size with interpolation coefficients
 *         (that are equal to data values for an interpolating basis).
 * @interpolation: Interpolation type to use.
 *
 * Interpolates a signle data point in two dimensions.
 *
 * Returns: Interpolated value.
 *
 * Since: 2.2
 **/
gdouble
gwy_interpolation_interpolate_2d(gdouble x,
                                 gdouble y,
                                 gint rowstride,
                                 const gdouble *coeff,
                                 GwyInterpolationType interpolation)
{
    gdouble wx[SUPPORT_LENGTH_MAX], wy[SUPPORT_LENGTH_MAX];
    gint i, j, suplen;
    gdouble v, vx;

    g_return_val_if_fail(x >= 0.0 && x <= 1.0 && y >= 0.0 && y <= 1.0, 0.0);
    suplen = gwy_interpolation_get_support_size(interpolation);
    if (G_UNLIKELY(suplen == 0))
        return 0.0;
    g_return_val_if_fail(suplen > 0, 0.0);
    gwy_interpolation_get_weights(x, interpolation, wx);
    gwy_interpolation_get_weights(y, interpolation, wy);

    v = 0.0;
    for (i = 0; i < suplen; i++) {
        vx = 0.0;
        for (j = 0; j < suplen; j++)
            vx += coeff[i*rowstride + j]*wx[j];
        v += wy[i]*vx;
    }

    return v;
}

/**
 * deconvolve3_rows:
 * @width: Number of items in @data.
 * @height: Number of rows in @data.
 * @rowstride: Total row length (including width).
 * @data: An array to deconvolve of size @width.
 * @buffer: Scratch space of at least @width items.
 * @a: Central convolution filter element.
 * @b: Side convolution filter element.
 *
 * Undoes the effect of mirror-extended with border value repeated (@b, @a, @b)
 * horizontal convolution filter on a two-dimensional array.  It can be also
 * used for one-dimensional arrays, pass @height=1, @rowstride=@width then.
 *
 * This function acts on a two-dimensional data array, accessing it at linearly
 * as possible for CPU cache utilization reasons.
 **/
static void
deconvolve3_rows(gint width,
                 gint height,
                 gint rowstride,
                 gdouble *data,
                 gdouble *buffer,
                 gdouble a,
                 gdouble b)
{
    gdouble *row;
    gdouble q;
    gint i, j;

    g_return_if_fail(height < 2 || rowstride >= width);
    g_return_if_fail(2.0*b < a);

    if (!height || !width)
        return;

    if (width == 1) {
        q = a + 2.0*b;
        for (i = 0; i < height; i++)
            data[i*rowstride] /= q;
        return;
    }
    if (width == 2) {
        q = a*(a + 2.0*b);
        for (i = 0; i < height; i++) {
            row = data + i*rowstride;
            buffer[0] = (a + b)/q*row[0] - b/q*row[1];
            row[1] = (a + b)/q*row[1] - b/q*row[0];
            row[0] = buffer[0];
        }
        return;
    }

    /* Special-case first item */
    buffer[0] = a + b;
    /* Inner items */
    for (j = 1; j < width-1; j++) {
        q = b/buffer[j-1];
        buffer[j] = a - q*b;
        data[j] -= q*data[j-1];
    }
    /* Special-case last item */
    q = b/buffer[j-1];
    buffer[j] = a + b*(1.0 - q);
    data[j] -= q*data[j-1];
    /* Go back */
    data[j] /= buffer[j];
    do {
        j--;
        data[j] = (data[j] - b*data[j+1])/buffer[j];
    } while (j > 0);

    /* Remaining rows */
    for (i = 1; i < height; i++) {
        row = data + i*rowstride;
        /* Forward */
        for (j = 1; j < width-1; j++)
            row[j] -= b*row[j-1]/buffer[j-1];
        row[j] -= b*row[j-1]/buffer[j-1];
        /* Back */
        row[j] /= buffer[j];
        do {
            j--;
            row[j] = (row[j] - b*row[j+1])/buffer[j];
        } while (j > 0);
    }
}

/**
 * deconvolve3_columns:
 * @width: Number of columns in @data.
 * @height: Number of rows in @data.
 * @rowstride: Total row length (including width).
 * @data: A two-dimensional array of size @width*height to deconvolve.
 * @buffer: Scratch space of at least @height items.
 * @a: Central convolution filter element.
 * @b: Side convolution filter element.
 *
 * Undoes the effect of mirror-extended with border value repeated (@b, @a, @b)
 * vertical convolution filter on a two-dimensional array.
 *
 * This function acts on a two-dimensional data array, accessing it at linearly
 * as possible for CPU cache utilization reasons.
 **/
static void
deconvolve3_columns(gint width,
                    gint height,
                    gint rowstride,
                    gdouble *data,
                    gdouble *buffer,
                    gdouble a,
                    gdouble b)
{
    gdouble *row;
    gdouble q;
    gint i, j;

    g_return_if_fail(height < 2 || rowstride >= width);
    g_return_if_fail(2.0*b < a);

    if (!height || !width)
        return;

    if (height == 1) {
        q = a + 2.0*b;
        for (j = 0; j < width; j++)
            data[j] /= q;
        return;
    }
    if (height == 2) {
        q = a*(a + 2.0*b);
        for (j = 0; j < width; j++) {
            buffer[0] = (a + b)/q*data[j] - b/q*data[rowstride + j];
            data[rowstride + j] = (a + b)/q*data[rowstride + j] - b/q*data[j];
            data[j] = buffer[0];
        }
        return;
    }

    /* Special-case first row */
    buffer[0] = a + b;
    /* Inner rows */
    for (i = 1; i < height-1; i++) {
        q = b/buffer[i-1];
        buffer[i] = a - q*b;
        row = data + (i - 1)*rowstride;
        for (j = 0; j < width; j++)
            row[rowstride + j] -= q*row[j];
    }
    /* Special-case last row */
    q = b/buffer[i-1];
    buffer[i] = a + b*(1.0 - q);
    row = data + (i - 1)*rowstride;
    for (j = 0; j < width; j++)
        row[rowstride + j] -= q*row[j];
    /* Go back */
    row += rowstride;
    for (j = 0; j < width; j++)
        row[j] /= buffer[i];
    do {
        i--;
        row = data + i*rowstride;
        for (j = 0; j < width; j++)
            row[j] = (row[j] - b*row[rowstride + j])/buffer[i];
    } while (i > 0);
}

/**
 * gwy_interpolation_has_interpolating_basis:
 * @interpolation: Interpolation type.
 *
 * Obtains the interpolating basis property of an inteprolation type.
 *
 * Interpolation types with inteprolating basis directly use data values
 * for interpolation.  For these types gwy_interpolation_resolve_coeffs_1d()
 * and gwy_interpolation_resolve_coeffs_2d() are no-op.
 *
 * Generalized interpolation types (with non-interpolation basis) require to
 * preprocess the data values to obtain interpolation coefficients first.  On
 * the ohter hand they typically offer much higher interpolation quality.
 *
 * Returns: %TRUE if the inteprolation type has interpolating basis,
 *          %FALSE if data values cannot be directly used for interpolation
 *          of this type.
 *
 * Since: 2.2
 **/
gboolean
gwy_interpolation_has_interpolating_basis(GwyInterpolationType interpolation)
{
    switch (interpolation) {
        case GWY_INTERPOLATION_NONE:
        case GWY_INTERPOLATION_ROUND:
        case GWY_INTERPOLATION_LINEAR:
        case GWY_INTERPOLATION_KEY:
        case GWY_INTERPOLATION_NNA:
        case GWY_INTERPOLATION_SCHAUM:
        return TRUE;
        break;

        case GWY_INTERPOLATION_BSPLINE:
        case GWY_INTERPOLATION_OMOMS:
        return FALSE;
        break;

        default:
        g_return_val_if_reached(FALSE);
        break;
    }
}

/**
 * gwy_interpolation_get_support_size:
 * @interpolation: Interpolation type.
 *
 * Obtains the basis support size for an interpolation type.
 *
 * Returns: The length of the support interval of the interpolation basis.
 *
 * Since: 2.2
 **/
gint
gwy_interpolation_get_support_size(GwyInterpolationType interpolation)
{
    switch (interpolation) {
        case GWY_INTERPOLATION_NONE:
        return 0;
        break;

        case GWY_INTERPOLATION_ROUND:
        case GWY_INTERPOLATION_LINEAR:
        return 2;
        break;

        case GWY_INTERPOLATION_KEY:
        case GWY_INTERPOLATION_BSPLINE:
        case GWY_INTERPOLATION_OMOMS:
        case GWY_INTERPOLATION_NNA:
        case GWY_INTERPOLATION_SCHAUM:
        return 4;
        break;

        default:
        g_return_val_if_reached(-1);
        break;
    }
}

/**
 * gwy_interpolation_resolve_coeffs_1d:
 * @n: Number of points in @data.
 * @data: An array of data values.  It will be rewritten with the coefficients.
 * @interpolation: Interpolation type to prepare @data for.
 *
 * Transforms data values in a one-dimensional array to interpolation
 * coefficients.
 *
 * This function is no-op for interpolation types with finite-support
 * interpolating function.  Therefore you can also omit it and use the data
 * array directly for these interpolation types.
 *
 * Since: 2.2
 **/
void
gwy_interpolation_resolve_coeffs_1d(gint n,
                                    gdouble *data,
                                    GwyInterpolationType interpolation)
{
    gdouble *buffer;
    const gdouble *ab;

    switch (interpolation) {
        case GWY_INTERPOLATION_NONE:
        case GWY_INTERPOLATION_ROUND:
        case GWY_INTERPOLATION_LINEAR:
        case GWY_INTERPOLATION_KEY:
        case GWY_INTERPOLATION_NNA:
        case GWY_INTERPOLATION_SCHAUM:
        return;

        case GWY_INTERPOLATION_BSPLINE:
        ab = synth_func_values_bspline3;
        break;

        case GWY_INTERPOLATION_OMOMS:
        ab = synth_func_values_omoms3;
        break;

        default:
        g_return_if_reached();
        break;
    }

    buffer = g_new(gdouble, n);
    deconvolve3_rows(n, 1, n, data, buffer, ab[0], ab[1]);
    g_free(buffer);
}

/**
 * gwy_interpolation_resolve_coeffs_2d:
 * @width: Number of columns in @data.
 * @height: Number of rows in @data.
 * @rowstride: Total row length (including @width).
 * @data: An array of data values.  It will be rewritten with the coefficients.
 * @interpolation: Interpolation type to prepare @data for.
 *
 * Transforms data values in a two-dimensional array to interpolation
 * coefficients.
 *
 * This function is no-op for interpolation types with finite-support
 * interpolating function.  Therefore you can also omit it and use the data
 * array directly for these interpolation types.
 *
 * Since: 2.2
 **/
void
gwy_interpolation_resolve_coeffs_2d(gint width,
                                    gint height,
                                    gint rowstride,
                                    gdouble *data,
                                    GwyInterpolationType interpolation)
{
    gdouble *buffer;
    const gdouble *ab;

    switch (interpolation) {
        case GWY_INTERPOLATION_NONE:
        case GWY_INTERPOLATION_ROUND:
        case GWY_INTERPOLATION_LINEAR:
        case GWY_INTERPOLATION_KEY:
        case GWY_INTERPOLATION_NNA:
        case GWY_INTERPOLATION_SCHAUM:
        return;

        case GWY_INTERPOLATION_BSPLINE:
        ab = synth_func_values_bspline3;
        break;

        case GWY_INTERPOLATION_OMOMS:
        ab = synth_func_values_omoms3;
        break;

        default:
        g_return_if_reached();
        break;
    }

    buffer = g_new(gdouble, MAX(width, height));
    deconvolve3_rows(width, height, rowstride, data, buffer, ab[0], ab[1]);
    deconvolve3_columns(width, height, rowstride, data, buffer, ab[0], ab[1]);
    g_free(buffer);
}

/**
 * gwy_interpolation_resample_block_1d:
 * @length: Data block length.
 * @data: Data block to resample.
 * @newlength: Requested length after resampling.
 * @newdata: Array to put the resampled data to.
 * @interpolation: Interpolation type to use.
 * @preserve: %TRUE to preserve the content of @data, %FALSE to permit its
 *            overwriting with temporary data.
 *
 * Resamples a one-dimensional data array.
 *
 * This is a primitive operation, in most cases methods such as
 * gwy_data_line_new_resampled() provide more convenient interface.
 *
 * Since: 2.2
 **/
void
gwy_interpolation_resample_block_1d(gint length,
                                    gdouble *data,
                                    gint newlength,
                                    gdouble *newdata,
                                    GwyInterpolationType interpolation,
                                    gboolean preserve)
{
    gdouble *w, *coeffs = NULL;
    gdouble q, x0, x, v;
    gint i, ii, oldi, newi;
    gint suplen, sf, st;

    if (interpolation == GWY_INTERPOLATION_NONE)
        return;

    suplen = gwy_interpolation_get_support_size(interpolation);
    g_return_if_fail(suplen > 0);
    w = g_newa(gdouble, suplen);
    sf = -((suplen - 1)/2);
    st = suplen/2;

    if (!gwy_interpolation_has_interpolating_basis(interpolation)) {
        if (preserve)
            data = coeffs = g_memdup(data, length*sizeof(gdouble));
        gwy_interpolation_resolve_coeffs_1d(length, data, interpolation);
    }

    q = (gdouble)length/newlength;
    x0 = (q - 1.0)/2.0;
    for (newi = 0; newi < newlength; newi++) {
        x = q*newi + x0;
        oldi = (gint)floor(x);
        x -= oldi;
        gwy_interpolation_get_weights(x, interpolation, w);
        v = 0.0;
        for (i = sf; i <= st; i++) {
            ii = (oldi + i + 2*st*length) % (2*length);
            if (G_UNLIKELY(ii >= length))
                ii = 2*length-1 - ii;
            v += data[ii]*w[i - sf];
        }
        newdata[newi] = v;
    }

    g_free(coeffs);
}

static void
calculate_weights_for_rescale(gint oldn,
                              gint newn,
                              gint *positions,
                              gdouble *weights,
                              GwyInterpolationType interpolation)
{
    gint i, suplen;
    gdouble q, x0, x;

    suplen = gwy_interpolation_get_support_size(interpolation);
    q = (gdouble)oldn/newn;
    x0 = (q - 1.0)/2.0;
    for (i = 0; i < newn; i++) {
        x = q*i + x0;
        positions[i] = (gint)floor(x);
        x -= positions[i];
        gwy_interpolation_get_weights(x, interpolation, weights + suplen*i);
    }
}

/**
 * gwy_interpolation_resample_block_2d:
 * @width: Number of columns in @data.
 * @height: Number of rows in @data.
 * @rowstride: Total row length (including @width).
 * @data: Data block to resample.
 * @newwidth: Requested number of columns after resampling.
 * @newheight: Requested number of rows after resampling.
 * @newrowstride: Requested total row length after resampling (including
 *                @newwidth).
 * @newdata: Array to put the resampled data to.
 * @interpolation: Interpolation type to use.
 * @preserve: %TRUE to preserve the content of @data, %FALSE to permit its
 *            overwriting with temporary data.
 *
 * Resamples a two-dimensional data array.
 *
 * This is a primitive operation, in most cases methods such as
 * gwy_data_field_new_resampled() provide more convenient interface.
 *
 * Since: 2.2
 **/
void
gwy_interpolation_resample_block_2d(gint width,
                                    gint height,
                                    gint rowstride,
                                    gdouble *data,
                                    gint newwidth,
                                    gint newheight,
                                    gint newrowstride,
                                    gdouble *newdata,
                                    GwyInterpolationType interpolation,
                                    gboolean preserve)
{
    gdouble *xw, *yw, *coeffs = NULL;
    gint *xp, *yp;
    gdouble v, vx;
    gint i, ii, oldi, newi, j, jj, oldj, newj;
    gint suplen, sf, st;

    if (interpolation == GWY_INTERPOLATION_NONE)
        return;

    suplen = gwy_interpolation_get_support_size(interpolation);
    g_return_if_fail(suplen > 0);
    sf = -((suplen - 1)/2);
    st = suplen/2;

    if (!gwy_interpolation_has_interpolating_basis(interpolation)) {
        if (preserve) {
            if (rowstride == width)
                data = coeffs = g_memdup(data, width*height*sizeof(gdouble));
            else {
                coeffs = g_new(gdouble, width*height);
                for (i = 0; i < height; i++) {
                    memcpy(coeffs + i*width,
                           data + i*rowstride,
                           width*sizeof(gdouble));
                }
                data = coeffs;
                rowstride = width;
            }
        }
        gwy_interpolation_resolve_coeffs_2d(width, height, rowstride,
                                            data, interpolation);
    }

    xw = g_new(gdouble, suplen*newwidth);
    yw = g_new(gdouble, suplen*newheight);
    xp = g_new(gint, newwidth);
    yp = g_new(gint, newheight);
    calculate_weights_for_rescale(width, newwidth, xp, xw, interpolation);
    calculate_weights_for_rescale(height, newheight, yp, yw, interpolation);
    for (newi = 0; newi < newheight; newi++) {
        oldi = yp[newi];
        for (newj = 0; newj < newwidth; newj++) {
            oldj = xp[newj];
            v = 0.0;
            for (i = sf; i <= st; i++) {
                ii = (oldi + i + 2*st*height) % (2*height);
                if (G_UNLIKELY(ii >= height))
                    ii = 2*height-1 - ii;
                vx = 0.0;
                for (j = sf; j <= st; j++) {
                    jj = (oldj + j + 2*st*width) % (2*width);
                    if (G_UNLIKELY(jj >= width))
                        jj = 2*width-1 - jj;
                    vx += data[ii*rowstride + jj]*xw[newj*suplen + j - sf];
                }
                v += vx*yw[newi*suplen + i - sf];
            }
            newdata[newi*newrowstride + newj] = v;
        }
    }
    g_free(yp);
    g_free(xp);
    g_free(yw);
    g_free(xw);

    g_free(coeffs);
}

/**
 * gwy_interpolation_shift_block_1d:
 * @length: Data block length.
 * @data: Data block to shift.
 * @offset: The shift, in corrective sense.  Shift value of 1.0 means the
 *          zeroth value of @newdata will be set to the first value of @data.
 * @newdata: Array to put the shifted data to.
 * @interpolation: Interpolation type to use.
 * @exterior: Exterior pixels handling.
 * @fill_value: The value to use with @GWY_EXTERIOR_FIXED_VALUE.
 * @preserve: %TRUE to preserve the content of @data, %FALSE to permit its
 *            overwriting with temporary data.
 *
 * Shifts a one-dimensional data block by a possibly non-integer offset.
 *
 * Since: 2.2
 **/
void
gwy_interpolation_shift_block_1d(gint length,
                                 gdouble *data,
                                 gdouble offset,
                                 gdouble *newdata,
                                 GwyInterpolationType interpolation,
                                 GwyExteriorType exterior,
                                 gdouble fill_value,
                                 gboolean preserve)
{
    gint oldi, newi, i, ii, off;
    gint suplen, sf, st;
    gdouble d0, dn, v;
    gdouble *w, *coeffs = NULL;
    gboolean warned = FALSE;

    if (interpolation == GWY_INTERPOLATION_NONE)
        return;

    suplen = gwy_interpolation_get_support_size(interpolation);
    g_return_if_fail(suplen > 0);
    sf = -((suplen - 1)/2);
    st = suplen/2;
    w = g_newa(gdouble, suplen);

    d0 = data[0];
    dn = data[length-1];

    if (!gwy_interpolation_has_interpolating_basis(interpolation)) {
        if (preserve)
            data = coeffs = g_memdup(data, length*sizeof(gdouble));
        gwy_interpolation_resolve_coeffs_1d(length, data, interpolation);
    }

    off = (gint)floor(offset);
    gwy_interpolation_get_weights(offset - off, interpolation, w);

    for (newi = 0; newi < length; newi++) {
        oldi = newi + off;
        if (G_LIKELY(oldi + sf >= 0 && oldi + st < length)) {
            /* The fast path, we are safely inside, directly use coeffs */
            v = 0.0;
            for (i = sf; i <= st; i++)
                v += w[i - sf]*data[oldi + i];
            newdata[newi] = v;
        }
        else {
            /* Exterior or too near to the border to feel the mirroring.
             * Use mirror extend for all points not really outside. */
            if (exterior == GWY_EXTERIOR_MIRROR_EXTEND
                || exterior == GWY_EXTERIOR_PERIODIC
                || (oldi >= 0 && oldi + 1 < length)
                || (oldi == length-1 && off == offset)) {
                if (exterior == GWY_EXTERIOR_PERIODIC)
                    oldi = oldi % length + (oldi >= 0 ? 0 : length);
                v = 0.0;
                for (i = sf; i <= st; i++) {
                    ii = (oldi + i + 2*st*length) % (2*length);
                    if (ii >= length)
                        ii = 2*length-1 - ii;
                    v += w[i - sf]*data[ii];
                }
                newdata[newi] = v;
            }
            else if (exterior == GWY_EXTERIOR_FIXED_VALUE)
                newdata[newi] = fill_value;
            else if (exterior == GWY_EXTERIOR_BORDER_EXTEND) {
                if (oldi < 0)
                    newdata[newi] = d0;
                else
                    newdata[newi] = dn;
            }
            else if (exterior == GWY_EXTERIOR_UNDEFINED) {
                /* Do nothing */
            }
            else {
                if (!warned) {
                    g_warning("Unsupported exterior type, assuming undefined");
                    warned = TRUE;
                }
            }
        }
    }

    g_free(coeffs);
}

/************************** Documentation ****************************/

/**
 * SECTION:interpolation
 * @title: interpolation
 * @short_description: General interpolation functions
 *
 * Data interpolation is usually pixel-like in Gwyddion, not function-like.
 * That means the contribution of individual data saples is preserved on
 * scaling (the area that <quote>belongs</quote> to all values is the same,
 * it is not reduced to half for edge pixels).
 *
 * Most of the functions listed here are quite low-level and typically one
 * would use #GwyDataField or #GwyDataLine methods instead of these functions.
 **/

/* vim: set cin et ts=4 sw=4 cino=>1s,e0,n0,f0,{0,}0,^0,\:1s,=0,g1s,h0,t0,+1s,c3,(0,u0 : */