File: gwymath.c

package info (click to toggle)
gwyddion 2.62-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 51,952 kB
  • sloc: ansic: 398,486; python: 7,877; sh: 5,492; makefile: 4,723; xml: 3,883; cpp: 1,969; pascal: 418; perl: 154; ruby: 130
file content (3221 lines) | stat: -rw-r--r-- 97,880 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
/*
 *  $Id: gwymath.c 25074 2022-10-11 13:46:47Z yeti-dn $
 *  Copyright (C) 2003-2022 David Necas (Yeti), Petr Klapetek.
 *  E-mail: yeti@gwyddion.net, klapetek@gwyddion.net.
 *
 *  The quicksort algorithm was copied from GNU C library, Copyright (C) 1991, 1992, 1996, 1997, 1999 Free Software
 *  Foundation, Inc.  See below.
 *
 *  This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
 *  License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
 *  later version.
 *
 *  This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
 *  warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 *  details.
 *
 *  You should have received a copy of the GNU General Public License along with this program; if not, write to the
 *  Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include "config.h"
#include <string.h>
#include <stdlib.h>
#include <libgwyddion/gwymacros.h>
#include <libgwyddion/gwymath.h>
#include <libgwyddion/gwythreads.h>
#include "gwyomp.h"

/* Lower symmetric part indexing */
/* i MUST be greater or equal than j */
#define SLi(a, i, j) a[(i)*((i) + 1)/2 + (j)]

#define DSWAP(x, y) GWY_SWAP(gdouble, x, y)
#define ISWAP(x, y) GWY_SWAP(guint, x, y)

#define GWY_TWO_PI 6.28318530717958647692528676655900576839433879875016

GType
gwy_xy_get_type(void)
{
    /* Threads: type registered from gwy_types_init(). */
    static GType xy_type = 0;

    if (G_UNLIKELY(!xy_type)) {
        xy_type = g_boxed_type_register_static("GwyXY",
                                               (GBoxedCopyFunc)gwy_xy_copy,
                                               (GBoxedFreeFunc)gwy_xy_free);
    }

    return xy_type;
}

/**
 * gwy_xy_new:
 * @x: X-coordinate.
 * @y: Y-coordinate.
 *
 * Creates Cartesian coordinates in plane.
 *
 * This is mostly useful for language bindings.
 *
 * Returns: New XY structure.  The result must be freed using gwy_xy_free(), not g_free().
 *
 * Since: 2.47
 **/
GwyXY*
gwy_xy_new(gdouble x, gdouble y)
{
    GwyXY *xy = g_slice_new(GwyXY);
    xy->x = x;
    xy->y = y;
    return xy;
}

/**
 * gwy_xy_copy:
 * @xy: Cartesian coordinates in plane.
 *
 * Copies Cartesian coordinates in plane.
 *
 * Returns: A copy of @xy. The result must be freed using gwy_xy_free(), not g_free().
 *
 * Since: 2.45
 **/
GwyXY*
gwy_xy_copy(const GwyXY *xy)
{
    g_return_val_if_fail(xy, NULL);
    return g_slice_copy(sizeof(GwyXY), xy);
}

/**
 * gwy_xy_free:
 * @xy: Cartesian coordinates in plane.
 *
 * Frees Cartesian coordinates in plane created with gwy_xy_copy().
 *
 * Since: 2.45
 **/
void
gwy_xy_free(GwyXY *xy)
{
    g_slice_free1(sizeof(GwyXY), xy);
}

GType
gwy_xyz_get_type(void)
{
    /* Threads: type registered from gwy_types_init(). */
    static GType xyz_type = 0;

    if (G_UNLIKELY(!xyz_type)) {
        xyz_type = g_boxed_type_register_static("GwyXYZ",
                                                (GBoxedCopyFunc)gwy_xyz_copy,
                                                (GBoxedFreeFunc)gwy_xyz_free);
    }

    return xyz_type;
}

/**
 * gwy_xyz_new:
 * @x: X-coordinate.
 * @y: Y-coordinate.
 * @z: Z-coordinate.
 *
 * Creates Cartesian coordinates in space.
 *
 * This is mostly useful for language bindings.
 *
 * Returns: New XYZ structure.  The result must be freed using gwy_xyz_free(), not g_free().
 *
 * Since: 2.47
 **/
GwyXYZ*
gwy_xyz_new(gdouble x, gdouble y, gdouble z)
{
    GwyXYZ *xyz = g_slice_new(GwyXYZ);
    xyz->x = x;
    xyz->y = y;
    xyz->z = z;
    return xyz;
}

/**
 * gwy_xyz_copy:
 * @xyz: Cartesian coordinates in space.
 *
 * Copies Cartesian coordinates in space.
 *
 * Returns: A copy of @xyz. The result must be freed using gwy_xyz_free(), not g_free().
 *
 * Since: 2.45
 **/
GwyXYZ*
gwy_xyz_copy(const GwyXYZ *xyz)
{
    g_return_val_if_fail(xyz, NULL);
    return g_slice_copy(sizeof(GwyXYZ), xyz);
}

/**
 * gwy_xyz_free:
 * @xyz: Cartesian coordinates in space.
 *
 * Frees Cartesian coordinates in space created with gwy_xyz_copy().
 *
 * Since: 2.45
 **/
void
gwy_xyz_free(GwyXYZ *xyz)
{
    g_slice_free1(sizeof(GwyXYZ), xyz);
}

/**
 * gwy_math_humanize_numbers:
 * @unit: The smallest possible step.
 * @maximum: The maximum possible value.
 * @precision: A location to store printf() precession, if not %NULL.
 *
 * Finds a human-friendly representation for a range of numbers.
 *
 * Returns: The magnitude i.e., a power of 1000.
 **/
gdouble
gwy_math_humanize_numbers(gdouble unit,
                          gdouble maximum,
                          gint *precision)
{
    gdouble lm, lu, mag, q;

    g_return_val_if_fail(unit >= 0.0, 0.0);
    g_return_val_if_fail(maximum >= 0.0, 0.0);

    if (G_UNLIKELY(unit == 0.0 || maximum == 0.0)) {
        if (unit > 0.0)
            maximum = unit;
        else if (maximum > 0.0)
            unit = maximum;
        else {
            if (precision)
                *precision = 1;
            return 1.0;
        }
    }

    lm = log10(maximum) + 1e-12;
    lu = log10(unit) - 1e-12;
    mag = 3.0*floor(lm/3.0);
    q = 3.0*ceil(lu/3.0);
    if (q > mag)
        q = 3.0*ceil((lu - 1.0)/3.0);
    if (lu > -0.5 && lm < 3.1) {
        while (lu > mag+2)
            mag += 3.0;
    }
    else if (lm <= 0.5 && lm > -1.5) {
        mag = 0.0;
    }
    else {
        while (q > mag)
            mag += 3.0;
    }

    if (precision) {
        *precision = MAX(0, ceil(mag - lu));
        *precision = MIN(*precision, 16);
    }

    return pow10(mag);
}

/**
 * gwy_math_is_in_polygon:
 * @x: The x coordinate of the test point.
 * @y: The y coordinate of the test point.
 * @poly: An array of coordinate pairs (points) that define a polygon.
 * @n: The number of corners of the polygon.
 *
 * Establishes wether the test point @x, @y is inside the polygon @poly. The polygon can be defined either clockwise
 * or anti-clockwise and can be a concave, convex or self-intersecting polygon.
 *
 * <warning> Result can be either TRUE or FALSE if the test point is *exactly* on an edge. </warning>
 *
 * Returns: %TRUE if the test point is inside poly and %FALSE otherwise.
 *
 * Since: 2.7
 **/
/* This neat little check algorithm  was found at http://alienryderflex.com/polygon and has been adapted */
gboolean
gwy_math_is_in_polygon(gdouble x,
                       gdouble y,
                       const gdouble *poly,
                       guint n)
{
    guint i, j = 0;
    gboolean inside = FALSE;
    gdouble xx, yy;

    for (i = 0; i < n; i++) {
        j++;
        if (j == n)
            j = 0;
        if ((poly[2*i + 1] < y && poly[2*j + 1] >= y) || (poly[2*j + 1] < y && poly[2*i + 1] >= y)) {
            xx = poly[2*j] - poly[2*i];
            yy = poly[2*j + 1] - poly[2*i + 1];
            if (poly[2*i] + ((y - poly[2*i + 1])/yy)*xx < x)
                inside = !inside;
        }
    }

    return inside;
}

/**
 * gwy_math_find_nearest_line:
 * @x: X-coordinate of the point to search.
 * @y: Y-coordinate of the point to search.
 * @d2min: Where to store the squared minimal distance, or %NULL.
 * @n: The number of lines (i.e. @coords has 4@n items).
 * @coords: Line coordinates stored as x00, y00, x01, y01, x10, y10, etc.
 * @metric: Metric matrix (2x2, but stored sequentially by rows: m11, m12, m21, m22), it must be positive definite.
 *          Vector norm is then calculated as m11*x*x + (m12 + m21)*x*y + m22*y*y. It can be %NULL, standard Euclidean
 *          metric is then used.
 *
 * Finds the line from @coords nearest to the point (@x, @y).
 *
 * Returns: The line number. It may return -1 if (@x, @y) doesn't lie in the orthogonal stripe of any of the lines.
 **/
gint
gwy_math_find_nearest_line(gdouble x, gdouble y,
                           gdouble *d2min,
                           gint n, const gdouble *coords,
                           const gdouble *metric)
{
    gint i, m;
    gdouble vx, vy, d, d2m = G_MAXDOUBLE;

    g_return_val_if_fail(n > 0, -1);
    g_return_val_if_fail(coords, -1);

    m = -1;
    if (metric) {
        for (i = 0; i < n; i++) {
            gdouble xx = x - (coords[0] + coords[2])/2;
            gdouble yy = y - (coords[1] + coords[3])/2;

            vx = (coords[2] - coords[0])/2;
            vy = (coords[3] - coords[1])/2;
            coords += 4;
            if (vx == 0.0 && vy == 0.0)
                continue;
            d = metric[0]*vx*vx + (metric[1] + metric[2])*vx*vy + metric[3]*vy*vy;
            if (d <= 0.0) {
                g_warning("Metric does not evaluate as positive definite");
                continue;
            }
            d = -(metric[0]*vx*xx + (metric[1] + metric[2])*(vx*yy + vy*xx)/2 + metric[3]*vy*yy)/d;
            /* Out of orthogonal stripe */
            if (d < -1.0 || d > 1.0)
                continue;
            d = metric[0]*(xx + vx*d)*(xx + vx*d) + (metric[1] + metric[2])*(xx + vx*d)*(yy + vy*d)
                + metric[3]*(yy + vy*d)*(yy + vy*d);
            if (d < d2m) {
                d2m = d;
                m = i;
            }
        }
    }
    else {
        for (i = 0; i < n; i++) {
            gdouble xl0 = *(coords++);
            gdouble yl0 = *(coords++);
            gdouble xl1 = *(coords++);
            gdouble yl1 = *(coords++);

            vx = yl1 - yl0;
            vy = xl0 - xl1;
            if (vx == 0.0 && vy == 0.0)
                continue;
            if (vx*(y - yl0) < vy*(x - xl0))
                continue;
            if (vx*(yl1 - y) < vy*(xl1 - x))
                continue;
            d = vx*(x - xl0) + vy*(y - yl0);
            d *= d/(vx*vx + vy*vy);
            if (d < d2m) {
                d2m = d;
                m = i;
            }
        }
    }
    if (d2min)
      *d2min = d2m;

    return m;
}

/**
 * gwy_math_find_nearest_point:
 * @x: X-coordinate of the point to search.
 * @y: Y-coordinate of the point to search.
 * @d2min: Location to store the squared minimal distance to, or %NULL.
 * @n: The number of points (i.e. @coords has 2@n items).
 * @coords: Point coordinates stored as x0, y0, x1, y1, x2, y2, etc.
 * @metric: Metric matrix (2x2, but stored sequentially by rows: m11, m12, m21, m22).  Vector norm is then calculated
 *          as m11*x*x + (m12 + m21)*x*y + m22*y*y. It can be %NULL, standard Euclidean metric is then used.
 *
 * Finds the point from @coords nearest to the point (@x, @y).
 *
 * Returns: The point number.
 **/
gint
gwy_math_find_nearest_point(gdouble x, gdouble y,
                            gdouble *d2min,
                            gint n, const gdouble *coords,
                            const gdouble *metric)
{
    gint i, m;
    gdouble d, xd, yd, d2m = G_MAXDOUBLE;

    g_return_val_if_fail(n > 0, -1);
    g_return_val_if_fail(coords, -1);

    m = 0;
    if (metric) {
        for (i = 0; i < n; i++) {
            xd = *(coords++) - x;
            yd = *(coords++) - y;
            d = metric[0]*xd*xd + (metric[1] + metric[2])*xd*yd + metric[3]*yd*yd;
            if (d < d2m) {
                d2m = d;
                m = i;
            }
        }
    }
    else {
        for (i = 0; i < n; i++) {
            xd = *(coords++) - x;
            yd = *(coords++) - y;
            d = xd*xd + yd*yd;
            if (d < d2m) {
                d2m = d;
                m = i;
            }
        }
    }
    if (d2min)
      *d2min = d2m;

    return m;
}

/**
 * gwy_math_lin_solve:
 * @n: The size of the system.
 * @matrix: The matrix of the system (@n times @n), ordered by row, then column.
 * @rhs: The right hand side of the sytem.
 * @result: Where the result should be stored.  May be %NULL to allocate a fresh array for the result.
 *
 * Solve a regular system of linear equations.
 *
 * Returns: The solution (@result if it wasn't %NULL), may be %NULL if the matrix is singular.
 **/
gdouble*
gwy_math_lin_solve(gint n, const gdouble *matrix,
                   const gdouble *rhs,
                   gdouble *result)
{
    gdouble *m, *r;

    g_return_val_if_fail(n > 0, NULL);
    g_return_val_if_fail(matrix && rhs, NULL);

    m = (gdouble*)g_memdup(matrix, n*n*sizeof(gdouble));
    r = (gdouble*)g_memdup(rhs, n*sizeof(gdouble));
    result = gwy_math_lin_solve_rewrite(n, m, r, result);
    g_free(r);
    g_free(m);

    return result;
}

/**
 * gwy_math_lin_solve_rewrite:
 * @n: The size of the system.
 * @matrix: The matrix of the system (@n times @n), ordered by row, then column.
 * @rhs: The right hand side of the sytem.
 * @result: Where the result should be stored.  May be %NULL to allocate a fresh array for the result.
 *
 * Solves a regular system of linear equations.
 *
 * This is a memory-conservative version of gwy_math_lin_solve() overwriting @matrix and @rhs with intermediate
 * results.
 *
 * Returns: The solution (@result if it wasn't %NULL), may be %NULL if the matrix is singular.
 **/
gdouble*
gwy_math_lin_solve_rewrite(gint n, gdouble *matrix,
                           gdouble *rhs,
                           gdouble *result)
{
    gint *perm;
    gint i, j, jj;

    g_return_val_if_fail(n > 0, NULL);
    g_return_val_if_fail(matrix && rhs, NULL);

    perm = (n <= 12 ? g_newa(gint, n) : g_new(gint, n));

    /* elimination */
    for (i = 0; i < n; i++) {
        gdouble *row = matrix + i*n;
        gdouble piv = 0;
        gint pivj = 0;

        /* find pivot */
        for (j = 0; j < n; j++) {
            if (fabs(row[j]) > piv) {
                pivj = j;
                piv = fabs(row[j]);
            }
        }
        if (piv == 0.0) {
            g_warning("Singluar matrix");
            if (n > 12)
                g_free(perm);
            return NULL;
        }
        piv = row[pivj];
        perm[i] = pivj;

        /* subtract */
        for (j = i+1; j < n; j++) {
            gdouble *jrow = matrix + j*n;
            gdouble q = jrow[pivj]/piv;

            for (jj = 0; jj < n; jj++)
                jrow[jj] -= q*row[jj];

            jrow[pivj] = 0.0;
            rhs[j] -= q*rhs[i];
        }
    }

    /* back substitute */
    if (!result)
        result = g_new(gdouble, n);
    for (i = n-1; i >= 0; i--) {
        gdouble *row = matrix + i*n;
        gdouble x = rhs[i];

        for (j = n-1; j > i; j--)
            x -= result[perm[j]]*row[perm[j]];

        result[perm[i]] = x/row[perm[i]];
    }
    if (n > 12)
        g_free(perm);

    return result;
}

/**
 * gwy_math_fit_polynom:
 * @ndata: The number of items in @xdata, @ydata.
 * @xdata: Independent variable data (of size @ndata).
 * @ydata: Dependent variable data (of size @ndata).
 * @n: The degree of polynom to fit.
 * @coeffs: An array of size @n+1 to store the coefficients to, or %NULL (a fresh array is allocated then).
 *
 * Fits a polynom through a general (x, y) data set.
 *
 * Returns: The coefficients of the polynom (@coeffs when it was not %NULL, otherwise a newly allocated array).
 **/
gdouble*
gwy_math_fit_polynom(gint ndata,
                     const gdouble *xdata,
                     const gdouble *ydata,
                     gint n,
                     gdouble *coeffs)
{
    gdouble *sumx, *m;
    gint i, j;

    g_return_val_if_fail(ndata >= 0, NULL);
    g_return_val_if_fail(n >= 0, NULL);

    sumx = g_new0(gdouble, 2*n+1);

    if (!coeffs)
        coeffs = g_new0(gdouble, n+1);
    else
        gwy_clear(coeffs, n+1);

    for (i = 0; i < ndata; i++) {
        gdouble x = xdata[i];
        gdouble y = ydata[i];
        gdouble xp;

        xp = 1.0;
        for (j = 0; j <= n; j++) {
            sumx[j] += xp;
            coeffs[j] += xp*y;
            xp *= x;
        }
        for (j = n+1; j <= 2*n; j++) {
            sumx[j] += xp;
            xp *= x;
        }
    }

    m = g_new(gdouble, (n+1)*(n+2)/2);
    for (i = 0; i <= n; i++) {
        gdouble *row = m + i*(i+1)/2;

        for (j = 0; j <= i; j++)
            row[j] = sumx[i+j];
    }
    if (!gwy_math_choleski_decompose(n+1, m))
        gwy_clear(coeffs, n+1);
    else
        gwy_math_choleski_solve(n+1, m, coeffs);

    g_free(m);
    g_free(sumx);

    return coeffs;
}

/**
 * gwy_math_choleski_decompose:
 * @n: The dimension of @a.
 * @matrix: Lower triangular part of a symmetric matrix, stored by rows, i.e., matrix = [a_00 a_10 a_11 a_20 a_21 a_22
 *          a_30 ...].
 *
 * Decomposes a symmetric positive definite matrix in place.
 *
 * Returns: Whether the matrix was really positive definite.  If %FALSE, the decomposition failed and @a does not
 *          contain any meaningful values.
 **/
gboolean
gwy_math_choleski_decompose(gint dim, gdouble *a)
{
    gint i, j, k;
    gdouble s, r;

    for (k = 0; k < dim; k++) {
        /* diagonal element */
        s = SLi(a, k, k);
        for (i = 0; i < k; i++)
            s -= SLi(a, k, i) * SLi(a, k, i);
        if (s <= 0.0)
            return FALSE;
        SLi(a, k, k) = s = sqrt(s);

        /* nondiagonal elements */
        for (j = k+1; j < dim; j++) {
            r = SLi(a, j, k);
            for (i = 0; i < k; i++)
                r -= SLi(a, k, i) * SLi(a, j, i);
            SLi(a, j, k) = r/s;
        }
    }

    return TRUE;
}

/**
 * gwy_math_choleski_invert:
 * @n: Matrix size.
 * @matrix: Lower triangular part of a symmetric matrix, stored by rows, i.e., matrix = [a_00 a_10 a_11 a_20 a_21 a_22
 *          a_30 ...].
 *
 * Inverts a symmetric positive definite matrix in place.
 *
 * Returns: Whether the matrix was really positive definite.  If %FALSE, the inversion failed and @matrix does not
 *          contain any meaningful values.
 *
 * Since: 2.46
 **/
gboolean
gwy_math_choleski_invert(gint n, gdouble *a)
{

    gint q = 0, m;
    gdouble s, t;
    gdouble *x;
    gint k, i, j;

    x = g_newa(gdouble, n);
    for (k = n-1; k >= 0; k--) {
        s = a[0];
        if (s <= 0)
            return FALSE;
        m = 0;
        for (i = 0; i < n-1; i++) {
            q = m+1;
            m += i+2;
            t = a[q];
            x[i] = -t/s;      /* note use temporary x */
            if (i >= k)
                x[i] = -x[i];
            for (j = q; j < m; j++)
                a[j - (i+1)] = a[j+1] + t * x[j - q];
        }
        a[m] = 1.0/s;
        for (i = 0; i < n-1; i++)
            a[q + i] = x[i];
    }

    return TRUE;
}

/**
 * gwy_math_choleski_solve:
 * @n: The dimension of @a.
 * @decomp: Lower triangular part of Choleski decomposition as computed by gwy_math_choleski_decompose().
 * @rhs: Right hand side vector.  Is is modified in place, on return it contains the solution.
 *
 * Solves a system of linear equations with predecomposed symmetric positive definite matrix @a and right hand side
 * @b.
 **/
void
gwy_math_choleski_solve(gint dim, const gdouble *a, gdouble *b)
{
    gint i, j;

    /* back-substitution with the lower triangular matrix */
    for (j = 0; j < dim; j++) {
        for (i = 0; i < j; i++)
            b[j] -= SLi(a, j, i)*b[i];
        b[j] /= SLi(a, j, j);
    }

    /* back-substitution with the upper triangular matrix */
    for (j = dim-1; j >= 0; j--) {
        for (i = j+1; i < dim; i++)
            b[j] -= SLi(a, i, j)*b[i];
        b[j] /= SLi(a, j, j);
    }
}

/**
 * gwy_math_tridiag_solve_rewrite:
 * @n: The dimension of @d.
 * @d: The diagonal of a tridiagonal matrix, its contents will be overwritten.
 * @a: The above-diagonal stripe (it has @n-1 elements).
 * @b: The below-diagonal stripe (it has @n-1 elements).
 * @rhs: The right hand side of the system, upon return it will contain the solution.
 *
 * Solves a tridiagonal system of linear equations.
 *
 * Returns: %TRUE if the elimination suceeded, %FALSE if the system is (numerically) singular.  The contents of @d and
 *          @rhs may be overwritten in the case of failure too, but not to any meaningful values.
 **/
gboolean
gwy_math_tridiag_solve_rewrite(gint n,
                               gdouble *d,
                               const gdouble *a,
                               const gdouble *b,
                               gdouble *rhs)
{
    gint i;

    g_return_val_if_fail(n > 0, FALSE);

    /* Eliminate b[elow diagonal] */
    for (i = 0; i < n-1; i++) {
        /* If d[i] is zero, elimination fails (now or later) */
        if (!d[i])
            return FALSE;
        d[i+1] -= b[i]/d[i]*a[i];
        rhs[i+1] -= b[i]/d[i]*rhs[i];
    }
    if (!d[n-1])
        return FALSE;

    /* Eliminate a[bove diagonal], calculating the solution */
    for (i = n-1; i > 0; i--) {
        rhs[i] /= d[i];
        rhs[i-1] -= a[i-1]*rhs[i];
    }
    rhs[0] /= d[0];

    return TRUE;
}

static inline void
order_3(gdouble *array)
{
    GWY_ORDER(gdouble, array[0], array[1]);
    if (array[2] < array[1]) {
        DSWAP(array[1], array[2]);
        GWY_ORDER(gdouble, array[0], array[1]);
    }
}

static gdouble
kth_rank_simple(gsize n, gdouble *array, gsize k)
{
    gdouble a, b, c, d;
    gsize i;

    if (n == 1)
        return array[0];

    if (n == 2) {
        GWY_ORDER(gdouble, array[0], array[1]);
        return array[k];
    }

    if (n == 3 && k == 1) {
        order_3(array);
        return array[1];
    }

    if (k == 0) {
        a = array[0];
        for (i = 1; i < n; i++) {
            c = array[i];
            if (c < a) {
                array[i] = a;
                array[0] = a = c;
            }
        }
        return a;
    }

    if (k == n-1) {
        a = array[n-1];
        for (i = 0; i < n-1; i++) {
            c = array[i];
            if (c > a) {
                array[i] = a;
                array[n-1] = a = c;
            }
        }
        return a;
    }

    if (k == 1) {
        GWY_ORDER(gdouble, array[0], array[1]);
        a = array[0];
        b = array[1];

        for (i = 2; i < n; i++) {
            c = array[i];
            if (c < b) {
                if (c < a) {
                    array[i] = b;
                    array[1] = b = a;
                    array[0] = a = c;
                }
                else {
                    array[i] = b;
                    array[1] = b = c;
                }
            }
        }
        return b;
    }

    if (k == n-2) {
        GWY_ORDER(gdouble, array[n-1], array[n-2]);
        a = array[n-1];
        b = array[n-2];

        for (i = 0; i < n-2; i++) {
            c = array[i];
            if (c > b) {
                if (c > a) {
                    array[i] = b;
                    array[n-2] = b = a;
                    array[n-1] = a = c;
                }
                else {
                    array[i] = b;
                    array[n-2] = b = c;
                }
            }
        }
        return b;
    }

    if (k == 2) {
        order_3(array);
        a = array[0];
        b = array[1];
        c = array[2];

        for (i = 3; i < n; i++) {
            d = array[i];
            if (d < c) {
                if (d < b) {
                    if (d < a) {
                        array[i] = c;
                        array[2] = c = b;
                        array[1] = b = a;
                        array[0] = a = d;
                    }
                    else {
                        array[i] = c;
                        array[2] = c = b;
                        array[1] = b = d;
                    }
                }
                else {
                    array[i] = c;
                    array[2] = c = d;
                }
            }
        }
        return c;
    }

    if (k == n-3) {
        order_3(array + n-3);
        a = array[n-1];
        b = array[n-2];
        c = array[n-3];

        for (i = 0; i < n-3; i++) {
            d = array[i];
            if (d > c) {
                if (d > b) {
                    if (d > a) {
                        array[i] = c;
                        array[n-3] = c = b;
                        array[n-2] = b = a;
                        array[n-1] = a = d;
                    }
                    else {
                        array[i] = c;
                        array[n-3] = c = b;
                        array[n-2] = b = d;
                    }
                }
                else {
                    array[i] = c;
                    array[n-3] = c = d;
                }
            }
        }
        return c;
    }

    g_assert_not_reached();
}

/**
 * gwy_math_kth_rank:
 * @n: Number of items in @array.
 * @array: Array of doubles.  It is shuffled by this function.
 * @k: Rank of the value to find (from lowest to highest).
 *
 * Finds k-th item of an array of values using Quick select algorithm.
 *
 * The value positions change as follows.  The returned value is guaranteed to be at @k-th position in the array (i.e.
 * correctly ranked).  All other values are correctly ordered with respect to this value: preceeding values are
 * smaller (or equal) and following values are larger (or equal).
 *
 * Returns: The @k-th value of @array if it was sorted.
 *
 * Since: 2.50
 **/
gdouble
gwy_math_kth_rank(gsize n, gdouble *array, gsize k)
{
    gsize lo, hi;
    gsize middle, ll, hh;
    gdouble m;

    g_return_val_if_fail(k < n, 0.0);

    lo = 0;
    hi = n-1;
    while (TRUE) {
        if (hi <= lo+2 || k <= lo+2 || k+2 >= hi)
            return kth_rank_simple(hi+1 - lo, array + lo, k - lo);

        /* Find median of lo, middle and hi items; swap into position lo */
        middle = (lo + hi)/2;

        GWY_ORDER(gdouble, array[middle], array[hi]);
        GWY_ORDER(gdouble, array[lo], array[hi]);
        GWY_ORDER(gdouble, array[middle], array[lo]);

        /* Swap low item (now in position middle) into position (lo+1) */
        DSWAP(array[middle], array[lo+1]);

        /* Nibble from each end towards middle, swapping items when stuck */
        ll = lo+1;
        hh = hi;
        m = array[lo];
        while (TRUE) {
            do {
                ll++;
            } while (m > array[ll]);
            do {
                hh--;
            } while (array[hh] > m);

            if (hh < ll)
                break;

            DSWAP(array[ll], array[hh]);
        }

        /* Swap middle item (in position lo) back into correct position */
        array[lo] = array[hh];
        array[hh] = m;

        /* Re-set active partition */
        if (hh <= k)
            lo = hh;
        if (hh >= k)
            hi = hh-1;
    }
}

/**
 * gwy_math_median:
 * @n: Number of items in @array.
 * @array: Array of doubles.  It is shuffled by this function.
 *
 * Finds median of an array of values using Quick select algorithm.
 *
 * See gwy_math_kth_rank() for details of how the values are shuffled.
 *
 * Returns: The median value of @array.
 **/
gdouble
gwy_math_median(gsize n, gdouble *array)
{
    return gwy_math_kth_rank(n, array, n/2);
}

/* When there are many values to find, just sort the entire thing and read the values at the corresponding ranks. */
static void
kth_ranks_brute(gsize n, gdouble *array,
                guint nk, const guint *k, gdouble *values)
{
    guint j;

    gwy_math_sort(n, array);
    for (j = 0; j < nk; j++)
        values[j] = array[k[j]];
}

/* We assume k[] is uniq-sorted which eliminates a bunch of cases. */
static void
kth_ranks_small(gsize n, gdouble *array,
                guint nk, const guint *k, gdouble *values)
{
    guint k0, k1, d0, d1;

    if (!nk)
        return;

    k0 = k[0];
    if (nk == 1) {
        values[0] = gwy_math_kth_rank(n, array, k0);
        return;
    }

    k1 = k[1];
    d0 = (k0 <= n/2) ? n/2 - k0 : k0 - n/2;
    d1 = (k1 <= n/2) ? n/2 - k1 : k1 - n/2;
    if (d0 <= d1) {
        values[0] = gwy_math_kth_rank(n, array, k0);
        k0++;
        values[1] = gwy_math_kth_rank(n-k0, array+k0, k1-k0);
    }
    else {
        values[1] = gwy_math_kth_rank(n, array, k1);
        values[0] = gwy_math_kth_rank(k1, array, k0);
    }
}

static void
kth_ranks_recurse(gsize n, gdouble *array,
                  guint nk, guint *k, gdouble *values)
{
    guint jmid, kmid, j;

    if (nk <= 2) {
        kth_ranks_small(n, array, nk, k, values);
        return;
    }

    jmid = nk/2;
    kmid = k[jmid];
    values[jmid] = gwy_math_kth_rank(n, array, kmid);

    /* Now recurse into the halfs.  Both are non-empty because nk >= 3. */
    kth_ranks_recurse(kmid, array, jmid, k, values);

    jmid++;
    for (j = jmid; j < nk; j++)
        k[j] -= kmid+1;
    kth_ranks_recurse(n-1-kmid, array+kmid+1, nk-jmid, k+jmid, values+jmid);
    for (j = jmid; j < nk; j++)
        k[j] += kmid+1;
}

static guint
bisect_lower_guint(const guint *a, guint n, guint x)
{
    guint lo = 0, hi = n-1;

    if (G_UNLIKELY(x < a[lo]))
        return 0;
    if (G_UNLIKELY(x >= a[hi]))
        return n-1;

    while (hi - lo > 1) {
        guint mid = (hi + lo)/2;

        if (x < a[mid])
            hi = mid;
        else
            lo = mid;
    }

    return lo;
}

static void
kth_ranks_fastpath(gsize n, gdouble *array,
                   guint nk, const guint *k, gdouble *values)
{
    if (nk < 2 || k[0] < k[1])
        kth_ranks_small(n, array, nk, k, values);
    else if (k[0] == k[1])
        values[0] = values[1] = gwy_math_kth_rank(n, array, k[0]);
    else {
        guint ksorted[2];

        ksorted[0] = k[1];
        ksorted[1] = k[0];
        kth_ranks_small(n, array, nk, ksorted, values);
        DSWAP(values[0], values[1]);
    }
}

/**
 * gwy_math_kth_ranks:
 * @n: Number of items in @array.
 * @array: Array of doubles.  It is shuffled by this function.
 * @nk: Number of ranked values to find (sizes of arrays @k and @values).
 * @k: Ranks of the value to find.
 * @values: Array where to store values with ranks (from smallest to highest) given in @k.
 *
 * Finds simultaneously several k-th items of an array of values.
 *
 * The values are shuffled similarly to gwy_math_kth_rank(), except that the guarantee holds for all given ranks
 * simultaneously.  All values with explicitly requested ranks are at their correct positions and all values lying
 * between them in the array are also between them numerically.
 *
 * Since: 2.50
 **/
void
gwy_math_kth_ranks(gsize n, gdouble *array,
                   guint nk, const guint *k, gdouble *values)
{
    guint t, j, nkred;
    gdouble logn;
    guint *ksorted;
    gdouble *valsorted;

    for (j = 0; j < nk; j++) {
        g_return_if_fail(k[j] < n);
    }

    if (nk <= 2) {
        kth_ranks_fastpath(n, array, nk, k, values);
        return;
    }
    if (n < 30) {
        kth_ranks_brute(n, array, nk, k, values);
        return;
    }

    logn = log(n);
    if (nk > 0.12*exp(0.3*logn)*logn*logn) {
        kth_ranks_brute(n, array, nk, k, values);
        return;
    }

    if (nk <= 64) {
        ksorted = g_newa(guint, nk);
        valsorted = g_newa(gdouble, nk);
    }
    else {
        ksorted = g_new(guint, nk);
        valsorted = g_new(gdouble, nk);
    }

    /* Do uniq-sort on the k values.  The uniq is more to avoid some odd cases in the recursion than for efficiency. */
    gwy_assign(ksorted, k, nk);
    gwy_guint_sort(nk, ksorted);
    t = 0;
    for (j = 0; j < nk; j++) {
        if (ksorted[j] != ksorted[t]) {
            t++;
            ksorted[t] = ksorted[j];
        }
    }
    nkred = t+1;
    /* The recursion can be at most log2(nkred) deep. */
    kth_ranks_recurse(n, array, nkred, ksorted, valsorted);
    /* Assign the values to the original array. */
    for (j = 0; j < nk; j++)
        values[j] = valsorted[bisect_lower_guint(ksorted, nkred, k[j])];

    if (nk > 64) {
        g_free(ksorted);
        g_free(valsorted);
    }
}

/**
 * gwy_math_trimmed_mean:
 * @n: Number of items in @array.
 * @array: Array of doubles.  It is shuffled by this function.
 * @nlowest: The number of lowest values to discard.
 * @nhighest: The number of highest values to discard.
 *
 * Finds trimmed mean of an array of values.
 *
 * At least one value must remain after the trimming, i.e. @nlowest + @nhighest must be smaller than @n.  Usually one
 * passes the same number as both @nlowest and @nhighest, but it is not a requirement.
 *
 * The function can be also used to calculate normal mean values as it implements efficiently the cases when no
 * trimming is done at either end.
 *
 * Returns: The trimmed mean.
 *
 * Since: 2.50
 **/
gdouble
gwy_math_trimmed_mean(gsize n, gdouble *array, guint nlowest, guint nhighest)
{
    gsize i, nred;
    gdouble s;

    g_return_val_if_fail(nlowest < n, 0.0);
    g_return_val_if_fail(nhighest < n - nlowest, 0.0);

    /* Note that when using the k-th rank functions, we ask for the first discarded item, and hence ignore it the
     * returned values. */
    if (!nlowest) {
        if (!nhighest)
            nred = n;
        else {
            nred = n-nhighest;
            gwy_math_kth_rank(n, array, nred);
        }
    }
    else if (!nhighest) {
        nred = n-nlowest;
        gwy_math_kth_rank(n, array, nlowest-1);
        array += nlowest;
    }
    else {
        guint k[2];
        gdouble v[2];

        k[0] = nlowest-1;
        k[1] = n-nhighest;
        nred = n - (nlowest + nhighest);
        gwy_math_kth_ranks(n, array, 2, k, v);
        array += nlowest;
    }

    /* Now the reduced array block is guaranteed to contain only non-discarded values. So just calculate the average. */
    s = 0.0;
    for (i = nred; i; i--, array++)
        s += *array;
    return s/nred;
}

static inline guint
percentile_to_rank(gsize n, gdouble p, GwyPercentileInterpolationType interp)
{
    gdouble kreal, x, eps;
    guint k;

    g_return_val_if_fail(p >= 0.0, 0);
    g_return_val_if_fail(p <= 100.0, n-1);

    kreal = p/100.0*(n - 1);
    k = (guint)floor(kreal);
    x = kreal - k;
    eps = n*3e-16;
    if (interp == GWY_PERCENTILE_INTERPOLATION_LOWER || x <= eps)
        return k;
    if (interp == GWY_PERCENTILE_INTERPOLATION_HIGHER || x >= 1.0 - eps)
        return k+1;
    /* Nearest. */
    return x < 0.5 ? k : k+1;
}

/**
 * gwy_math_percentiles:
 * @n: Number of items in @array.
 * @array: Array of doubles.  It is shuffled by this function.
 * @interp: Interpolation method to use for percentiles that do not correspond exactly to an integer rank.
 * @np: Number of percentiles to find.
 * @p: Array of size @np with the percentiles to compute.  The values are in percents, i.e. from the range [0,100].
 * @values: Array where to store values with percentiles given in @p.
 *
 * Finds simultaneously several percentiles of an array of values.
 *
 * The values in @array are shuffled similarly to gwy_math_kth_ranks(). However, it is difficult to state how exactly
 * @p translates to the values that become correctly ranked (and it depends on @interp).  Hence you can only assume
 * the set of values is preserved.
 *
 * Since: 2.50
 **/
void
gwy_math_percentiles(gsize n, gdouble *array,
                     GwyPercentileInterpolationType interp,
                     guint np, const gdouble *p, gdouble *values)
{
    gdouble *v2;
    guint *k;
    guint j;

    if (interp == GWY_PERCENTILE_INTERPOLATION_LOWER
        || interp == GWY_PERCENTILE_INTERPOLATION_HIGHER
        || interp == GWY_PERCENTILE_INTERPOLATION_NEAREST) {
        k = g_new(guint, np);
        for (j = 0; j < np; j++)
            k[j] = percentile_to_rank(n, p[j], interp);

        gwy_math_kth_ranks(n, array, np, k, values);
        g_free(k);
        return;
    }

    k = g_new(guint, 2*np);
    v2 = g_new(gdouble, 2*np);

    /* When p corresponds exactly to an integer rank we store the same k twice.
     * But gwy_math_kth_ranks() does a uniq-sort of k[] anyway. */
    for (j = 0; j < np; j++) {
        k[2*j] = percentile_to_rank(n, p[j], GWY_PERCENTILE_INTERPOLATION_LOWER);
        k[2*j + 1] = percentile_to_rank(n, p[j], GWY_PERCENTILE_INTERPOLATION_HIGHER);
    }
    gwy_math_kth_ranks(n, array, 2*np, k, v2);
    for (j = 0; j < np; j++) {
        gdouble vlower = v2[2*j], vupper = v2[2*j + 1], x;

        if (k[2*j + 1] == k[2*j])
            values[j] = vlower;
        else if (interp == GWY_PERCENTILE_INTERPOLATION_MIDPOINT)
            values[j] = 0.5*(vlower + vupper);
        else {
            g_assert(k[2*j + 1] == k[2*j] + 1);
            x = p[j]/100.0*(n - 1) - k[2*j];
            values[j] = x*vupper + (1.0 - x)*vlower;
        }
    }

    g_free(k);
    g_free(v2);
}

/**
 * gwy_math_curvature_at_apex:
 * @coeffs: Array of the six polynomial coefficients of a quadratic surface in the following order: 1, x, y, x², xy, y².
 * @kappa1: Location to store the smaller curvature to.
 * @kappa2: Location to store the larger curvature to.
 * @phi1: Location to store the direction of the smaller curvature to.
 * @phi2: Location to store the direction of the larger curvature to.
 * @xc: Location to store x-coordinate of the centre of the quadratic surface.
 * @yc: Location to store y-coordinate of the centre of the quadratic surface.
 * @zc: Location to store value at the centre of the quadratic surface.
 *
 * Calculates curvature parameters at the apex from two-dimensional quadratic polynomial coefficients.
 *
 * See also gwy_math_curvature_at_origin() which computes the local surface curvature at @x=0 and @y=0.
 *
 * If the quadratic surface was obtained by fitting the dimensions of the fitted area should not differ, in the
 * lateral coordinates used, by many orders from 1.  Otherwise the recognition of flat surfaces might not work.
 *
 * Curvatures have signs, positive mean a concave (cup-like) surface, negative mean a convex (cap-like) surface.  They
 * are ordered including the sign.
 *
 * Directions are angles from the interval (-π/2, π/2].
 *
 * If the quadratic surface is degenerate, i.e. flat in at least one direction, the centre is undefined.  The centre
 * is then chosen as the closest point the origin of coordinates.  For flat surfaces this means the origin is simply
 * returned as the centre position.  Consequently, you should use Cartesian coordinates with origin in a natural
 * centre, for instance centre of image or grain.
 *
 * Returns: The number of curved dimensions (0 to 2).
 *
 * Since: 2.61
 **/
guint
gwy_math_curvature_at_apex(const gdouble *coeffs,
                           gdouble *pkappa1,
                           gdouble *pkappa2,
                           gdouble *pphi1,
                           gdouble *pphi2,
                           gdouble *pxc,
                           gdouble *pyc,
                           gdouble *pzc)
{
    gdouble a = coeffs[0], bx = coeffs[1], by = coeffs[2], cxx = coeffs[3], cxy = coeffs[4], cyy = coeffs[5];
    gdouble cm, cp, bx1, by1, xc, yc, phi, cx, cy;
    guint degree;

    /* Check if any sane quadratic term is present. */
    if (fabs(cxx) + fabs(cxy) + fabs(cyy) <= 1e-14*(fabs(bx) + fabs(by))) {
        /* Linear gradient */
        if (pkappa1)
            *pkappa1 = 0.0;
        if (pkappa2)
            *pkappa2 = 0.0;
        if (pxc)
            *pxc = 0.0;
        if (pyc)
            *pyc = 0.0;
        if (pzc)
            *pzc = a;
        if (pphi1)
            *pphi1 = 0.0;
        if (pphi2)
            *pphi2 = G_PI_2;
        return 0;
    }

    /* At least one quadratic term.  Eliminate the mixed term, if any. */
    cm = cxx - cyy;
    cp = cxx + cyy;
    phi = 0.5*atan2(cxy, cm);
    cx = cp + hypot(cm, cxy);
    cy = cp - hypot(cm, cxy);
    bx1 = bx*cos(phi) + by*sin(phi);
    by1 = -bx*sin(phi) + by*cos(phi);

    /* Eliminate linear terms */
    if (fabs(cx) < 1e-14*fabs(cy)) {
        /* Only y quadratic term */
        xc = 0.0;
        yc = -by1/cy;
        degree = 1;
    }
    else if (fabs(cy) < 1e-14*fabs(cx)) {
        /* Only x quadratic term */
        xc = -bx1/cx;
        yc = 0.0;
        degree = 1;
    }
    else {
        /* Two quadratic terms */
        xc = -bx1/cx;
        yc = -by1/cy;
        degree = 2;
    }

    if (pxc)
        *pxc = xc*cos(phi) - yc*sin(phi);
    if (pyc)
        *pyc = xc*sin(phi) + yc*cos(phi);
    if (pzc)
        *pzc = a + xc*bx1 + yc*by1 + xc*xc*cx + yc*yc*cy;

    if (cx > cy) {
        GWY_SWAP(gdouble, cx, cy);
        phi += G_PI_2;
    }
    /* Compenstate the left-handed coordinate system */
    phi = -phi;

    if (pkappa1)
        *pkappa1 = cx;
    if (pkappa2)
        *pkappa2 = cy;

    if (pphi1)
        *pphi1 = gwy_canonicalize_angle(phi, FALSE, FALSE);
    if (pphi2)
        *pphi2 = gwy_canonicalize_angle(phi + G_PI_2, FALSE, FALSE);

    return degree;
}

/**
 * gwy_math_curvature:
 * @coeffs: Array of the six polynomial coefficients of a quadratic surface in the following order: 1, x, y, x², xy, y².
 * @kappa1: Location to store the smaller curvature to.
 * @kappa2: Location to store the larger curvature to.
 * @phi1: Location to store the direction of the smaller curvature to.
 * @phi2: Location to store the direction of the larger curvature to.
 * @xc: Location to store x-coordinate of the centre of the quadratic surface.
 * @yc: Location to store y-coordinate of the centre of the quadratic surface.
 * @zc: Location to store value at the centre of the quadratic surface.
 *
 * Calculates curvature parameters at the apex from two-dimensional quadratic polynomial coefficients.
 *
 * This is an old name for gwy_math_curvature_at_apex().  See the description there.
 *
 * Returns: The number of curved dimensions (0 to 2).
 *
 * Since: 2.22
 **/
guint
gwy_math_curvature(const gdouble *coeffs,
                   gdouble *pkappa1,
                   gdouble *pkappa2,
                   gdouble *pphi1,
                   gdouble *pphi2,
                   gdouble *pxc,
                   gdouble *pyc,
                   gdouble *pzc)
{
    return gwy_math_curvature_at_apex(coeffs, pkappa1, pkappa2, pphi1, pphi2, pxc, pyc, pzc);
}

/**
 * gwy_math_curvature_at_origin:
 * @coeffs: Array of the six polynomial coefficients of a quadratic surface in the following order: 1, x, y, x², xy, y².
 * @kappa1: Location to store the smaller curvature to.
 * @kappa2: Location to store the larger curvature to.
 * @phi1: Location to store the direction of the smaller curvature to.
 * @phi2: Location to store the direction of the larger curvature to.
 *
 * Calculates curvature parameters at origin from two-dimensional quadratic polynomial coefficients.
 *
 * See gwy_math_curvature() for discussion of scaling and sign convenrions.  This function function differs from it
 * by computing the local surface curvature at @x=0 and @y=0, whereas gwy_math_curvature() computes the curvature at
 * the apex of the parabolic surface.
 *
 * The array @coeffs is consistent with gwy_math_curvature_at_apex(), even though here the constant term is not used.
 *
 * Returns: The number of curved dimensions (0 to 2).
 *
 * Since: 2.61
 **/
guint
gwy_math_curvature_at_origin(const gdouble *coeffs,
                             gdouble *pkappa1,
                             gdouble *pkappa2,
                             gdouble *pphi1,
                             gdouble *pphi2)
{
    gdouble bx = coeffs[1], by = coeffs[2], cxx = coeffs[3], cxy = coeffs[4], cyy = coeffs[5];
    gdouble b2, tpcoeffs[6];

    /* Transform to a coordinate system in the local tangent plane to the surface (x points along the gradient, y is
     * horizontal, z is tilted to be normal to the surface). We only care about curvatures so we set all the
     * uninteresting coefficients to zeros and use gwy_math_curvature_at_apex(), knowing the apex and origin now
     * coincide. */
    tpcoeffs[0] = tpcoeffs[1] = tpcoeffs[2] = 0.0;
    b2 = bx*bx + by*by;
    if (b2 == 0.0)
        gwy_assign(tpcoeffs + 3, coeffs + 3, 3);
    else {
        gdouble beta2 = 1.0 + b2, beta = sqrt(beta2);
        tpcoeffs[3] = (bx*bx*cxx + bx*by*cxy + by*by*cyy)/(beta2*beta*b2);
        tpcoeffs[4] = (2.0*bx*by*(cyy - cxx) + (bx*bx - by*by)*cxy)/(beta2*b2);
        tpcoeffs[5] = (by*by*cxx - bx*by*cxy + bx*bx*cyy)/(beta*b2);
    }

    return gwy_math_curvature_at_apex(tpcoeffs, pkappa1, pkappa2, pphi1, pphi2, NULL, NULL, NULL);
}

/**
 * gwy_math_refine_maximum_1d:
 * @y: Array of length 3, containing the neighbourhood values with the maximum in the centre.
 * @x: Location to store the refined @x-coordinate.
 *
 * Performs subpixel refinement of parabolic a one-dimensional maximum.
 *
 * The central value corresponds to x-coordinate 0, distances between values are unity.  The refinement is based by
 * fitting a parabola through the maximum.  If it fails or the calculated maximum lies farther than the surrounding
 * values the function sets the refined maximum to the origin and returns %FALSE.
 *
 * Returns: %TRUE if the refinement succeeded, %FALSE if it failed.  The value of @x is usable regardless of the
 *          return value.
 *
 * Since: 2.49
 **/
gboolean
gwy_math_refine_maximum_1d(const gdouble *y, gdouble *x)
{
    gdouble b, D;

    *x = 0.0;
    D = y[2] + y[0] - 2.0*y[1];
    b = 0.5*(y[0] - y[2]);
    if (D == 0.0 || fabs(D) < fabs(b))
        return FALSE;

    *x = b/D;
    return TRUE;
}

/**
 * gwy_math_refine_maximum_2d:
 * @z: Array of length 9, containing the square 3x3 neighbourhood values in matrix order and with the maximum in the
 *     centre.
 * @x: Location to store the refined @x-coordinate.
 * @y: Location to store the refined @y-coordinate.
 *
 * Performs subpixel refinement of parabolic a two-dimensional maximum.
 *
 * The central value corresponds to coordinates (0,0), distances between values are unity.  The refinement is based by
 * fitting a two-dimensional parabola through the maximum.  If it fails or the calculated maximum lies farther than
 * the surrounding values the function sets the refined maximum to the origin and returns %FALSE.
 *
 * Returns: %TRUE if the refinement succeeded, %FALSE if it failed.  The values of @x and @y are usable regardless of
 *          the return value.
 *
 * Since: 2.49
 **/
gboolean
gwy_math_refine_maximum_2d(const gdouble *z,
                           gdouble *x, gdouble *y)
{
    gdouble sz, szx, szy, szxx, szxy, szyy;
    gdouble bx, by, cxx, cxy, cyy, D, sx, sy;
    gdouble m[6], rhs[3];

    *x = *y = 0;

    sz = z[0] + z[1] + z[2] + z[3] + z[4] + z[5] + z[6] + z[7] + z[8];
    szx = -z[0] + z[2] - z[3] + z[5] - z[6] + z[8];
    szy = -z[0] - z[1] - z[2] + z[6] + z[7] + z[8];
    szxx = z[0] + z[2] + z[3] + z[5] + z[6] + z[8];
    szxy = z[0] - z[2] - z[6] + z[8];
    szyy = z[0] + z[1] + z[2] + z[6] + z[7] + z[8];

    m[0] = 9.0;
    m[1] = m[2] = m[3] = m[5] = 6.0;
    m[4] = 4.0;
    gwy_math_choleski_decompose(3, m);

    rhs[0] = sz;
    rhs[1] = szxx;
    rhs[2] = szyy;
    gwy_math_choleski_solve(3, m, rhs);

    bx = szx/6.0;
    by = szy/6.0;
    cxx = rhs[1];
    cxy = szxy/4.0;
    cyy = rhs[2];

    D = 4.0*cxx*cyy - cxy*cxy;
    /* Don't try the sub-pixel refinement if bad cancellation occurs.  Zero D can means a line-like maximum that we
     * could still refine in the orthogonal direction but that seems a fringe case. */
    if (D == 0.0 || fabs(D) < 1e-8*MAX(fabs(4.0*cxx*cyy), fabs(cxy*cxy)))
        return FALSE;

    sx = (by*cxy - 2.0*bx*cyy)/D;
    sy = (bx*cxy - 2.0*by*cxx)/D;

    /* Don't trust the sub-pixel refinement if it moves the maximum too far from the centre. */
    if (sx*sx + sy*sy > 2.0)
        return FALSE;

    *x = sx;
    *y = sy;
    return TRUE;
}

/**
 * gwy_math_refine_maximum:
 * @z: Array of length 9, containing the square 3x3 neighbourhood values in matrix order and with the maximum in the
 *     centre.
 * @x: Location to store the refined @x-coordinate.
 * @y: Location to store the refined @y-coordinate.
 *
 * Performs subpixel refinement of parabolic a two-dimensional maximum.
 *
 * An alias for gwy_math_refine_maximum_2d().
 *
 * Returns: %TRUE if the refinement succeeded, %FALSE if it failed.  The values of @x and @y are usable regardless of
 *          the return value.
 *
 * Since: 2.42
 **/
gboolean
gwy_math_refine_maximum(const gdouble *z, gdouble *x, gdouble *y)
{
    return gwy_math_refine_maximum_2d(z, x, y);
}

static gboolean
interpolate_parabolic(const GwyXY *xy, gdouble *x)
{
    gdouble u1 = (xy[1].x - xy[0].x)*(xy[2].y - xy[1].y);
    gdouble u2 = (xy[2].x - xy[1].x)*(xy[0].y - xy[1].y);
    gdouble tx;

    if (fabs(u2 + u1) <= 1e-12*(fabs(u1) + fabs(u2)))
        return FALSE;

    tx = 0.5*(xy[1].x + (u2*xy[2].x + u1*xy[0].x)/(u2 + u1));
    if (tx <= xy[0].x || tx >= xy[2].x)
        return FALSE;

    *x = tx;
    return TRUE;
}

/**
 * gwy_compare_double:
 * @a: Pointer to a double.
 * @b: Pointer to a double.
 *
 * Compares two double values, given as pointers.
 *
 * This function is suitable as #GCompareFunc and can be also used with plain qsort().
 *
 * It should only be used to sort normal numbers. The behaviour for NaNs is undefined.
 *
 * Since: 2.62
 **/
gint
gwy_compare_double(gconstpointer a, gconstpointer b)
{
    const gdouble *da = (const gdouble*)a;
    const gdouble *db = (const gdouble*)b;

    if (*da < *db)
        return -1;
    if (*da > *db)
        return 1;
    return 0;
}

static gboolean
find_min_in_array(const GwyXY *xy, guint n, guint *pimin)
{
    gboolean any_variation = FALSE;
    gdouble y, yy;
    guint imin, i;

    imin = n/2;
    for (i = 1; i <= n; i++) {
        if (xy[i].y < xy[imin].y)
            imin = i;
    }

    y = xy[imin].y;
    if (imin > 0) {
       yy = xy[imin-1].y;
       if (yy - y > 6e-16*(fabs(y) + fabs(yy)))
           any_variation = TRUE;
    }
    if (imin+1 < n) {
       yy = xy[imin+1].y;
       if (yy - y > 6e-16*(fabs(y) + fabs(yy)))
           any_variation = TRUE;
    }

    *pimin = imin;
    return any_variation;
}

/**
 * gwy_math_find_minimum_1d:
 * @function: Function to minimize.
 * @a: First interval endpoint.
 * @b: Second interval endpoint.
 * @user_data: User data passed to @function.
 *
 * Finds a minimum of a real function in a finite interval.
 *
 * The function simply does what it says on the tin.  If there are multiple minima in [a,b] any of them can be
 * returned, even though some effort to scan the interval is made.  There is no requiement for the minimum to lie
 * inside [a,b]; if it occurrs at one of the endpoints, the endpoint is returned.
 *
 * Since: 2.51
 **/
gdouble
gwy_math_find_minimum_1d(GwyRealFunc function,
                         gdouble a, gdouble b,
                         gpointer user_data)
{
    enum { initial_n = 12 };
    GwyXY xy[initial_n+1];
    gdouble x, y, xeps;
    guint i, imin, n, iter;
    gboolean at_left_edge = FALSE, at_right_edge = FALSE;

    GWY_ORDER(gdouble, a, b);
    if (b-a < 1.2e-16*(fabs(a) + fabs(b)))
        return 0.5*(a + b);

    /* Initial scan of the interval. */
    imin = 0;
    xy[0].x = a;
    xy[0].y = function(a, user_data);
    for (i = 1; i <= initial_n; i++) {
        x = (i == initial_n) ? b : b/initial_n*i + a/initial_n*(initial_n-i);
        xy[i].x = x;
        xy[i].y = y = function(x, user_data);
    }

    if (!find_min_in_array(xy, initial_n, &imin))
        return 0.5*(a + b);

    gwy_debug("initial minimum at %g, point #%u", xy[imin].x, imin);
    /* Use the first 4-5 values to keep points while iterating. */
    if (imin == 0)
        at_left_edge = TRUE;
    else if (imin == initial_n) {
        at_right_edge = TRUE;
        memmove(xy, xy + initial_n-2, 3*sizeof(GwyXY));
    }
    else
        memmove(xy, xy + imin-1, 3*sizeof(GwyXY));

    gwy_debug("initial subinterval [%g..%g]", xy[0].x, xy[2].x);

    iter = 0;
    while (xy[2].x - xy[0].x > 1.2e-15*(fabs(xy[0].x) + fabs(xy[2].x))) {
        gwy_debug("new iter, interval [%.16g..%.16g] %g, edges: %d %d",
                  xy[0].x, xy[2].x, xy[2].x - xy[0].x,
                  at_left_edge, at_right_edge);
        n = 3;
        /* Just split the interval closer to edge when the minimum seems at the edge. */
        if (at_left_edge)
            xy[n++].x = 0.8*xy[0].x + 0.2*xy[1].x;
        else if (at_right_edge)
            xy[n++].x = 0.2*xy[1].x + 0.8*xy[2].x;
        else {
            /* Optimistic bisection of the larger interval, always try this point.
             * XXX: This is not very efficient, we can end up only improving the interval from the bisection side. */
            if (xy[1].x - xy[0].x >= xy[2].x - xy[1].x) {
                xy[n++].x = 0.2*xy[0].x + 0.8*xy[1].x;
                gwy_debug("bisect-left %.16g (0.2)", xy[n-1].x);
            }
            else {
                xy[n++].x = 0.8*xy[1].x + 0.2*xy[2].x;
                gwy_debug("bisect-right %.16g (0.8)", xy[n-1].x);
            }

            /* Parabolic interpolation, use if it yields distinct point inside the interval. */
            if (interpolate_parabolic(xy, &x)) {
                xeps = 1.2e-15*(fabs(x));
                if (x - xy[0].x > xeps && xy[2].x - x > xeps && fabs(x - xy[3].x) > xeps) {
                    xy[n++].x = x;
                    gwy_debug("parabolic %.16g (%g)", x, (x - xy[0].x)/(xy[2].x - xy[0].x));
                }
            }
        }

        /* Find the new three points bracketing the minimum.  We should not change state from non-edge to edge, but we
         * can change state from edge to non-edge. */
        for (i = 3; i < n; i++) {
            xy[i].y = function(xy[i].x, user_data);
            gwy_debug("point %.16g, value %.16g", xy[i].x, xy[i].y);
        }
        qsort(xy, n, sizeof(GwyXY), gwy_compare_double);

        if (!find_min_in_array(xy, n, &imin))
            return xy[imin].x;

        gwy_debug("minimum at %g, point #%u (%g)", xy[imin].x, imin, (xy[imin].x - xy[0].x)/(xy[n-1].x - xy[0].x));
        if (imin == 0)
            at_left_edge = TRUE;
        else if (imin == n-1) {
            at_right_edge = TRUE;
            memmove(xy, xy + n-3, 3*sizeof(GwyXY));
        }
        else
            memmove(xy, xy + imin-1, 3*sizeof(GwyXY));

        if (iter++ == 50)
            break;
    }

    return xy[1].x;
}

static guint
estimate_regular_res(gdouble *pos, gint n, gdouble *minpos, gdouble *maxpos)
{
    gdouble maxstep = 0.0;
    guint k, res;

    gwy_math_sort(n, pos);
    *minpos = pos[0];
    *maxpos = pos[n-1];
    gwy_debug("range [%g,%g]", *minpos, *maxpos);
    if (maxpos <= minpos)
        return 0;

    for (k = 1; k < n; k++) {
        if (pos[k] - pos[k-1] > maxstep)
            maxstep = pos[k] - pos[k-1];
    }
    gwy_debug("maxstep %g", maxstep);
    res = (gint)ceil((*maxpos - *minpos)/maxstep) + 1;
    gwy_debug("estimated res %d", res);

    if (n % res != 0)
        return 0;

    return res;
}

/**
 * gwy_check_regular_2d_grid:
 * @coords: Array of @n coordinate pairs in plane.  You can also typecast #GwyXY or #GwyXYZ to doubles.
 * @stride: Actual number of double values in one block.  It must be at least 2 if @coords contains just alternating
 *          @x and @y.  If you pass an typecast #GwyXYZ array give stride as 3, etc.
 * @n: Number of items in @coords.
 * @tolerance: Relative distance from pixel center which is still considered OK.  Pass a negative value for some
 *             reasonable default. The maximum meaningful value is 0.5, beyond that the point would end up in
 *             a different pixel.
 * @xres: Location where to store the number of columns.
 * @yres: Location where to store the number of rows.
 * @xymin: Location where to store the minimum coordinates (top left corner).
 * @xystep: Location where to store the pixel size.
 *
 * Detects if points in plane form a regular rectangular grid oriented along the Cartesian axes.
 *
 * Points lying in one straight line are not considered to form a rectangle.
 *
 * When the function fails, i.e. the points do not form a regular grid, the values of output arguments are undefined.
 *
 * Returns: On success, a newly allocated array mapping grid indices (@i*@xres+@j) to indices in @coords.  %NULL is
 *          returned on failure.
 *
 * Since: 2.48
 **/
guint*
gwy_check_regular_2d_grid(const gdouble *coords, guint stride, guint n,
                          gdouble tolerance,
                          guint *pxres, guint *pyres,
                          GwyXY *xymin, GwyXY *xystep)
{
    gdouble xmin, xmax, ymin, ymax, dx, dy;
    gint xres, yres;
    guint k;
    gdouble *pos;
    guint *map;
    gboolean *encountered;
    gdouble matx[3], rhsx[2], maty[3], rhsy[3];

    g_return_val_if_fail(stride >= 2, NULL);
    g_return_val_if_fail(coords || !n, NULL);
    g_return_val_if_fail(pxres && pyres && xymin && xystep, NULL);

    if (n < 4)
        return NULL;

    if (tolerance < 0.0)
        tolerance = 0.05;

    pos = g_new(gdouble, n);
    gwy_debug("estimating yres from rows");
    for (k = 0; k < n; k++)
        pos[k] = coords[k*stride + 1];
    yres = estimate_regular_res(pos, n, &ymin, &ymax);

    gwy_debug("estimating xres from columns");
    for (k = 0; k < n; k++)
        pos[k] = coords[k*stride];
    xres = estimate_regular_res(pos, n, &xmin, &xmax);

    g_free(pos);

    if (yres) {
        xres = n/yres;
        gwy_debug("from rows xres %u, yres %u", xres, yres);
    }
    else if (xres) {
        yres = n/xres;
        gwy_debug("from columns xres %u, yres %u", xres, yres);
    }
    else
        return NULL;

    if (xres < 2 || yres < 2)
        return NULL;

    /* XXX: We could remove this condition but callers would need some means to tell if map[i] is an actual index or
     * something else, probably by putting G_MAXUINT there.   But this is an API change and current callers simply use
     * the values as indices.  A new function is needed. */
    if (xres*yres != n)
        return NULL;

    /* Widen the stripe by at most 1/2 at each side.  For large tolerance assume there is already a spread and widen
     * it less accordingly.  For exact coordinates this means differences from pixel centres are within the interval
     * [-tolerance/2, +tolerance/2], i.e. always safely smaller than tolerance in absolute value, regardless of the
     * tolerance.  So exact grids should always pass. */
    dx = (xmax - xmin)/(xres - 1 + tolerance);
    dy = (ymax - ymin)/(yres - 1 + tolerance);
    xmin -= 0.5*(1.0 - tolerance)*dx;
    xmax += 0.5*(1.0 - tolerance)*dx;
    ymin -= 0.5*(1.0 - tolerance)*dy;
    ymax += 0.5*(1.0 - tolerance)*dy;

    gwy_debug("x: [%g..%g] step %g", xmin, xmax, dx);
    gwy_debug("y: [%g..%g] step %g", ymin, ymax, dy);
    map = g_new(guint, n);
    encountered = g_new0(gboolean, n);
    gwy_clear(matx, 3);
    gwy_clear(maty, 3);
    gwy_clear(rhsx, 2);
    gwy_clear(rhsy, 2);
    for (k = 0; k < n; k++) {
        gdouble rawx = coords[k*stride + 0];
        gdouble rawy = coords[k*stride + 1];
        gdouble y = (rawy - ymin)/dy;
        gdouble x = (rawx - xmin)/dx;
        gint i = (gint)floor(y);
        gint j = (gint)floor(x);
        gdouble t;

        gwy_debug("(%g,%g) -> (%d,%d)", x, y, j, i);
        if (i < 0 || i >= yres || j < 0 || j >= xres) {
            g_critical("Points not inside estimated region?!");
            goto fail;
        }
        if (fabs(x - j - 0.5) > tolerance || fabs(y - i - 0.5) > tolerance) {
            gwy_debug("(%g,%g) too far from (%g,%g)", x, y, j+0.5, i+0.5);
            goto fail;
        }
        if (encountered[i*xres + j])
            goto fail;

        encountered[i*xres + j] = TRUE;
        map[i*xres + j] = k;

        t = j;
        matx[1] += t;
        matx[2] += t*t;
        rhsx[0] += rawx;
        rhsx[1] += t*rawx;

        t = i;
        maty[1] += t;
        maty[2] += t*t;
        rhsy[0] += rawy;
        rhsy[1] += t*rawy;
    }
    matx[0] = maty[0] = n;
    g_free(encountered);

    xymin->x = xmin;
    xymin->y = ymin;
    xystep->x = dx;
    xystep->y = dy;
    *pxres = xres;
    *pyres = yres;

    if (gwy_math_choleski_decompose(2, matx)) {
        gwy_math_choleski_solve(2, matx, rhsx);
        xystep->x = rhsx[1];
        xymin->x = rhsx[0] - 0.5*rhsx[1];
        gwy_debug("least-squares x-grid improvement to xoff=%g, xstep=%g", xymin->x, xystep->x);
    }
    if (gwy_math_choleski_decompose(2, maty)) {
        gwy_math_choleski_solve(2, maty, rhsy);
        xystep->y = rhsy[1];
        xymin->y = rhsy[0] - 0.5*rhsy[1];
        gwy_debug("least-squares y-grid improvement to yoff=%g, ystep=%g", xymin->y, xystep->y);
    }

    return map;

fail:
    g_free(map);
    g_free(encountered);
    return NULL;
}

/**
 * gwy_math_histogram:
 * @values: Values to make histogram from.
 * @n: Number of values in @values.
 * @min: Minimum value to consider (left edge of histogram).
 * @max: Maximum value to consider (right edge of histogram).
 * @nbins: Number of histogram bins (number of @counts items), a positive number.
 * @counts: Array where to store the counts.
 *
 * Counts the numbers of values falling into equal-sized bins.
 *
 * The value of @min must not be larger than @max.  The values may lie outside [@min,@max].  They are not counted in
 * the histogram, nor the returned total.
 *
 * Rounding rules for values exactly at the edge of two bins are arbitrary and must not be relied upon.
 *
 * Returns: The number of values inside the entire histogram, i.e. at most @n but possibly a reduced count.
 *
 * Since: 2.49
 **/
guint
gwy_math_histogram(const gdouble *values,
                   guint n,
                   gdouble min,
                   gdouble max,
                   guint nbins,
                   guint *counts)
{
    guint i, total = 0;
    gint nb;   /* Just a signed value */
    gdouble d;

    g_return_val_if_fail(nbins > 0, 0);
    g_return_val_if_fail(counts, 0);
    g_return_val_if_fail(values || !n, 0);
    g_return_val_if_fail(min <= max, 0);

    gwy_clear(counts, nbins);
    d = max - min;
    if (G_UNLIKELY(!(d > 0.0))) {
#ifdef _OPENMP
#pragma omp parallel for if(gwy_threads_are_enabled()) default(none) \
            reduction(+:total) \
            private(i) \
            shared(values,n,min)
#endif
        for (i = 0; i < n; i++) {
            if (values[i] == min)
                total++;
        }
        counts[0] = total;
        return total;
    }

    gwy_clear(counts, nbins);
    d = nbins/d;
    nb = nbins;
#ifdef _OPENMP
#pragma omp parallel if(gwy_threads_are_enabled()) default(none) \
            reduction(+:total) \
            private(i) \
            shared(counts,values,n,min,max,d,nb,nbins)
#endif
    {
        guint ifrom = gwy_omp_chunk_start(n), ito = gwy_omp_chunk_end(n);
        guint *tcounts = gwy_omp_if_threads_new0(counts, nbins);

        for (i = ifrom; i < ito; i++) {
            gdouble v = values[i];
            gint bi;

            if (v < min || v > max)
                continue;

            bi = (gint)floor((v - min)*d);
            if (G_LIKELY(bi >= 0 && bi < nb)) {
                tcounts[bi]++;
                total++;
            }
            else if (v == max) {
                tcounts[nbins-1]++;
                total++;
            }
        }
        gwy_omp_if_threads_sum_uint(counts, tcounts, nbins);
    }

    return total;
}

/**
 * gwy_xlnx_int:
 * @x: Value to calculate @x*log(@x) of.
 *
 * Calculates natural logarithm multiplied by the argument for integers.
 *
 * The value for zero @x is taken as the limit, i.e. zero.
 *
 * This function is useful for entropy calculations where values of @n*log(@n) can be evaulated a lot for small @n.
 * Therefore, values for small arguments are tabulated.  For large arguments the function is evaluated using the
 * standard log() function which is of course slower.
 *
 * Returns: Value of @x*log(@x).
 *
 * Since: 2.44
 **/
gdouble
gwy_xlnx_int(guint x)
{
    static const gdouble xlnx_table[] = {
        0.0,
        0.0,
        1.38629436111989061882,
        3.29583686600432907417,
        5.54517744447956247532,
        8.04718956217050187300,
        10.75055681536833000486,
        13.62137104338719313570,
        16.63553233343868742600,
        19.77502119602597444511,
        23.02585092994045684010,
        26.37684800078207598466,
        29.81887979745600372264,
        33.34434164699997756865,
        36.94680261461362060328,
        40.62075301653315098985,
        44.36141955583649980256,
        48.16462684895567336408,
        52.02669164213096445960,
        55.94434060416236874000,
        59.91464547107981986860,
        63.93497119219188292650,
        68.00293397388294877634,
        72.11636696637044288840,
        76.27329192835069487136,
        80.47189562170501873000,
    };

    /* Take the fast path quickly.  The slow path is slow anyway. */
    if (G_LIKELY(x < G_N_ELEMENTS(xlnx_table)))
        return xlnx_table[x];

    return x*log(x);
}

/**
 * gwy_sinc:
 * @x: Value to calculate sinc (cardinal sine) of.
 *
 * Calculates the sinc function.
 *
 * The sinc function is equal to sin(@x)/@x for non-zero @x, and defined to the limit 1 for zero @x.
 *
 * Returns: Value of sinc(@x).
 *
 * Since: 2.51
 **/
gdouble
gwy_sinc(gdouble x)
{
    if (G_LIKELY(fabs(x) > 3e-4))
        return sin(x)/x;
    return 1.0 - x*x/6.0;
}

/**
 * gwy_canonicalize_angle:
 * @phi: Angle to canonicalize, in radians.
 * @positive: %TRUE if a positive angle is requested, %FALSE for outputs symmetrical around zero.
 * @oriented: %TRUE for direction of a vector, %FALSE for the direction of a line (i.e. with no distinction between
 *            forward and backward direction).
 *
 * Canonicalizes an angle to requested interval.
 *
 * For @positive=%FALSE, @oriented=%FALSE the output interval is [-Ï€/2,Ï€/2].
 *
 * For @positive=%FALSE, @oriented=%TRUE the output interval is [-Ï€,Ï€].
 *
 * For @positive=%TRUE, @oriented=%FALSE the output interval is [0,Ï€).
 *
 * For @positive=%TRUE, @oriented=%TRUE the output interval is [0,2Ï€).
 *
 * Returns: Canonicalized angle, equivalent (in given sense) to @phi.
 *
 * Since: 2.50
 **/
gdouble
gwy_canonicalize_angle(gdouble phi, gboolean positive, gboolean oriented)
{
    if (oriented) {
        /* This can give anything from -2Ï€ up to 2Ï€ because fmod is based on rounding to zero. */
        phi = fmod(phi, GWY_TWO_PI);
        if (positive)
            return phi < 0.0 ? fmax(phi + GWY_TWO_PI, 0.0) : phi;

        if (phi < -G_PI)
            return phi + GWY_TWO_PI;
        if (phi > G_PI)
            return phi - GWY_TWO_PI;
        return phi;
    }

    /* This can give anything from -π up to π because fmod is based on rounding to zero. */
    phi = fmod(phi, G_PI);
    if (positive)
        return phi < 0.0 ? fmax(phi + G_PI, 0.0) : phi;

    if (phi < -G_PI_2)
        return phi + G_PI;
    if (phi > G_PI_2)
        return phi - G_PI;
    return phi;
}

/* Copyright (C) 1991, 1992, 1996, 1997, 1999 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Written by Douglas C. Schmidt (schmidt@ics.uci.edu).

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, write to the Free
   Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
   MA 02110-1301, USA  */

/* If you consider tuning this algorithm, you should consult first:
   Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
   Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993.  */

/* The next 4 #defines implement a very fast in-line stack abstraction. */
#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
#define POP(low, high)  ((void) (--top, (low = top->lo), (high = top->hi)))
#define STACK_NOT_EMPTY (stack < top)

/* Order size using quicksort.  This implementation incorporates four optimizations discussed in Sedgewick:

   1. Non-recursive, using an explicit stack of pointer that store the next array partition to sort.  To save time,
   this maximum amount of space required to store an array of SIZE_MAX is allocated on the stack.  Assuming a 32-bit
   (64 bit) integer for size_t, this needs only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes). Pretty
   cheap, actually.

   2. Chose the pivot element using a median-of-three decision tree. This reduces the probability of selecting a bad
   pivot value and eliminates certain extraneous comparisons.

   3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving insertion sort to order the MAX_THRESH items within
   each partition. This is a big win, since insertion sort is faster for small, mostly sorted array segments.

   4. The larger of the two sub-partitions is always pushed onto the stack first, with the algorithm then
   concentrating on the smaller partition.  This *guarantees* no more than log(n) stack size is needed (actually O(1)
   in this case)!  */

/**
 * gwy_math_sort:
 * @n: Number of items in @array.
 * @array: Array of doubles to sort in place.
 *
 * Sorts an array of doubles using a quicksort algorithm.
 *
 * This is usually about twice as fast as the generic quicksort function thanks to specialization for doubles.
 **/
void
gwy_math_sort(gsize n, gdouble *array)
{
    /* Discontinue quicksort algorithm when partition gets below this size. This particular magic number was chosen to
     * work best on a Sun 4/260. */
    /* Specialization makes the insertion sort part relatively more efficient, after some benchmarking this seems be
     * about the best value on Athlon 64. */
    /* The stack needs log (total_elements) entries (we can even subtract log2(MAX_THRESH)).  Since total_elements has
     * type size_t, we get as upper bound for log (total_elements): bits per byte (CHAR_BIT) * sizeof(size_t).  */
    enum {
        MAX_THRESH = 12,
        LOG2_MAX_TRESH = 3,
        STACK_SIZE = CHAR_BIT*sizeof(gsize) - LOG2_MAX_TRESH,
    };

    /* Stack node declarations used to store unfulfilled partition obligations. */
    typedef struct {
        gdouble *lo;
        gdouble *hi;
    } stack_node;

    if (n < 2)
        /* Avoid lossage with unsigned arithmetic below.  */
        return;

    if (n > MAX_THRESH) {
        gdouble *lo = array;
        gdouble *hi = lo + (n - 1);
        stack_node stack[STACK_SIZE];
        stack_node *top = stack + 1;

        while (STACK_NOT_EMPTY) {
            gdouble *left_ptr;
            gdouble *right_ptr;

            /* Select median value from among LO, MID, and HI. Rearrange LO and HI so the three values are sorted.
             * This lowers the probability of picking a pathological pivot value and skips a comparison for both the
             * LEFT_PTR and RIGHT_PTR in the while loops. */

            gdouble *mid = lo + ((hi - lo) >> 1);

            if (*mid < *lo)
                DSWAP(*mid, *lo);

            if (*hi < *mid) {
                DSWAP(*mid, *hi);
                if (*mid < *lo)
                    DSWAP(*mid, *lo);
            }

            left_ptr  = lo + 1;
            right_ptr = hi - 1;

            /* Here's the famous ``collapse the walls'' section of quicksort. Gotta like those tight inner loops!
             * They are the main reason that this algorithm runs much faster than others. */
            do {
                while (*left_ptr < *mid)
                    left_ptr++;

                while (*mid < *right_ptr)
                    right_ptr--;

                if (left_ptr < right_ptr) {
                    DSWAP(*left_ptr, *right_ptr);
                    if (mid == left_ptr)
                        mid = right_ptr;
                    else if (mid == right_ptr)
                        mid = left_ptr;
                    left_ptr++;
                    right_ptr--;
                }
                else if (left_ptr == right_ptr) {
                    left_ptr++;
                    right_ptr--;
                    break;
                }
            }
            while (left_ptr <= right_ptr);

            /* Set up pointers for next iteration.  First determine whether left and right partitions are below the
             * threshold size.  If so, ignore one or both.  Otherwise, push the larger partition's bounds on the stack
             * and continue sorting the smaller one. */

            if ((gsize)(right_ptr - lo) <= MAX_THRESH) {
                if ((gsize)(hi - left_ptr) <= MAX_THRESH) {
                    /* Ignore both small partitions. */
                    POP(lo, hi);
                }
                else {
                    /* Ignore small left partition. */
                    lo = left_ptr;
                }
            }
            else if ((gsize)(hi - left_ptr) <= MAX_THRESH) {
                /* Ignore small right partition. */
                hi = right_ptr;
            }
            else if ((right_ptr - lo) > (hi - left_ptr)) {
                /* Push larger left partition indices. */
                PUSH(lo, right_ptr);
                lo = left_ptr;
            }
            else {
                /* Push larger right partition indices. */
                PUSH(left_ptr, hi);
                hi = right_ptr;
            }
        }
    }

    /* Once the BASE_PTR array is partially sorted by quicksort the rest is completely sorted using insertion sort,
     * since this is efficient for partitions below MAX_THRESH size. BASE_PTR points to the beginning of the array to
     * sort, and END_PTR points at the very last element in the array (*not* one beyond it!). */

    {
        gdouble *const end_ptr = array + (n - 1);
        gdouble *tmp_ptr = array;
        gdouble *thresh = MIN(end_ptr, array + MAX_THRESH);
        register gdouble *run_ptr;

        /* Find smallest element in first threshold and place it at the array's beginning.  This is the smallest array
         * element, and the operation speeds up insertion sort's inner loop. */
        for (run_ptr = tmp_ptr + 1; run_ptr <= thresh; run_ptr++) {
            if (*run_ptr < *tmp_ptr)
                tmp_ptr = run_ptr;
        }

        if (tmp_ptr != array)
            DSWAP(*tmp_ptr, *array);

        /* Insertion sort, running from left-hand-side up to right-hand-side. */
        run_ptr = array + 1;
        while (++run_ptr <= end_ptr) {
            tmp_ptr = run_ptr - 1;
            while (*run_ptr < *tmp_ptr)
                tmp_ptr--;

            tmp_ptr++;
            if (tmp_ptr != run_ptr) {
                gdouble *hi, *lo;
                gdouble d;

                d = *run_ptr;
                for (hi = lo = run_ptr; --lo >= tmp_ptr; hi = lo)
                    *hi = *lo;
                *hi = d;
            }
        }
    }
}

/**
 * gwy_guint_sort:
 * @n: Number of items in @array.
 * @array: Array of #guint values to sort in place.
 *
 * Sorts an array of unsigned integers using a quicksort algorithm.
 *
 * This is usually about twice as fast as the generic quicksort function thanks to specialization for integers.
 *
 * Since: 2.50
 **/
void
gwy_guint_sort(gsize n, guint *array)
{
    /* Discontinue quicksort algorithm when partition gets below this size.
     * This particular magic number was chosen to work best on a Sun 4/260. */
    /* Specialization makes the insertion sort part relatively more
     * efficient, after some benchmarking this seems be about the best value
     * on Athlon 64. */
    /* The stack needs log (total_elements) entries (we can even subtract
     * log2(MAX_THRESH)).  Since total_elements has type size_t, we get as
     * upper bound for log (total_elements):
     * bits per byte (CHAR_BIT) * sizeof(size_t).  */
    enum {
        MAX_THRESH = 12,
        LOG2_MAX_TRESH = 3,
        STACK_SIZE = CHAR_BIT*sizeof(gsize) - LOG2_MAX_TRESH,
    };

    /* Stack node declarations used to store unfulfilled partition obligations.
     */
    typedef struct {
        guint *lo;
        guint *hi;
    } stack_node;

    if (n < 2)
        /* Avoid lossage with unsigned arithmetic below.  */
        return;

    if (n > MAX_THRESH) {
        guint *lo = array;
        guint *hi = lo + (n - 1);
        stack_node stack[STACK_SIZE];
        stack_node *top = stack + 1;

        while (STACK_NOT_EMPTY) {
            guint *left_ptr;
            guint *right_ptr;

            /* Select median value from among LO, MID, and HI. Rearrange
               LO and HI so the three values are sorted. This lowers the
               probability of picking a pathological pivot value and
               skips a comparison for both the LEFT_PTR and RIGHT_PTR in
               the while loops. */

            guint *mid = lo + ((hi - lo) >> 1);

            if (*mid < *lo)
                DSWAP(*mid, *lo);

            if (*hi < *mid) {
                DSWAP(*mid, *hi);
                if (*mid < *lo)
                    DSWAP(*mid, *lo);
            }

            left_ptr  = lo + 1;
            right_ptr = hi - 1;

            /* Here's the famous ``collapse the walls'' section of quicksort.
               Gotta like those tight inner loops!  They are the main reason
               that this algorithm runs much faster than others. */
            do {
                while (*left_ptr < *mid)
                    left_ptr++;

                while (*mid < *right_ptr)
                    right_ptr--;

                if (left_ptr < right_ptr) {
                    DSWAP(*left_ptr, *right_ptr);
                    if (mid == left_ptr)
                        mid = right_ptr;
                    else if (mid == right_ptr)
                        mid = left_ptr;
                    left_ptr++;
                    right_ptr--;
                }
                else if (left_ptr == right_ptr) {
                    left_ptr++;
                    right_ptr--;
                    break;
                }
            }
            while (left_ptr <= right_ptr);

          /* Set up pointers for next iteration.  First determine whether
             left and right partitions are below the threshold size.  If so,
             ignore one or both.  Otherwise, push the larger partition's
             bounds on the stack and continue sorting the smaller one. */

          if ((gsize)(right_ptr - lo) <= MAX_THRESH) {
              if ((gsize)(hi - left_ptr) <= MAX_THRESH)
                  /* Ignore both small partitions. */
                  POP(lo, hi);
              else
                  /* Ignore small left partition. */
                  lo = left_ptr;
          }
          else if ((gsize)(hi - left_ptr) <= MAX_THRESH)
              /* Ignore small right partition. */
              hi = right_ptr;
          else if ((right_ptr - lo) > (hi - left_ptr)) {
              /* Push larger left partition indices. */
              PUSH(lo, right_ptr);
              lo = left_ptr;
          }
          else {
              /* Push larger right partition indices. */
              PUSH(left_ptr, hi);
              hi = right_ptr;
          }
        }
    }

    /* Once the BASE_PTR array is partially sorted by quicksort the rest
       is completely sorted using insertion sort, since this is efficient
       for partitions below MAX_THRESH size. BASE_PTR points to the beginning
       of the array to sort, and END_PTR points at the very last element in
       the array (*not* one beyond it!). */

    {
        guint *const end_ptr = array + (n - 1);
        guint *tmp_ptr = array;
        guint *thresh = MIN(end_ptr, array + MAX_THRESH);
        register guint *run_ptr;

        /* Find smallest element in first threshold and place it at the
           array's beginning.  This is the smallest array element,
           and the operation speeds up insertion sort's inner loop. */

        for (run_ptr = tmp_ptr + 1; run_ptr <= thresh; run_ptr++) {
            if (*run_ptr < *tmp_ptr)
                tmp_ptr = run_ptr;
        }

        if (tmp_ptr != array)
            DSWAP(*tmp_ptr, *array);

        /* Insertion sort, running from left-hand-side up to right-hand-side.
         */

        run_ptr = array + 1;
        while (++run_ptr <= end_ptr) {
            tmp_ptr = run_ptr - 1;
            while (*run_ptr < *tmp_ptr)
                tmp_ptr--;

            tmp_ptr++;
            if (tmp_ptr != run_ptr) {
                guint *hi, *lo;
                guint d;

                d = *run_ptr;
                for (hi = lo = run_ptr; --lo >= tmp_ptr; hi = lo)
                    *hi = *lo;
                *hi = d;
            }
        }
    }
}

/**
 * gwy_math_sort_with_index:
 * @n: Number of items in @array.
 * @array: Array of doubles to sort in place.
 * @index_array: Array of integer identifiers of the items that are permuted simultaneously with @array.
 *
 * Sorts an array of doubles using a quicksort algorithm, remembering the permutation.
 *
 * The simplest and probably most common use of @index_array is to fill it with numbers 0 to @n-1 before calling
 * gwy_math_sort().  After sorting, @index_array[@i] then contains the original position of the @i-th item of the
 * sorted array.
 *
 * Since: 2.50
 **/
/* FIXME: It is questionable whether it is still more efficient to use pointers instead of array indices when it
 * effectively doubles the number of variables.  This might force some variables from registers to memory... */
void
gwy_math_sort_with_index(gsize n, gdouble *array, guint *index_array)
{
    enum {
        MAX_THRESH = 12,
        LOG2_MAX_TRESH = 3,
        STACK_SIZE = CHAR_BIT*sizeof(gsize) - LOG2_MAX_TRESH,
    };

    /* Stack node declarations used to store unfulfilled partition obligations. */
    typedef struct {
        gdouble *lo;
        gdouble *hi;
        guint *loi;
        guint *hii;
    } stack_node;

    if (n < 2)
        /* Avoid lossage with unsigned arithmetic below.  */
        return;

    if (n > MAX_THRESH) {
        gdouble *lo = array;
        gdouble *hi = lo + (n - 1);
        guint *loi = index_array;
        guint *hii = loi + (n - 1);
        stack_node stack[STACK_SIZE];
        stack_node *top = stack + 1;

        while (STACK_NOT_EMPTY) {
            gdouble *left_ptr;
            gdouble *right_ptr;
            guint *left_ptri;
            guint *right_ptri;

            /* Select median value from among LO, MID, and HI. Rearrange
               LO and HI so the three values are sorted. This lowers the
               probability of picking a pathological pivot value and
               skips a comparison for both the LEFT_PTR and RIGHT_PTR in
               the while loops. */

            gdouble *mid = lo + ((hi - lo) >> 1);
            guint *midi = loi + ((hii - loi) >> 1);

            if (*mid < *lo) {
                DSWAP(*mid, *lo);
                ISWAP(*midi, *loi);
            }
            if (*hi < *mid) {
                DSWAP(*mid, *hi);
                ISWAP(*midi, *hii);

                if (*mid < *lo) {
                    DSWAP(*mid, *lo);
                    ISWAP(*midi, *loi);
                }
            }

          left_ptr  = lo + 1;
          right_ptr = hi - 1;
          left_ptri  = loi + 1;
          right_ptri = hii - 1;

          /* Here's the famous ``collapse the walls'' section of quicksort.
             Gotta like those tight inner loops!  They are the main reason
             that this algorithm runs much faster than others. */
          do {
              while (*left_ptr < *mid) {
                  left_ptr++;
                  left_ptri++;
              }

              while (*mid < *right_ptr) {
                  right_ptr--;
                  right_ptri--;
              }

              if (left_ptr < right_ptr) {
                  DSWAP(*left_ptr, *right_ptr);
                  ISWAP(*left_ptri, *right_ptri);
                  if (mid == left_ptr) {
                      mid = right_ptr;
                      midi = right_ptri;
                  }
                  else if (mid == right_ptr) {
                      mid = left_ptr;
                      midi = left_ptri;
                  }
                  left_ptr++;
                  left_ptri++;
                  right_ptr--;
                  right_ptri--;
              }
              else if (left_ptr == right_ptr) {
                  left_ptr++;
                  left_ptri++;
                  right_ptr--;
                  right_ptri--;
                  break;
              }
          }
          while (left_ptr <= right_ptr);

          /* Set up pointers for next iteration.  First determine whether
             left and right partitions are below the threshold size.  If so,
             ignore one or both.  Otherwise, push the larger partition's
             bounds on the stack and continue sorting the smaller one. */

          if ((gsize)(right_ptr - lo) <= MAX_THRESH) {
              if ((gsize)(hi - left_ptr) <= MAX_THRESH) {
                  /* Ignore both small partitions. */
                  --top;
                  lo = top->lo;
                  hi = top->hi;
                  loi = top->loi;
                  hii = top->hii;
              }
              else {
                  /* Ignore small left partition. */
                  lo = left_ptr;
                  loi = left_ptri;
              }
          }
          else if ((gsize)(hi - left_ptr) <= MAX_THRESH) {
              /* Ignore small right partition. */
              hi = right_ptr;
              hii = right_ptri;
          }
          else if ((right_ptr - lo) > (hi - left_ptr)) {
              /* Push larger left partition indices. */
              top->lo = lo;
              top->loi = loi;
              top->hi = right_ptr;
              top->hii = right_ptri;
              ++top;
              lo = left_ptr;
              loi = left_ptri;
          }
          else {
              /* Push larger right partition indices. */
              top->lo = left_ptr;
              top->loi = left_ptri;
              top->hi = hi;
              top->hii = hii;
              ++top;
              hi = right_ptr;
              hii = right_ptri;
          }
        }
    }

    /* Once the BASE_PTR array is partially sorted by quicksort the rest
       is completely sorted using insertion sort, since this is efficient
       for partitions below MAX_THRESH size. BASE_PTR points to the beginning
       of the array to sort, and END_PTR points at the very last element in
       the array (*not* one beyond it!). */

    {
        gdouble *const end_ptr = array + (n - 1);
        gdouble *tmp_ptr = array;
        guint *tmp_ptri = index_array;
        gdouble *thresh = MIN(end_ptr, array + MAX_THRESH);
        gdouble *run_ptr;
        guint *run_ptri;

        /* Find smallest element in first threshold and place it at the
           array's beginning.  This is the smallest array element,
           and the operation speeds up insertion sort's inner loop. */

        for (run_ptr = tmp_ptr + 1, run_ptri = tmp_ptri + 1;
             run_ptr <= thresh;
             run_ptr++, run_ptri++) {
            if (*run_ptr < *tmp_ptr) {
                tmp_ptr = run_ptr;
                tmp_ptri = run_ptri;
            }
        }

        if (tmp_ptr != array) {
            DSWAP(*tmp_ptr, *array);
            ISWAP(*tmp_ptri, *index_array);
        }

        /* Insertion sort, running from left-hand-side up to right-hand-side.
         */

        run_ptr = array + 1;
        run_ptri = index_array + 1;
        while (++run_ptr <= end_ptr) {
            tmp_ptr = run_ptr - 1;
            tmp_ptri = run_ptri;
            ++run_ptri;
            while (*run_ptr < *tmp_ptr) {
                tmp_ptr--;
                tmp_ptri--;
            }

            tmp_ptr++;
            tmp_ptri++;
            if (tmp_ptr != run_ptr) {
                gdouble *hi, *lo;
                guint *hii, *loi;
                gdouble d;
                guint i;

                d = *run_ptr;
                for (hi = lo = run_ptr; --lo >= tmp_ptr; hi = lo)
                    *hi = *lo;
                *hi = d;

                i = *run_ptri;
                for (hii = loi = run_ptri; --loi >= tmp_ptri; hii = loi)
                    *hii = *loi;
                *hii = i;
            }
        }
    }
}

/**
 * gwy_math_median_uncertainty:
 * @n: Number of items in @array.
 * @array: Array of doubles.  It is modified by this function.  All values are kept, but their positions in the array
 *         change.
 * @uarray: Array of value unvertainries.  It is modified by this function. All values are kept, but their positions
 *          in the array change.
 *
 * Find the uncertainty value corresponding to data median.
 *
 * Note that this is not the uncertainty arising from the calculation of the median.  It is just the uncertainty of
 * the single value that happens to be the data median.  As such, the function is not very useful.
 *
 * Since: 2.23
 *
 * Returns: The uncertainty of the median value.
 **/
gdouble
gwy_math_median_uncertainty(gsize n, gdouble *array, gdouble *uarray)
{
    gsize lo, hi;
    gsize median;
    gsize middle, ll, hh;

    lo = 0;
    hi = n - 1;
    median = n/2;
    while (TRUE) {
        if (hi <= lo)        /* One element only */
            return uarray[median];

        if (hi == lo + 1) {  /* Two elements only */
            if (array[lo] > array[hi]){
                DSWAP(array[lo], array[hi]);
                DSWAP(uarray[lo], uarray[hi]);
            }
            return uarray[median];
        }

        /* Find median of lo, middle and hi items; swap into position lo */
        middle = (lo + hi)/2;
        if (array[middle] > array[hi]){
            DSWAP(array[middle], array[hi]);
            DSWAP(uarray[middle], uarray[hi]);
        }
        if (array[lo] > array[hi]){
            DSWAP(array[lo], array[hi]);
            DSWAP(uarray[lo], uarray[hi]);
        }
        if (array[middle] > array[lo]){
            DSWAP(array[middle], array[lo]);
            DSWAP(uarray[middle], uarray[lo]);
        }

        /* Swap low item (now in position middle) into position (lo+1) */
        DSWAP(array[middle], array[lo + 1]);
        DSWAP(uarray[middle], uarray[lo + 1]);

        /* Nibble from each end towards middle, swapping items when stuck */
        ll = lo + 1;
        hh = hi;
        while (TRUE) {
            do {
                ll++;
            } while (array[lo] > array[ll]);
            do {
                hh--;
            } while (array[hh] > array[lo]);

            if (hh < ll)
                break;

            DSWAP(array[ll], array[hh]);
            DSWAP(uarray[ll], uarray[hh]);
        }
        /* Swap middle item (in position lo) back into correct position */
        DSWAP(array[lo], array[hh]);
        DSWAP(uarray[lo], uarray[hh]);

        /* Re-set active partition */
        if (hh <= median)
            lo = ll;
        if (hh >= median)
            hi = hh - 1;
    }
}

/************************** Documentation ****************************/

/**
 * SECTION:gwymath
 * @title: Math
 * @short_description: Mathematical utility functions
 * @see_also: #GwyNLFitter, non-linear least square fitter;
 *            <link linkend="libgwyddion-Math-Fallback">Math Fallback</link>,
 *            fallback mathematical functions
 *
 * Function gwy_math_humanize_numbers() deals with number representation.
 *
 * Nearest object finding functions gwy_math_find_nearest_line() and gwy_math_find_nearest_point() can be useful in
 * widget and vector layer implementation.
 *
 * And gwy_math_lin_solve(), gwy_math_lin_solve_rewrite(), and gwy_math_fit_polynom() are general purpose numeric
 * methods.
 **/

/**
 * ROUND:
 * @x: A double value.
 *
 * Rounds a number to nearest integer.  Use %GWY_ROUND instead.
 **/

/**
 * GWY_ROUND:
 * @x: A double value.
 *
 * Rounds a number to nearest integer.
 *
 * Since: 2.5
 **/

/**
 * GWY_SQRT3:
 *
 * The square root of 3.
 **/

/**
 * GWY_SQRT_PI:
 *
 * The square root of pi.
 **/

/**
 * GwyXY:
 * @x: X-coordinate.
 * @y: Y-coordinate.
 *
 * Representation of Cartesian coordinates in plane.
 *
 * Since: 2.45
 **/

/**
 * GwyXYZ:
 * @x: X-coordinate.
 * @y: Y-coordinate.
 * @z: Z-coordinate.
 *
 * Representation of Cartesian coordinates in space.
 *
 * Since: 2.45
 **/

/**
 * SECTION:gwymathfallback
 * @title: Math Fallback
 * @short_description: Fallback implementations of standard mathematical functions
 * @include: libgwyddion/gwymathfallback.h
 *
 * Fallback functions <function>gwy_math_fallback_<replaceable>foo</replaceable></function> are defined for
 * mathematical functions <function><replaceable>foo</replaceable></function> that might not be implemented on all
 * platforms and are commonly used in Gwyddion.  These functions are always defined (as <literal>static
 * inline</literal>), however, you should not use them as they can be less efficient or precise than the standard
 * functions.
 *
 * For each unavailable function (and only for those), this header file defines a replacement macro expanding to the
 * name of the fallback function. Therefore after including it, you can use for instance <function>cbrt</function>
 * regardless if the platform provides it or not. Note this header has to be included explicitly to avoid possible
 * inadvertent clashes with other definitions of <function>cbrt</function>.
 *
 * Since all replacement macros expand to names of functions, it is possible to take the address of any of them.
 **/

/**
 * gwy_math_fallback_cbrt:
 * @x: Floating point number.
 *
 * Fallback for the standard mathematical function <function>cbrt</function>.
 *
 * Returns: Cubic root of @x.
 *
 * Since: 2.9
 **/

/**
 * cbrt:
 *
 * Macro defined to gwy_math_fallback_cbrt() if the platform does not provide <function>cbrt</function>.
 **/

/**
 * gwy_math_fallback_pow10:
 * @x: Floating point number.
 *
 * Fallback for the standard mathematical function <function>pow10</function>.
 *
 * Returns: 10 raised to @x.
 *
 * Since: 2.9
 **/

/**
 * pow10:
 *
 * Macro defined to gwy_math_fallback_pow10() if the platform does not provide <function>pow10</function>.
 **/

/**
 * gwy_math_fallback_hypot:
 * @x: Floating point number.
 * @y: Floating point number.
 *
 * Fallback for the standard mathematical function <function>hypot</function>.
 *
 * Returns: Length of hypotenuse of a right-angle triangle with sides of lengths @x and @y.
 *
 * Since: 2.9
 **/

/**
 * hypot:
 *
 * Macro defined to gwy_math_fallback_hypot() if the platform does not provide <function>hypot</function>.
 **/

/**
 * gwy_math_fallback_acosh:
 * @x: Floating point number greater or equal to 1.0.
 *
 * Fallback for the standard mathematical function <function>acosh</function>.
 *
 * Returns: Inverse hyperbolic cosine of @x.
 *
 * Since: 2.9
 **/

/**
 * acosh:
 *
 * Macro defined to gwy_math_fallback_acosh() if the platform does not provide <function>acosh</function>.
 **/

/**
 * gwy_math_fallback_asinh:
 * @x: Floating point number.
 *
 * Fallback for the standard mathematical function <function>asinh</function>.
 *
 * Returns: Inverse hyperbolic sine of @x.
 *
 * Since: 2.9
 **/

/**
 * asinh:
 *
 * Macro defined to gwy_math_fallback_asinh() if the platform does not provide <function>asinh</function>.
 **/

/**
 * gwy_math_fallback_atanh:
 * @x: Floating point number in the range [-1, 1].
 *
 * Fallback for the standard mathematical function <function>atanh</function>.
 *
 * Returns: Inverse hyperbolic tangent of @x.
 *
 * Since: 2.9
 **/

/**
 * atanh:
 *
 * Macro defined to gwy_math_fallback_atanh() if the platform does not provide <function>atanh</function>.
 **/

/**
 * gwy_math_fallback_isnan:
 * @x: Floating point number.
 *
 * Fallback for the standard mathematical function <function>isnan</function>.
 *
 * Returns: %TRUE if @x is infinity, %FALSE otherwise.
 *
 * Since: 2.22
 **/

/**
 * gwy_isnan:
 *
 * Macro defined to working isnan() implementation, either a system one or gwy_math_fallback_isnan().
 *
 * Since: 2.22
 **/

/**
 * gwy_math_fallback_isinf:
 * @x: Floating point number.
 *
 * Fallback for the standard mathematical function <function>isinf</function>.
 *
 * Returns: %TRUE if @x is infinity, %FALSE otherwise.
 *
 * Since: 2.22
 **/

/**
 * gwy_isinf:
 *
 * Macro defined to working isinf() implementation, either a system one or gwy_math_fallback_isinf().
 *
 * Since: 2.22
 **/

/**
 * gwy_math_fallback_powi:
 * @x: Floating point number.
 * @i: Integer power.
 *
 * Fallback for the integer power function.
 *
 * It provides the same functionality as GCC's __builtin_powi() for finite fast math, without any precision guarantee.
 *
 * Returns: Value of @x raised to @i-th power.  If @i is zero, the return values is 1, even when @x is zero.
 *
 * Since: 2.53
 **/

/**
 * gwy_powi:
 *
 * Macro defined to working integer power implementation, either a compiler provided one or gwy_math_fallback_powi().
 *
 * Since: 2.53
 **/

/**
 * GwyPercentileInterpolationType:
 * @GWY_PERCENTILE_INTERPOLATION_LINEAR: Linear interpolation of the two nearest values.
 * @GWY_PERCENTILE_INTERPOLATION_LOWER: Round the rank down to an integer.
 * @GWY_PERCENTILE_INTERPOLATION_HIGHER: Round the rank up to an integer.
 * @GWY_PERCENTILE_INTERPOLATION_NEAREST: Round the rank to nearest integer.
 * @GWY_PERCENTILE_INTERPOLATION_MIDPOINT: Average of the two nearest values.
 *
 * Type of interpolation for percentile calculation.
 *
 * The interpolations are used when the percentile does not correspond exactly to a rank.
 *
 * Since: 2.50
 **/

/* vim: set cin columns=120 tw=118 et ts=4 sw=4 cino=>1s,e0,n0,f0,{0,}0,^0,\:1s,=0,g1s,h0,t0,+1s,c3,(0,u0 : */