File: neuraldata.h

package info (click to toggle)
gwyddion 2.62-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 51,952 kB
  • sloc: ansic: 398,486; python: 7,877; sh: 5,492; makefile: 4,723; xml: 3,883; cpp: 1,969; pascal: 418; perl: 154; ruby: 130
file content (594 lines) | stat: -rw-r--r-- 19,886 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/*
 *  $Id: neuraldata.h 25040 2022-09-22 12:32:22Z yeti-dn $
 *  Copyright (C) 2012 David Necas (Yeti).
 *  E-mail: yeti@gwyddion.net.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor,
 *  Boston, MA 02110-1301, USA.
 */

#define GWY_NEURAL_NETWORK_UNTITLED "__untitled__"

#define GWY_TYPE_NEURAL_NETWORK             (gwy_neural_network_get_type())
#define GWY_NEURAL_NETWORK(obj)             (G_TYPE_CHECK_INSTANCE_CAST((obj), GWY_TYPE_NEURAL_NETWORK, GwyNeuralNetwork))
#define GWY_NEURAL_NETWORK_CLASS(klass)     (G_TYPE_CHECK_CLASS_CAST((klass), GWY_TYPE_NEURAL_NETWORK, GwyNeuralNetworkClass))
#define GWY_IS_NEURAL_NETWORK(obj)          (G_TYPE_CHECK_INSTANCE_TYPE((obj), GWY_TYPE_NEURAL_NETWORK))
#define GWY_IS_NEURAL_NETWORK_CLASS(klass)  (G_TYPE_CHECK_CLASS_TYPE((klass), GWY_TYPE_NEURAL_NETWORK))
#define GWY_NEURAL_NETWORK_GET_CLASS(obj)   (G_TYPE_INSTANCE_GET_CLASS((obj), GWY_TYPE_NEURAL_NETWORK, GwyNeuralNetworkClass))

typedef struct _GwyNeuralNetwork      GwyNeuralNetwork;
typedef struct _GwyNeuralNetworkClass GwyNeuralNetworkClass;

typedef struct {
    guint nlayers;  /* number of hidden layers, fixed to 1 now */
    guint width;
    guint height;
    guint nhidden;
    guint noutput;   /* fixed to 1 */

    gdouble *whidden;
    gdouble *winput;

    guint inpowerxy;
    guint inpowerz;
    gchar *outunits;

    gdouble infactor;
    gdouble inshift;
    gdouble outfactor;
    gdouble outshift;
} NeuralNetworkData;

struct _GwyNeuralNetwork {
    GwyResource parent_instance;
    NeuralNetworkData data;

    /* forward feed data */
    gdouble *input;
    gdouble *hidden;
    gdouble *output;

    /* training data */
    gdouble *dhidden;
    gdouble *doutput;
    gdouble *target;
    gdouble *wphidden;
    gdouble *wpinput;
};

struct _GwyNeuralNetworkClass {
    GwyResourceClass parent_class;
};

static GType             gwy_neural_network_get_type(void)                          G_GNUC_CONST;
static void              gwy_neural_network_finalize(GObject *object);
static void              gwy_neural_network_use     (GwyResource *resource);
static void              gwy_neural_network_release (GwyResource *resource);
static GwyNeuralNetwork* gwy_neural_network_new     (const gchar *name,
                                                     const NeuralNetworkData *data,
                                                     gboolean is_const);
static void              gwy_neural_network_dump    (GwyResource *resource,
                                                     GString *str);
static GwyResource*      gwy_neural_network_parse   (const gchar *text,
                                                     gboolean is_const);
static void              neural_network_data_resize (NeuralNetworkData *nndata);
static void              neural_network_data_init   (NeuralNetworkData *nndata,
                                                     GRand *rng);
static void              neural_network_data_copy   (const NeuralNetworkData *src,
                                                     NeuralNetworkData *dest);
static void              neural_network_data_free   (NeuralNetworkData *nndata);

static const NeuralNetworkData neuralnetworkdata_default = {
    1, 11, 11, 7, 1,     /* sizes */
    NULL, NULL,          /* weights */
    0, 1, NULL,          /* units */
    1.0, 0.0, 1.0, 0.0,  /* scaling */
};

G_DEFINE_TYPE(GwyNeuralNetwork, gwy_neural_network, GWY_TYPE_RESOURCE)

static void
gwy_neural_network_class_init(GwyNeuralNetworkClass *klass)
{
    GObjectClass *gobject_class = G_OBJECT_CLASS(klass);
    GwyResourceClass *parent_class, *res_class = GWY_RESOURCE_CLASS(klass);

    gobject_class->finalize = gwy_neural_network_finalize;

    parent_class = GWY_RESOURCE_CLASS(gwy_neural_network_parent_class);
    res_class->item_type = *gwy_resource_class_get_item_type(parent_class);

    res_class->item_type.type = G_TYPE_FROM_CLASS(klass);

    res_class->name = "neuralnetwork";
    res_class->inventory = gwy_inventory_new(&res_class->item_type);
    res_class->use = gwy_neural_network_use;
    res_class->release = gwy_neural_network_release;
    res_class->dump = gwy_neural_network_dump;
    res_class->parse = gwy_neural_network_parse;
}

static void
gwy_neural_network_init(GwyNeuralNetwork *nn)
{
    nn->data = neuralnetworkdata_default;
    neural_network_data_resize(&nn->data);
}

static void
gwy_neural_network_resize(GwyNeuralNetwork *nn)
{
    NeuralNetworkData *nndata = &nn->data;
    guint ninput = nndata->width * nndata->height;

    /* Must be called separately: neural_network_data_resize(nndata); */

    nn->input = g_renew(gdouble, nn->input, ninput);
    nn->hidden = g_renew(gdouble, nn->hidden, nndata->nhidden);
    nn->output = g_renew(gdouble, nn->output, nndata->noutput);
    nn->target = g_renew(gdouble, nn->target, nndata->noutput);

    nn->dhidden = g_renew(gdouble, nn->dhidden, nndata->nhidden);
    nn->doutput = g_renew(gdouble, nn->doutput, nndata->noutput);
    gwy_clear(nn->dhidden, nndata->nhidden);
    gwy_clear(nn->doutput, nndata->noutput);

    nn->wpinput = g_renew(gdouble, nn->wpinput,
                          (ninput + 1)*nndata->nhidden);
    nn->wphidden = g_renew(gdouble, nn->wphidden,
                           (nndata->nhidden + 1)*nndata->noutput);
    gwy_clear(nn->wpinput, (ninput + 1)*nndata->nhidden);
    gwy_clear(nn->wphidden, (nndata->nhidden + 1)*nndata->noutput);
}

static void
gwy_neural_network_finalize(GObject *object)
{
    GwyNeuralNetwork *nn;

    nn = GWY_NEURAL_NETWORK(object);
    neural_network_data_free(&nn->data);

    G_OBJECT_CLASS(gwy_neural_network_parent_class)->finalize(object);
}

static void
gwy_neural_network_use(GwyResource *resource)
{
    GwyNeuralNetwork *nn = GWY_NEURAL_NETWORK(resource);
    gwy_neural_network_resize(nn);
}

static void
gwy_neural_network_release(GwyResource *resource)
{
    GwyNeuralNetwork *nn = GWY_NEURAL_NETWORK(resource);

    g_free(nn->input);
    g_free(nn->hidden);
    g_free(nn->output);
    g_free(nn->dhidden);
    g_free(nn->doutput);
    g_free(nn->wpinput);
    g_free(nn->wphidden);
    nn->input = nn->hidden = nn->output = nn->dhidden = nn->doutput = NULL;
    nn->wpinput = nn->wphidden = NULL;
}

static GwyNeuralNetwork*
gwy_neural_network_new(const gchar *name,
                       const NeuralNetworkData *data,
                       gboolean is_const)
{
    GwyNeuralNetwork *nn;

    nn = g_object_new(GWY_TYPE_NEURAL_NETWORK,
                      "is-const", is_const,
                      NULL);
    neural_network_data_copy(data, &nn->data);
    g_string_assign(GWY_RESOURCE(nn)->name, name);
    /* New non-const resources start as modified */
    GWY_RESOURCE(nn)->is_modified = !is_const;

    return nn;
}

static void
gwy_neural_network_write_weights(const gdouble *weights,
                                 guint n,
                                 GString *str)
{
    guint len = str->len;
    g_string_set_size(str, str->len + (G_ASCII_DTOSTR_BUF_SIZE + 1)*n);
    g_string_truncate(str, len);

    while (n--) {
        gchar buf[G_ASCII_DTOSTR_BUF_SIZE];
        g_ascii_dtostr(buf, sizeof(buf), *weights);
        g_string_append(str, buf);
        g_string_append_c(str, n ? ' ' : '\n');
        weights++;
    }
}

static void
gwy_neural_network_dump(GwyResource *resource,
                        GString *str)
{
    GwyNeuralNetwork *nn;
    NeuralNetworkData *nndata;
    gchar infactor[G_ASCII_DTOSTR_BUF_SIZE], inshift[G_ASCII_DTOSTR_BUF_SIZE],
          outfactor[G_ASCII_DTOSTR_BUF_SIZE], outshift[G_ASCII_DTOSTR_BUF_SIZE];
    gchar *outunits;
    guint ninput;

    g_return_if_fail(GWY_IS_NEURAL_NETWORK(resource));
    nn = GWY_NEURAL_NETWORK(resource);
    nndata = &nn->data;
    ninput = nndata->width * nndata->height;
    outunits = gwy_utf8_strescape(nndata->outunits, NULL);

    g_ascii_dtostr(infactor, sizeof(infactor), nndata->infactor);
    g_ascii_dtostr(inshift, sizeof(inshift), nndata->inshift);
    g_ascii_dtostr(outfactor, sizeof(outfactor), nndata->outfactor);
    g_ascii_dtostr(outshift, sizeof(outshift), nndata->outshift);

    /* Information */
    g_string_append_printf(str,
                           "width %u\n"
                           "height %u\n"
                           "nlayers %u\n"
                           "nhidden %u\n"
                           "noutput %u\n"
                           "xyunitpower %u\n"
                           "zunitpower %u\n"
                           "outunits \"%s\"\n"
                           "infactor %s\n"
                           "inshift %s\n"
                           "outfactor %s\n"
                           "outshift %s\n",
                           nndata->width, nndata->height,
                           nndata->nlayers, nndata->nhidden, nndata->noutput,
                           nndata->inpowerxy, nndata->inpowerz, outunits,
                           infactor, inshift, outfactor, outshift);
    g_free(outunits);

    gwy_neural_network_write_weights(nndata->winput,
                                     (ninput + 1)*nndata->nhidden,
                                     str);
    gwy_neural_network_write_weights(nndata->whidden,
                                     (nndata->nhidden + 1)*nndata->noutput,
                                     str);
}

static void
gwy_neural_network_read_weights(gdouble *weights,
                                guint n,
                                const gchar *s)
{
    gchar *end;

    while (n--) {
        *weights = g_ascii_strtod(s, &end);
        s = end;
        weights++;
    }
}

static GwyResource*
gwy_neural_network_parse(const gchar *text,
                         gboolean is_const)
{
    NeuralNetworkData nndata;
    GwyNeuralNetwork *nn = NULL;
    GwyNeuralNetworkClass *klass;
    gchar *str, *p, *line, *key, *value;
    guint len, layer = 0;

    g_return_val_if_fail(text, NULL);
    klass = g_type_class_peek(GWY_TYPE_NEURAL_NETWORK);
    g_return_val_if_fail(klass, NULL);

    nndata = neuralnetworkdata_default;
    nndata.outunits = g_strdup("");
    p = str = g_strdup(text);
    while ((line = gwy_str_next_line(&p))) {
        g_strstrip(line);
        key = line;
        if (!*key)
            continue;

        if (g_ascii_isdigit(key[0]) || key[0] == '-' || key[0] == '+') {
            if (layer == 0) {
                guint ninput = nndata.width * nndata.height;
                neural_network_data_resize(&nndata);
                gwy_neural_network_read_weights(nndata.winput,
                                                (ninput + 1)*nndata.nhidden,
                                                line);
            }
            else if (layer == 1)
                gwy_neural_network_read_weights(nndata.whidden,
                                                (nndata.nhidden + 1)*nndata.noutput,
                                                line);
            else {
                g_warning("Too many neuron weight lines.");
            }
            layer++;
            continue;
        }

        value = strchr(key, ' ');
        if (value) {
            *value = '\0';
            value++;
            g_strstrip(value);
        }
        if (!value || !*value) {
            g_warning("Missing value for `%s'.", key);
            continue;
        }

        /* Information */
        else if (gwy_strequal(key, "width"))
            nndata.width = atoi(value);
        else if (gwy_strequal(key, "height"))
            nndata.height = atoi(value);
        else if (gwy_strequal(key, "nlayers")) {
            nndata.nlayers = atoi(value);
            if (nndata.nlayers != 1)
                g_warning("Number of neural network layers must be 1.");
        }
        else if (gwy_strequal(key, "nhidden"))
            nndata.nhidden = atoi(value);
        else if (gwy_strequal(key, "noutput")) {
            nndata.noutput = atoi(value);
            if (nndata.noutput != 1)
                g_warning("Neural network output length must be 1.");
        }
        else if (gwy_strequal(key, "xyunitpower"))
            nndata.inpowerxy = atoi(value);
        else if (gwy_strequal(key, "zunitpower"))
            nndata.inpowerz = atoi(value);
        else if (gwy_strequal(key, "outunits")) {
            len = strlen(value);
            if (value[0] == '"' && len >= 2 && value[len-1] == '"') {
                value[len-1] = '\0';
                value++;
                g_free(nndata.outunits);
                nndata.outunits = g_strcompress(value);
            }
        }
        else if (gwy_strequal(key, "infactor"))
            nndata.infactor = g_ascii_strtod(value, NULL);
        else if (gwy_strequal(key, "inshift"))
            nndata.inshift = g_ascii_strtod(value, NULL);
        else if (gwy_strequal(key, "outfactor"))
            nndata.outfactor = g_ascii_strtod(value, NULL);
        else if (gwy_strequal(key, "outshift"))
            nndata.outshift = g_ascii_strtod(value, NULL);
        else
            g_warning("Unknown field `%s'.", key);
    }

    nn = gwy_neural_network_new("", &nndata, is_const);
    GWY_RESOURCE(nn)->is_modified = FALSE;
    /* FIXME: gwy_neural_network_data_sanitize(&nn->data); */
    g_free(str);
    neural_network_data_free(&nndata);

    return (GwyResource*)nn;
}

static GwyInventory*
gwy_neural_networks(void)
{
    return GWY_RESOURCE_CLASS(g_type_class_peek
                                        (GWY_TYPE_NEURAL_NETWORK))->inventory;
}

static GwyNeuralNetwork*
gwy_neural_networks_create_untitled(void)
{
    NeuralNetworkData nndata = neuralnetworkdata_default;
    GwyNeuralNetwork *nn;

    neural_network_data_resize(&nndata);
    nndata.outunits = g_strdup("");
    nn = gwy_neural_network_new(GWY_NEURAL_NETWORK_UNTITLED, &nndata, FALSE);
    neural_network_data_free(&nndata);
    return nn;
}

static void
neural_network_data_resize(NeuralNetworkData *nndata)
{
    guint ninput = nndata->width * nndata->height;

    nndata->winput = g_renew(gdouble, nndata->winput,
                             (ninput + 1)*nndata->nhidden);
    nndata->whidden = g_renew(gdouble, nndata->whidden,
                              (nndata->nhidden + 1)*nndata->noutput);
    neural_network_data_init(nndata, NULL);
}

static void
neural_network_data_init(NeuralNetworkData *nndata,
                         GRand *rng)
{
    GRand *myrng = rng ? rng : g_rand_new();
    guint ninput = nndata->width * nndata->height, i;
    gdouble *p;

    for (i = (ninput + 1)*nndata->nhidden, p = nndata->winput; i; i--, p++)
        *p = (2.0*g_rand_double(myrng) - 1.0)*0.1;

    for (i = (nndata->nhidden + 1)*nndata->noutput, p = nndata->whidden;
         i;
         i--, p++)
        *p = (2.0*g_rand_double(myrng) - 1.0)*0.1;

    if (!rng)
        g_rand_free(myrng);
}

static void
neural_network_data_copy(const NeuralNetworkData *src,
                         NeuralNetworkData *dest)
{
    guint ninput = src->width * src->height;

    g_return_if_fail(src != (const NeuralNetworkData*)dest);
    g_free(dest->outunits);
    g_free(dest->winput);
    g_free(dest->whidden);
    *dest = *src;
    dest->outunits = g_strdup(dest->outunits ? dest->outunits : "");
    dest->winput = g_memdup(dest->winput,
                            (ninput + 1)*dest->nhidden*sizeof(gdouble));
    dest->whidden = g_memdup(dest->whidden,
                             (dest->nhidden + 1)*dest->noutput*sizeof(gdouble));
}

static void
neural_network_data_free(NeuralNetworkData *nndata)
{
    g_free(nndata->winput);
    g_free(nndata->whidden);
    g_free(nndata->outunits);
}

static inline gdouble
neural_sigma(gdouble x)
{
    return (1.0/(1.0 + exp(-x)));
}

static void
layer_forward(const gdouble *input, gdouble *output, const gdouble *weight,
              guint nin, guint nout)
{
    guint j, k;

    for (j = nout; j; j--, output++) {
        const gdouble *p = input;
        /* Initialise with the constant signal neuron. */
        gdouble sum = *weight;
        weight++;
        for (k = nin; k; k--, p++, weight++)
            sum += (*weight)*(*p);
        *output = neural_sigma(sum);
    }
}

static void
adjust_weights(gdouble *delta, guint ndelta, const gdouble *data, guint ndata,
               gdouble *weight, gdouble *oldw, gdouble eta, gdouble momentum)
{
    guint j, k;

    for (j = ndelta; j; j--, delta++) {
        gdouble edeltaj = eta*(*delta);
        const gdouble *p = data;
        /* The constant signal neuron first. */
        gdouble new_dw = edeltaj + momentum*(*oldw);
        *weight += new_dw;
        *oldw = new_dw;
        weight++;
        oldw++;

        for (k = ndata; k; k--, p++, oldw++, weight++) {
            new_dw = edeltaj*(*p) + momentum*(*oldw);
            *weight += new_dw;
            *oldw = new_dw;
        }
    }
}

static gdouble
output_error(const gdouble *output, guint noutput, const gdouble *target,
             gdouble *doutput)
{
    guint j;
    gdouble errsum = 0.0;

    for (j = 0; j < noutput; j++) {
        gdouble out = output[j];
        gdouble tgt = target[j];

        doutput[j] = out*(1.0 - out)*(tgt - out);
        errsum += fabs(doutput[j]);
    }

    return errsum;
}

static gdouble
hidden_error(const gdouble *hidden, guint nhidden, gdouble *dhidden,
             const gdouble *doutput, guint noutput, const gdouble *whidden)
{
    guint j, k;
    gdouble errsum = 0.0;

    for (j = 0; j < nhidden; j++) {
        const gdouble *p = doutput;
        const gdouble *q = whidden + (j + 1);
        gdouble h = hidden[j];
        gdouble sum = 0.0;

        for (k = noutput; k; k--, p++, q += nhidden+1)
            sum += (*p)*(*q);

        dhidden[j] = h*(1.0 - h)*sum;
        errsum += fabs(dhidden[j]);
    }
    return errsum;
}

static void
gwy_neural_network_train_step(GwyNeuralNetwork *nn,
                              gdouble eta, gdouble momentum,
                              gdouble *err_o, gdouble *err_h)
{
    NeuralNetworkData *nndata = &nn->data;
    guint ninput = nndata->width * nndata->height;

    layer_forward(nn->input, nn->hidden,
                  nndata->winput, ninput, nndata->nhidden);
    layer_forward(nn->hidden, nn->output,
                  nndata->whidden, nndata->nhidden, nndata->noutput);

    *err_o = output_error(nn->output, nndata->noutput, nn->target, nn->doutput);
    *err_h = hidden_error(nn->hidden, nndata->nhidden, nn->dhidden,
                          nn->doutput, nndata->noutput, nndata->whidden);

    adjust_weights(nn->doutput, nndata->noutput, nn->hidden, nndata->nhidden,
                   nndata->whidden, nn->wphidden, eta, momentum);
    adjust_weights(nn->dhidden, nndata->nhidden, nn->input, ninput,
                   nndata->winput, nn->wpinput, eta, momentum);
}

static void
gwy_neural_network_forward_feed(GwyNeuralNetwork *nn)
{
    NeuralNetworkData *nndata = &nn->data;
    guint ninput = nndata->width * nndata->height;

    layer_forward(nn->input, nn->hidden, nndata->winput,
                  ninput, nndata->nhidden);
    layer_forward(nn->hidden, nn->output, nndata->whidden,
                  nndata->nhidden, nndata->noutput);
}

/* vim: set cin et ts=4 sw=4 cino=>1s,e0,n0,f0,{0,}0,^0,\:1s,=0,g1s,h0,t0,+1s,c3,(0,u0 : */