1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
|
/*
* $Id: correlation.c 25413 2023-06-06 09:52:30Z yeti-dn $
* Copyright (C) 2003-2021 David Necas (Yeti), Petr Klapetek.
* E-mail: yeti@gwyddion.net, klapetek@gwyddion.net.
*
* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with this program; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include <libgwyddion/gwymacros.h>
#include <libgwyddion/gwymath.h>
#include <libprocess/stats.h>
#include <libprocess/arithmetic.h>
#include <libprocess/simplefft.h>
#include <libprocess/inttrans.h>
#include <libprocess/filters.h>
#include <libprocess/correlation.h>
#include "gwyprocessinternal.h"
#include "gwyfftw.h"
/* Correlation iterator */
typedef struct {
GwyComputationState cs;
GwyDataField *data_field;
GwyDataField *kernel_field;
GwyDataField *score;
GwyDataField *avg;
GwyDataField *rms;
gdouble kavg;
gdouble krms;
gint i;
gint j;
} GwyCorrelationState;
/* Cross-correlation iterator */
typedef struct {
GwyComputationState cs;
GwyDataField *data_field1;
GwyDataField *data_field2;
GwyDataField *x_dist;
GwyDataField *y_dist;
GwyDataField *score;
GwyDataField *weights;
/* Aux data to avoid repeated computation of weighted avg and rms. */
GwyDataField *avg1;
GwyDataField *avg2;
GwyDataField *rms1;
GwyDataField *rms2;
gint8 *have_aux1;
gint8 *have_aux2;
gint search_width;
gint search_height;
gint window_width;
gint window_height;
gint i;
gint j;
} GwyCrossCorrelationState;
/**
* get_raw_correlation_score:
* @data_field: A data field.
* @kernel_field: Kernel to correlate data field with.
* @col: Upper-left column position in the data field.
* @row: Upper-left row position in the data field.
* @kernel_col: Upper-left column position in kernel field.
* @kernel_row: Upper-left row position in kernel field.
* @kernel_width: Width of kernel field area.
* @kernel_height: Heigh of kernel field area.
* @data_avg: Mean value of the effective data field area.
* @data_rms: Mean value of the effective kernel field area.
*
* Calculates a raw correlation score in one point.
*
* See gwy_data_field_get_correlation_score() for description. This function is useful if you know the mean values
* and rms.
*
* To obtain the score, divide the returned value with the product of rms of data field area and rms of the kernel.
*
* Returns: Correlation score (normalized to multiple of kernel and data area rms).
**/
static gdouble
get_raw_correlation_score(GwyDataField *data_field,
GwyDataField *kernel_field,
gint col,
gint row,
gint kernel_col,
gint kernel_row,
gint kernel_width,
gint kernel_height,
gdouble data_avg,
gdouble kernel_avg)
{
gint xres, yres, kxres, kyres, i, j;
gdouble sumpoints, score;
const gdouble *data, *kdata, *drow, *krow;
xres = data_field->xres;
yres = data_field->yres;
kxres = kernel_field->xres;
kyres = kernel_field->yres;
/* correlation request outside kernel */
if (kernel_col > kxres || kernel_row > kyres)
return -1;
/* correlation request outside data field */
if (col < 0 || row < 0 || col + kernel_width > xres || row + kernel_height > yres)
return -1;
if (kernel_col < 0 || kernel_row < 0 || kernel_col + kernel_width > kxres || kernel_row + kernel_height > kyres)
return -1;
score = 0;
sumpoints = kernel_width * kernel_height;
data = data_field->data;
kdata = kernel_field->data;
for (i = 0; i < kernel_height; i++) {
drow = data + col + xres*(i + row);
krow = kdata + kernel_col + kxres*(i + kernel_row);
for (j = 0; j < kernel_width; j++)
score += (drow[j] - data_avg)*(krow[j] - kernel_avg);
}
score /= sumpoints;
return score;
}
/**
* get_raw_weighted_correlation_score:
* @data_field: A data field.
* @kernel_field: Kernel to correlate data field with.
* @col: Upper-left column position in the data field.
* @row: Upper-left row position in the data field.
* @kernel_col: Upper-left column position in kernel field.
* @kernel_row: Upper-left row position in kernel field.
* @kernel_width: Width of kernel field area.
* @kernel_height: Heigh of kernel field area.
* @data_avg: Mean value of the effective data field area.
* @data_rms: Mean value of the effective kernel field area.
*
* Calculates a raw correlation score in one point.
*
* See gwy_data_field_get_correlation_score() for description. This function is useful if you know the mean values
* and rms.
*
* To obtain the score, divide the returned value with the product of rms of data field area and rms of the kernel.
*
* Returns: Correlation score (normalized to multiple of kernel and data area rms).
**/
static gdouble
get_raw_weighted_correlation_score(GwyDataField *data_field,
GwyDataField *kernel_field,
GwyDataField *weight_field,
gint col,
gint row,
gint kernel_col,
gint kernel_row,
gdouble data_avg,
gdouble kernel_avg,
gdouble weightsum)
{
gint xres, yres, kxres, kyres, wxres, wyres, i, j;
const gdouble *data, *kdata, *wdata, *drow, *krow, *wrow;
gdouble score;
xres = data_field->xres;
yres = data_field->yres;
kxres = kernel_field->xres;
kyres = kernel_field->yres;
wxres = weight_field->xres;
wyres = weight_field->yres;
/* correlation request outside kernel */
if (kernel_col > kxres || kernel_row > kyres)
return -1;
/* correlation request outside data field */
if (col < 0 || row < 0 || col + wxres > xres || row + wyres > yres)
return -1;
if (kernel_col < 0 || kernel_row < 0 || kernel_col + wxres > kxres || kernel_row + wyres > kyres)
return -1;
score = 0;
data = data_field->data;
kdata = kernel_field->data;
wdata = weight_field->data;
for (i = 0; i < wyres; i++) {
drow = data + col + xres*(i + row);
krow = kdata + kernel_col + kxres*(i + kernel_row);
wrow = wdata + wxres*i;
for (j = 0; j < wxres; j++)
score += wrow[j] * (drow[j] - data_avg)*(krow[j] - kernel_avg);
}
score /= weightsum;
return score;
}
/**
* gwy_data_field_get_correlation_score:
* @data_field: A data field.
* @kernel_field: Kernel to correlate data field with.
* @col: Upper-left column position in the data field.
* @row: Upper-left row position in the data field.
* @kernel_col: Upper-left column position in kernel field.
* @kernel_row: Upper-left row position in kernel field.
* @kernel_width: Width of kernel field area.
* @kernel_height: Heigh of kernel field area.
*
* Calculates a correlation score in one point.
*
* Correlation window size is given by @kernel_col, @kernel_row, @kernel_width, @kernel_height, postion of the
* correlation window on data is given by @col, @row.
*
* If anything fails (data too close to boundary, etc.), function returns -1.0 (none correlation)..
*
* Returns: Correlation score (between -1.0 and 1.0). Value 1.0 denotes maximum correlation, -1.0 none correlation.
**/
gdouble
gwy_data_field_get_correlation_score(GwyDataField *data_field,
GwyDataField *kernel_field,
gint col,
gint row,
gint kernel_col,
gint kernel_row,
gint kernel_width,
gint kernel_height)
{
gint xres, yres, kxres, kyres, i, j;
gdouble rms1, rms2, avg1, avg2, sumpoints, score;
const gdouble *data, *kdata, *drow, *krow;
g_return_val_if_fail(GWY_IS_DATA_FIELD(data_field), -1.0);
g_return_val_if_fail(GWY_IS_DATA_FIELD(kernel_field), -1.0);
xres = data_field->xres;
yres = data_field->yres;
kxres = kernel_field->xres;
kyres = kernel_field->yres;
/* correlation request outside kernel */
if (kernel_col > kxres || kernel_row > kyres)
return -1;
/* correlation request outside data field */
if (col < 0 || row < 0 || col + kernel_width > xres || row + kernel_height > yres)
return -1;
if (kernel_col < 0 || kernel_row < 0 || kernel_col + kernel_width > kxres || kernel_row + kernel_height > kyres)
return -1;
avg1 = gwy_data_field_area_get_avg(data_field, NULL, col, row, kernel_width, kernel_height);
avg2 = gwy_data_field_area_get_avg(kernel_field, NULL, kernel_col, kernel_row, kernel_width, kernel_height);
rms1 = gwy_data_field_area_get_rms(data_field, NULL, col, row, kernel_width, kernel_height);
if (rms1 == 0.0)
return 0.0;
rms2 = gwy_data_field_area_get_rms(kernel_field, NULL, kernel_col, kernel_row, kernel_width, kernel_height);
if (rms2 == 0.0)
return 0.0;
score = 0;
sumpoints = kernel_width * kernel_height;
data = data_field->data;
kdata = kernel_field->data;
for (i = 0; i < kernel_height; i++) { /* row */
drow = data + col + xres*(i + row);
krow = kdata + kernel_col + kxres*(i + kernel_row);
for (j = 0; j < kernel_width; j++) { /* col */
score += (drow[j] - avg1) * (krow[j] - avg2);
}
}
score /= rms1 * rms2 * sumpoints;
return score;
}
static void
ensure_avg_and_rms(GwyDataField *field, GwyDataField *weight_field, gdouble weightsum,
gint col, gint row,
GwyDataField *avg_field, GwyDataField *rms_field,
gint8 *have_it)
{
gint i, j, k, xres = field->xres, kernel_width = weight_field->xres, kernel_height = weight_field->yres;
const gdouble *data = field->data, *wdata = weight_field->data, *drow, *wrow;
gdouble avg, rms;
k = row*xres + col;
if (have_it[k])
return;
avg = 0.0;
for (i = 0; i < kernel_height; i++) {
drow = data + col + xres*(i + row);
wrow = wdata + kernel_width*i;
for (j = 0; j < kernel_width; j++)
avg += drow[j] * wrow[j];
}
avg /= weightsum;
rms = 0.0;
for (i = 0; i < kernel_height; i++) {
drow = data + col + xres*(i + row);
wrow = wdata + kernel_width*i;
for (j = 0; j < kernel_width; j++)
rms += wrow[j]*(drow[j] - avg)*(drow[j] - avg);
}
rms /= weightsum;
rms = sqrt(rms);
avg_field->data[k] = avg;
rms_field->data[k] = rms;
have_it[k] = TRUE;
}
/**
* gwy_data_field_get_weighted_correlation_score:
* @data_field: A data field.
* @kernel_field: Kernel to correlate data field with.
* @weight_field: data field of same size as kernel window size
* @col: Upper-left column position in the data field.
* @row: Upper-left row position in the data field.
* @kernel_col: Upper-left column position in kernel field.
* @kernel_row: Upper-left row position in kernel field.
* @kernel_width: Width of kernel field area.
* @kernel_height: Heigh of kernel field area.
*
* Calculates a correlation score in one point using weights to center the used information to the center of kernel.
*
* Correlation window size is given by @kernel_col, @kernel_row, @kernel_width, @kernel_height, postion of the
* correlation window on data is given by @col, @row.
*
* If anything fails (data too close to boundary, etc.), function returns -1.0 (none correlation)..
*
* Returns: Correlation score (between -1.0 and 1.0). Value 1.0 denotes maximum correlation, -1.0 none correlation.
**/
gdouble
gwy_data_field_get_weighted_correlation_score(GwyDataField *data_field,
GwyDataField *kernel_field,
GwyDataField *weight_field,
gint col,
gint row,
gint kernel_col,
gint kernel_row,
gint kernel_width,
gint kernel_height)
{
gint xres, yres, kxres, kyres, wxres, i, j;
gdouble rms1, rms2, avg1, avg2, score, weightsum;
const gdouble *data, *kdata, *wdata, *drow, *krow, *wrow;
g_return_val_if_fail(GWY_IS_DATA_FIELD(data_field), -1.0);
g_return_val_if_fail(GWY_IS_DATA_FIELD(kernel_field), -1.0);
g_return_val_if_fail(GWY_IS_DATA_FIELD(weight_field), -1.0);
g_return_val_if_fail(kernel_width == weight_field->xres && kernel_height == weight_field->yres, -1.0);
xres = data_field->xres;
yres = data_field->yres;
kxres = kernel_field->xres;
kyres = kernel_field->yres;
wxres = weight_field->xres;
/* correlation request outside kernel */
g_return_val_if_fail(kernel_col >= 0 && kernel_row >= 0, -1.0);
g_return_val_if_fail(kernel_col + kernel_width <= kxres, -1.0);
g_return_val_if_fail(kernel_row + kernel_height <= kyres, -1.0);
g_return_val_if_fail(col >= 0 && row >= 0, -1.0);
g_return_val_if_fail(col + kernel_width <= xres, -1.0);
g_return_val_if_fail(row + kernel_height <= yres, -1.0);
data = data_field->data;
kdata = kernel_field->data;
wdata = weight_field->data;
weightsum = gwy_data_field_get_sum(weight_field);
avg1 = avg2 = 0.0;
for (i = 0; i < kernel_height; i++) { /* row */
drow = data + col + xres*(i + row);
krow = kdata + kernel_col + kxres*(i + kernel_row);
wrow = wdata + wxres*i;
for (j = 0; j < kernel_width; j++) { /* col */
avg1 += drow[j] * wrow[j];
avg2 += krow[j] * wrow[j];
}
}
avg1 /= weightsum;
avg2 /= weightsum;
rms1 = rms2 = 0.0;
for (i = 0; i < kernel_height; i++) { /* row */
drow = data + col + xres*(i + row);
krow = kdata + kernel_col + kxres*(i + kernel_row);
wrow = wdata + wxres*i;
for (j = 0; j < kernel_width; j++) { /* col */
rms1 += wrow[j]*(drow[j] - avg1)*(drow[j] - avg1);
rms2 += wrow[j]*(krow[j] - avg2)*(krow[j] - avg2);
}
}
rms1 /= weightsum;
rms2 /= weightsum;
rms1 = sqrt(rms1);
rms2 = sqrt(rms2);
if (rms1 == 0.0 || rms2 == 0.0)
return 0.0;
score = get_raw_weighted_correlation_score(data_field, kernel_field, weight_field,
col, row, kernel_col, kernel_row,
avg1, avg2, weightsum);
return score/(rms1*rms2);
}
/* Note: rms and avg must be identical and contain a copy of the original data
* field */
static void
calculate_normalization(GwyDataField *avg,
GwyDataField *rms,
gint kernel_width,
gint kernel_height)
{
GwyDataField *buffer;
gint xres, yres, i;
g_return_if_fail(rms->xres == avg->xres && rms->yres == avg->yres);
xres = avg->xres;
yres = avg->yres;
for (i = 0; i < xres*yres; i++)
rms->data[i] *= rms->data[i];
buffer = gwy_data_field_new_alike(avg, FALSE);
gwy_data_field_area_gather(rms, rms, buffer, kernel_width, kernel_height, TRUE, 0, 0, xres, yres);
gwy_data_field_area_gather(avg, avg, buffer, kernel_width, kernel_height, TRUE, 0, 0, xres, yres);
g_object_unref(buffer);
for (i = 0; i < xres*yres; i++) {
rms->data[i] -= avg->data[i]*avg->data[i];
rms->data[i] = sqrt(MAX(rms->data[i], 0.0));
}
}
/**
* gwy_data_field_correlate:
* @data_field: A data field.
* @kernel_field: Correlation kernel.
* @score: Data field to store correlation scores to.
* @method: Correlation score calculation method.
*
* Computes correlation score for all positions in a data field.
*
* Correlation score is compute for all points in data field @data_field and full size of correlation kernel
* @kernel_field.
*
* The points in @score correspond to centers of kernel. More precisely, the point ((@kxres-1)/2, (@kyres-1)/2) in
* @score corresponds to kernel field top left corner coincident with data field top left corner. Points outside the
* area where the kernel field fits into the data field completely are set to -1 for %GWY_CORRELATION_NORMAL.
*
* This function is mostly made obsolete by gwy_data_field_correlation_search() which offers, beside the plain
* FFT-based correlation, a method equivalent to %GWY_CORRELATION_NORMAL as well as several others, all computed
* efficiently using FFT.
**/
void
gwy_data_field_correlate(GwyDataField *data_field, GwyDataField *kernel_field,
GwyDataField *score, GwyCorrelationType method)
{
gint xres, yres, kxres, kyres, i, j, k;
GwyDataField *data_in_re, *data_out_re, *data_out_im;
GwyDataField *kernel_in_re, *kernel_out_re, *kernel_out_im;
gdouble norm;
g_return_if_fail(data_field != NULL && kernel_field != NULL);
xres = data_field->xres;
yres = data_field->yres;
kxres = kernel_field->xres;
kyres = kernel_field->yres;
switch (method) {
case GWY_CORRELATION_NORMAL:
gwy_data_field_fill(score, -1);
/* correlation request outside kernel */
if (kxres > xres || kyres > yres)
return;
{
GwyDataField *avg, *rms;
gdouble s, davg, drms, kavg, krms;
gint xoff, yoff;
/* The number of pixels the correlation kernel extends to the
* negative direction */
xoff = (kxres - 1)/2;
yoff = (kyres - 1)/2;
kavg = gwy_data_field_get_avg(kernel_field);
krms = gwy_data_field_get_rms(kernel_field);
avg = gwy_data_field_duplicate(data_field);
rms = gwy_data_field_duplicate(data_field);
calculate_normalization(avg, rms, kxres, kyres);
for (i = yoff; i + kyres - yoff <= yres; i++) {
for (j = xoff; j + kxres - xoff <= xres; j++) {
k = i*xres + j;
davg = avg->data[k];
drms = rms->data[k];
if (!krms || !drms) {
score->data[k] = 0.0;
continue;
}
s = get_raw_correlation_score(data_field, kernel_field, j - xoff, i - yoff, 0, 0,
kxres, kyres, davg, kavg);
score->data[k] = s/(drms*krms);
}
}
g_object_unref(avg);
g_object_unref(rms);
}
break;
case GWY_CORRELATION_FFT:
case GWY_CORRELATION_POC:
data_in_re = gwy_data_field_duplicate(data_field);
kernel_in_re = gwy_data_field_new_alike(data_field, TRUE);
gwy_data_field_area_copy(kernel_field, kernel_in_re, 0, 0, kxres, kyres, xres/2 - kxres/2, yres/2 - kyres/2);
gwy_data_field_resample(score, xres, yres, GWY_INTERPOLATION_NONE);
data_out_re = gwy_data_field_new_alike(data_in_re, TRUE);
data_out_im = gwy_data_field_new_alike(data_in_re, TRUE);
kernel_out_re = gwy_data_field_new_alike(data_in_re, TRUE);
kernel_out_im = gwy_data_field_new_alike(data_in_re, TRUE);
gwy_data_field_2dfft(data_in_re, NULL, data_out_re, data_out_im,
GWY_WINDOWING_NONE, GWY_TRANSFORM_DIRECTION_FORWARD, GWY_INTERPOLATION_BILINEAR,
FALSE, FALSE);
gwy_data_field_2dfft(kernel_in_re, NULL, kernel_out_re, kernel_out_im,
GWY_WINDOWING_NONE, GWY_TRANSFORM_DIRECTION_FORWARD, GWY_INTERPOLATION_BILINEAR,
FALSE, FALSE);
for (i = 0; i < xres*yres; i++) {
/*NOTE: now we construct new "complex field" from data and kernel fields, just to save memory*/
data_in_re->data[i] = (data_out_re->data[i]*kernel_out_re->data[i]
+ data_out_im->data[i]*kernel_out_im->data[i]);
kernel_in_re->data[i] = (-data_out_re->data[i]*kernel_out_im->data[i]
+ data_out_im->data[i]*kernel_out_re->data[i]);
if (method == GWY_CORRELATION_POC) {
norm = hypot(data_in_re->data[i], kernel_in_re->data[i]);
data_in_re->data[i] /= norm;
kernel_in_re->data[i] /= norm;
}
}
gwy_data_field_2dfft(data_in_re, kernel_in_re, score, data_out_im,
GWY_WINDOWING_NONE, GWY_TRANSFORM_DIRECTION_BACKWARD, GWY_INTERPOLATION_BILINEAR,
FALSE, FALSE);
gwy_data_field_2dfft_humanize(score);
/*TODO compute it and put to score field*/
g_object_unref(data_in_re);
g_object_unref(data_out_re);
g_object_unref(data_out_im);
g_object_unref(kernel_in_re);
g_object_unref(kernel_out_re);
g_object_unref(kernel_out_im);
break;
}
gwy_data_field_invalidate(score);
}
/**
* gwy_data_field_correlate_init:
* @data_field: A data field.
* @kernel_field: Kernel to correlate data field with.
* @score: Data field to store correlation scores to.
*
* Creates a new correlation iterator.
*
* This iterator reports its state as #GwyComputationStateType.
*
* This function is mostly made obsolete by gwy_data_field_correlation_search() which offers, beside the plain
* FFT-based correlation, a method equivalent to %GWY_CORRELATION_NORMAL as well as several others, all computed
* efficiently using FFT.
*
* Returns: A new correlation iterator.
**/
GwyComputationState*
gwy_data_field_correlate_init(GwyDataField *data_field,
GwyDataField *kernel_field,
GwyDataField *score)
{
GwyCorrelationState *state;
g_return_val_if_fail(GWY_IS_DATA_FIELD(data_field), NULL);
g_return_val_if_fail(GWY_IS_DATA_FIELD(kernel_field), NULL);
g_return_val_if_fail(kernel_field->xres <= data_field->xres && kernel_field->yres <= data_field->yres, NULL);
g_return_val_if_fail(GWY_IS_DATA_FIELD(score), NULL);
state = g_new0(GwyCorrelationState, 1);
state->cs.state = GWY_COMPUTATION_STATE_INIT;
state->cs.fraction = 0.0;
state->data_field = g_object_ref(data_field);
state->kernel_field = g_object_ref(kernel_field);
state->score = g_object_ref(score);
return (GwyComputationState*)state;
}
/**
* gwy_data_field_correlate_iteration:
* @state: Correlation iterator.
*
* Performs one iteration of correlation.
*
* An iterator can be created with gwy_data_field_correlate_init(). When iteration ends, either by finishing or being
* aborted, gwy_data_field_correlate_finalize() must be called to release allocated resources.
**/
void
gwy_data_field_correlate_iteration(GwyComputationState *cstate)
{
GwyCorrelationState *state = (GwyCorrelationState*)cstate;
gint xres, yres, kxres, kyres, k, xoff, yoff;
gdouble s, davg, drms;
xres = state->data_field->xres;
yres = state->data_field->yres;
kxres = state->kernel_field->xres;
kyres = state->kernel_field->yres;
xoff = (kxres - 1)/2;
yoff = (kyres - 1)/2;
if (state->cs.state == GWY_COMPUTATION_STATE_INIT) {
gwy_data_field_fill(state->score, -1);
state->kavg = gwy_data_field_get_avg(state->kernel_field);
state->krms = gwy_data_field_get_rms(state->kernel_field);
state->avg = gwy_data_field_duplicate(state->data_field);
state->rms = gwy_data_field_duplicate(state->data_field);
calculate_normalization(state->avg, state->rms, kxres, kyres);
state->cs.state = GWY_COMPUTATION_STATE_ITERATE;
state->cs.fraction = 0.0;
state->i = yoff;
state->j = xoff;
}
else if (state->cs.state == GWY_COMPUTATION_STATE_ITERATE) {
k = state->i*xres + state->j;
davg = state->avg->data[k];
drms = state->rms->data[k];
if (drms && state->krms) {
s = get_raw_correlation_score(state->data_field, state->kernel_field,
state->j - xoff, state->i - yoff, 0, 0, kxres, kyres,
davg, state->kavg);
state->score->data[k] = s/(drms*state->krms);
}
else
state->score->data[k] = 0.0;
state->j++;
if (state->j + kxres - xoff > xres) {
state->j = xoff;
state->i++;
if (state->i + kyres - yoff > yres)
state->cs.state = GWY_COMPUTATION_STATE_FINISHED;
}
state->cs.fraction += 1.0/((xres - kxres + 1)*(yres - kyres + 1));
state->cs.fraction = MIN(state->cs.fraction, 1.0);
}
else if (state->cs.state == GWY_COMPUTATION_STATE_FINISHED)
return;
gwy_data_field_invalidate(state->score);
}
/**
* gwy_data_field_correlate_finalize:
* @state: Correlation iterator.
*
* Destroys a correlation iterator, freeing all resources.
**/
void
gwy_data_field_correlate_finalize(GwyComputationState *cstate)
{
GwyCorrelationState *state = (GwyCorrelationState*)cstate;
GWY_OBJECT_UNREF(state->data_field);
GWY_OBJECT_UNREF(state->kernel_field);
GWY_OBJECT_UNREF(state->score);
GWY_OBJECT_UNREF(state->avg);
GWY_OBJECT_UNREF(state->rms);
g_free(state);
}
/**
* gwy_data_field_crosscorrelate:
* @data_field1: A data field.
* @data_field2: A data field.
* @x_dist: A data field to store x-distances to.
* @y_dist: A data field to store y-distances to.
* @score: Data field to store correlation scores to.
* @search_width: Search area width.
* @search_height: Search area height.
* @window_width: Correlation window width. This parameter is not actually used. Pass zero.
* @window_height: Correlation window height. This parameter is not actually used. Pass zero.
*
* Algorithm for matching two different images of the same object under changes.
*
* It does not use any special features for matching. It simply searches for all points (with their neighbourhood) of
* @data_field1 within @data_field2. Parameters @search_width and @search_height determine maimum area where to search
* for points. The area is cenetered in the @data_field2 at former position of points at @data_field1.
**/
void
gwy_data_field_crosscorrelate(GwyDataField *data_field1,
GwyDataField *data_field2, GwyDataField *x_dist,
GwyDataField *y_dist, GwyDataField *score,
gint search_width, gint search_height,
G_GNUC_UNUSED gint window_width,
G_GNUC_UNUSED gint window_height)
{
gint xres, yres, i, j, m, n;
gint imax, jmax;
gdouble cormax, lscore;
gdouble zm, zp, z0, ipos, jpos;
g_return_if_fail(data_field1 != NULL && data_field2 != NULL);
xres = data_field1->xres;
yres = data_field1->yres;
g_return_if_fail(xres == data_field2->xres && yres == data_field2->yres);
gwy_data_field_clear(x_dist);
gwy_data_field_clear(y_dist);
gwy_data_field_clear(score);
/*iterate over all the points */
for (i = search_width/2; i < xres - search_width/2; i++) {
for (j = search_height/2; j < yres - search_height/2; j++) {
/*iterate over search area in the second datafield */
imax = i;
jmax = j;
cormax = -1;
for (m = (i - search_width); m < i; m++) {
for (n = (j - search_height); n < j; n++) {
lscore = gwy_data_field_get_correlation_score(data_field1, data_field2,
i-search_width/2, j-search_height/2, m, n,
m + search_width, n + search_height);
/* add a little to score at exactly same point - to prevent problems on flat data */
if (m == (i - search_width/2) && n == (j - search_height/2))
lscore *= 1.0001;
if (cormax < lscore) {
cormax = lscore;
imax = m + search_width/2;
jmax = n + search_height/2;
}
}
}
score->data[i + xres * j] = cormax;
z0 = cormax;
zm = gwy_data_field_get_correlation_score(data_field1, data_field2,
i-search_width/2, j-search_height/2,
imax - search_width/2 - 1, jmax - search_height/2,
imax + search_width/2 - 1, jmax + search_height/2);
zp = gwy_data_field_get_correlation_score(data_field1, data_field2,
i-search_width/2, j-search_height/2,
imax - search_width/2 + 1, jmax - search_height/2,
imax + search_width/2 + 1, jmax + search_height/2);
ipos = imax + (zm - zp)/(zm + zp - 2*z0)/2.0;
x_dist->data[i + xres * j] = (ipos - i)*data_field1->xreal/data_field1->xres;
zm = gwy_data_field_get_correlation_score(data_field1, data_field2,
i-search_width/2, j-search_height/2,
imax - search_width/2, jmax - search_height/2 - 1,
imax + search_width/2, jmax + search_height/2 - 1);
zp = gwy_data_field_get_correlation_score(data_field1, data_field2,
i-search_width/2, j-search_height/2,
imax - search_width/2, jmax - search_height/2 + 1,
imax + search_width/2, jmax + search_height/2 + 1);
jpos = jmax + (zm - zp)/(zm + zp - 2*z0)/2.0;
y_dist->data[i + xres * j] = (jpos - j)*data_field1->yreal/data_field1->yres;
}
}
gwy_data_field_invalidate(score);
gwy_data_field_invalidate(x_dist);
gwy_data_field_invalidate(y_dist);
}
/**
* gwy_data_field_crosscorrelate_init:
* @data_field1: A data field.
* @data_field2: A data field.
* @x_dist: A data field to store x-distances to, or %NULL.
* @y_dist: A data field to store y-distances to, or %NULL.
* @score: Data field to store correlation scores to, or %NULL.
* @search_width: Search area width.
* @search_height: Search area height.
* @window_width: Correlation window width.
* @window_height: Correlation window height.
*
* Initializes a cross-correlation iterator.
*
* This iterator reports its state as #GwyComputationStateType.
*
* Returns: A new cross-correlation iterator.
**/
GwyComputationState*
gwy_data_field_crosscorrelate_init(GwyDataField *data_field1,
GwyDataField *data_field2,
GwyDataField *x_dist,
GwyDataField *y_dist,
GwyDataField *score,
gint search_width,
gint search_height,
gint window_width,
gint window_height)
{
GwyCrossCorrelationState *state;
gint xres, yres;
g_return_val_if_fail(GWY_IS_DATA_FIELD(data_field1), NULL);
g_return_val_if_fail(GWY_IS_DATA_FIELD(data_field2), NULL);
xres = data_field1->xres;
yres = data_field1->yres;
g_return_val_if_fail(data_field2->xres == xres && data_field2->yres == yres, NULL);
g_return_val_if_fail(!x_dist || GWY_IS_DATA_FIELD(x_dist), NULL);
g_return_val_if_fail(!y_dist || GWY_IS_DATA_FIELD(y_dist), NULL);
g_return_val_if_fail(!score || GWY_IS_DATA_FIELD(score), NULL);
state = g_new0(GwyCrossCorrelationState, 1);
state->cs.state = GWY_COMPUTATION_STATE_INIT;
state->cs.fraction = 0.0;
state->data_field1 = g_object_ref(data_field1);
state->data_field2 = g_object_ref(data_field2);
if (x_dist)
state->x_dist = g_object_ref(x_dist);
if (y_dist)
state->y_dist = g_object_ref(y_dist);
if (score)
state->score = g_object_ref(score);
state->avg1 = gwy_data_field_new_alike(data_field1, FALSE);
state->rms1 = gwy_data_field_new_alike(data_field1, FALSE);
state->avg2 = gwy_data_field_new_alike(data_field2, FALSE);
state->rms2 = gwy_data_field_new_alike(data_field2, FALSE);
state->have_aux1 = g_new0(gint8, xres*yres);
state->have_aux2 = g_new0(gint8, xres*yres);
state->search_width = search_width;
state->search_height = search_height;
state->window_width = window_width;
state->window_height = window_height;
state->weights = gwy_data_field_new(window_width, window_height, window_width, window_height, TRUE);
gwy_data_field_fill(state->weights, 1.0);
return (GwyComputationState*)state;
}
/**
* gwy_data_field_crosscorrelate_set_weights:
* @state: Cross-correlation iterator.
* @type: Set windowing type to be set as correlation weight, see #GwyWindowingType for details.
*
* Sets the weight function to be used within iterative cross-correlation algorithm.
*
* By default (not setting it), rectangular windowing is used. This function should be called before running first
* iteration to get consistent results.
**/
void
gwy_data_field_crosscorrelate_set_weights(GwyComputationState *state,
GwyWindowingType type)
{
GwyCrossCorrelationState *cstate = (GwyCrossCorrelationState*)state;
g_return_if_fail(cstate->cs.state == GWY_COMPUTATION_STATE_INIT);
gwy_data_field_fill(cstate->weights, 1.0);
gwy_data_field_fft_window(cstate->weights, type);
}
/**
* gwy_data_field_crosscorrelate_iteration:
* @state: Cross-correlation iterator.
*
* Performs one iteration of cross-correlation.
*
* Cross-correlation matches two different images of the same object under changes.
*
* It does not use any special features for matching. It simply searches for all points (with their neighbourhood) of
* @data_field1 within @data_field2. Parameters @search_width and @search_height determine maimum area where to search
* for points. The area is cenetered in the @data_field2 at former position of points at @data_field1.
*
* A cross-correlation iterator can be created with gwy_data_field_crosscorrelate_init(). When iteration ends, either
* by finishing or being aborted, gwy_data_field_crosscorrelate_finalize() must be called to release allocated
* resources.
**/
void
gwy_data_field_crosscorrelate_iteration(GwyComputationState *cstate)
{
GwyCrossCorrelationState *state = (GwyCrossCorrelationState*)cstate;
GwyDataField *field1 = state->data_field1, *field2 = state->data_field2, *weights = state->weights;
GwyDataField *avg1 = state->avg1, *rms1 = state->rms1, *avg2 = state->avg2, *rms2 = state->rms2;
gint xres, yres, m, n, m1, n1, m2, n2, k, col, row, colmax, rowmax;
gint winwidth = state->window_width, winheight = state->window_height;
gint searchwidth = state->search_width, searchheight = state->search_height;
gint mfrom, mend, nfrom, nend;
gdouble cormax, lscore, s, weightsum;
gdouble ipos, jpos, scores[9];
gdouble xmaximum, ymaximum;
xres = field1->xres;
yres = field1->yres;
if (state->cs.state == GWY_COMPUTATION_STATE_INIT) {
if (state->x_dist)
gwy_data_field_clear(state->x_dist);
if (state->y_dist)
gwy_data_field_clear(state->y_dist);
if (state->score)
gwy_data_field_clear(state->score);
gwy_clear(state->have_aux1, xres*yres);
gwy_clear(state->have_aux2, xres*yres);
state->cs.state = GWY_COMPUTATION_STATE_ITERATE;
state->cs.fraction = 0.0;
state->i = winwidth/2 + 1;
state->j = winheight/2 + 1;
return;
}
if (state->cs.state == GWY_COMPUTATION_STATE_FINISHED)
return;
g_assert(state->cs.state == GWY_COMPUTATION_STATE_ITERATE);
//iterate over search area in the second datafield
col = colmax = state->i;
row = rowmax = state->j;
mfrom = MAX(0, row - searchheight/2 - winheight/2);
mend = MIN(yres - winheight, row + searchheight - searchheight/2 - winheight/2);
nfrom = MAX(0, col - searchwidth/2 - winwidth/2);
nend = MIN(xres - winwidth, col + searchwidth - searchwidth/2 - winwidth/2);
weightsum = gwy_data_field_get_sum(weights);
cormax = -G_MAXDOUBLE;
m1 = row - winheight/2;
n1 = col - winwidth/2;
for (m = mfrom; m < mend; m++) {
m2 = m;
for (n = nfrom; n < nend; n++) {
n2 = n;
ensure_avg_and_rms(field1, weights, weightsum, n1, m1, avg1, rms1, state->have_aux1);
ensure_avg_and_rms(field2, weights, weightsum, n2, m2, avg2, rms2, state->have_aux2);
if (rms1->data[m1*xres + n1] == 0.0 || rms2->data[m2*xres + n2] == 0.0)
lscore = 0.0;
else {
lscore = get_raw_weighted_correlation_score(field1, field2, weights, n1, m1, n2, m2,
avg1->data[m1*xres + n1], avg2->data[m2*xres + n2],
weightsum);
lscore /= (rms1->data[m1*xres + n1] * rms2->data[m2*xres + n2]);
}
// add a little to score at exactly same point - to prevent problems on flat data
if (m == 0 && n == 0)
lscore *= 1.0001;
if (lscore > cormax) {
cormax = lscore;
colmax = n + winwidth/2;
rowmax = m + winheight/2;
}
}
}
if (state->score)
state->score->data[col + xres*row] = cormax;
if (state->x_dist || state->y_dist) {
k = 0;
for (m = -1; m <= 1; m++) {
m2 = CLAMP(rowmax - winheight/2 + m, 0, yres-1);
for (n = -1; n <= 1; n++) {
if (m == 0 && n == 0)
s = cormax;
else {
n2 = CLAMP(colmax - winwidth/2 + n, 0, xres-1);
ensure_avg_and_rms(field1, weights, weightsum, n1, m1, avg1, rms1, state->have_aux1);
ensure_avg_and_rms(field2, weights, weightsum, n2, m2, avg2, rms2, state->have_aux2);
if (rms1->data[m1*xres + n1] == 0.0 || rms2->data[m2*xres + n2] == 0.0)
s = 0.0;
else {
s = get_raw_weighted_correlation_score(field1, field2, weights, n1, m1, n2, m2,
avg1->data[m1*xres + n1], avg2->data[m2*xres + n2],
weightsum);
s /= (rms1->data[m1*xres + n1] * rms2->data[m2*xres + n2]);
}
}
scores[k++] = s;
}
}
if (gwy_math_refine_maximum(scores, &xmaximum, &ymaximum)) {
ipos = colmax + xmaximum;
jpos = rowmax + ymaximum;
}
else {
ipos = colmax;
jpos = rowmax;
}
state->x_dist->data[col + xres * row] = (ipos - col)*field1->xreal/xres;
state->y_dist->data[col + xres * row] = (jpos - row)*field1->yreal/yres;
}
state->i++;
if (state->i == (xres - winwidth/2 - 1)) {
state->i = winwidth/2 + 1;
state->j++;
if (state->j == (yres - winheight/2 - 1))
state->cs.state = GWY_COMPUTATION_STATE_FINISHED;
}
state->cs.fraction += 1.0/(xres - winwidth - 2)/(yres - winheight - 2);
state->cs.fraction = MIN(state->cs.fraction, 1.0);
if (state->score)
gwy_data_field_invalidate(state->score);
if (state->x_dist)
gwy_data_field_invalidate(state->x_dist);
if (state->y_dist)
gwy_data_field_invalidate(state->y_dist);
}
/**
* gwy_data_field_crosscorrelate_finalize:
* @state: Cross-correlation iterator.
*
* Destroys a cross-correlation iterator, freeing all resources.
**/
void
gwy_data_field_crosscorrelate_finalize(GwyComputationState *cstate)
{
GwyCrossCorrelationState *state = (GwyCrossCorrelationState*)cstate;
GWY_OBJECT_UNREF(state->data_field1);
GWY_OBJECT_UNREF(state->data_field2);
GWY_OBJECT_UNREF(state->x_dist);
GWY_OBJECT_UNREF(state->y_dist);
GWY_OBJECT_UNREF(state->score);
GWY_OBJECT_UNREF(state->weights);
GWY_OBJECT_UNREF(state->avg1);
GWY_OBJECT_UNREF(state->rms1);
GWY_OBJECT_UNREF(state->avg2);
GWY_OBJECT_UNREF(state->rms2);
g_free(state->have_aux1);
g_free(state->have_aux2);
g_free(state);
}
/* Assumption: sum of all weights is 1.0/wq. */
static void
characterise_kernel(GwyDataField *kernel, GwyDataField *weight, gdouble wq,
gdouble *pmu, gdouble *ps2, gdouble *psigma2)
{
gint xres = kernel->xres, yres = kernel->yres, n = xres*yres, i;
gdouble s = 0.0, s2 = 0.0;
const gdouble *k = kernel->data, *w = weight->data;
for (i = 0; i < n; i++)
s += w[i]*k[i];
s = s*wq;
for (i = 0; i < n; i++)
s2 += w[i]*(k[i] - s)*(k[i] - s);
s2 = s2*wq;
*pmu = s;
*psigma2 = s2;
*ps2 = s2 + s*s;
}
static void
ensure_defined_exterior(GwyExteriorType *exterior, gdouble *fill_value)
{
if (*exterior == GWY_EXTERIOR_UNDEFINED) {
g_warning("Do not use GWY_EXTERIOR_UNDEFINED for convolutions and correlations. "
"Fixing to zero-filled exterior.");
*exterior = GWY_EXTERIOR_FIXED_VALUE;
*fill_value = 0.0;
}
}
static inline void
square_values(gdouble *data, guint n)
{
while (n--) {
*data *= *data;
data++;
}
}
static void
extract_result(const gdouble *extdata, guint xsize, guint col, guint row,
gdouble *result, guint xres, guint yres,
gdouble q)
{
const gdouble *extrow;
gdouble *rrow;
guint i, j;
for (i = 0; i < yres; i++) {
extrow = extdata + (row + i)*xsize + col;
rrow = result + i*xres;
for (j = 0; j < xres; j++)
rrow[j] = q*extrow[j];
}
}
static gdouble
extract_sigma2_result(const gdouble *extdata, guint xsize, guint col, guint row,
gdouble *result, guint xres, guint yres,
gdouble q)
{
const gdouble *extrow;
gdouble *rrow;
guint i, j;
gdouble sum2 = 0.0;
for (i = 0; i < yres; i++) {
extrow = extdata + (row + i)*xsize + col;
rrow = result + i*xres;
for (j = 0; j < xres; j++)
sum2 += rrow[j] = q*extrow[j] - rrow[j]*rrow[j];
}
return sum2/(xres*yres);
}
/* Calculate a* b → a */
static void
complex_conj_multiply_with(fftw_complex *a, const fftw_complex *b, guint n)
{
guint i;
for (i = 0; i < n; i++) {
gdouble re = a[i][0]*b[i][0] + a[i][1]*b[i][1];
gdouble im = a[i][0]*b[i][1] - a[i][1]*b[i][0];
a[i][0] = re;
a[i][1] = im;
}
}
/* Calculate a b* → a */
static void
complex_multiply_with_conj(fftw_complex *a, const fftw_complex *b, guint n)
{
guint i;
for (i = 0; i < n; i++) {
gdouble re = a[i][0]*b[i][0] + a[i][1]*b[i][1];
gdouble im = -a[i][0]*b[i][1] + a[i][1]*b[i][0];
a[i][0] = re;
a[i][1] = im;
}
}
/* Calculate a* b → a, a → b */
static void
complex_conj_multiply_with_swap(fftw_complex *a, fftw_complex *b, guint n)
{
guint i;
for (i = 0; i < n; i++) {
gdouble re = a[i][0]*b[i][0] + a[i][1]*b[i][1];
gdouble im = a[i][0]*b[i][1] - a[i][1]*b[i][0];
b[i][0] = a[i][0];
b[i][1] = a[i][1];
a[i][0] = re;
a[i][1] = im;
}
}
static void
normalise_fourier_coeffs(fftw_complex *a, guint n, gdouble regcoeff)
{
gdouble s2 = 0.0;
guint i;
for (i = 0; i < n; i++) {
gdouble re = a[i][0], im = a[i][1];
s2 += re*re + im*im;
}
s2 = sqrt(s2/n)*regcoeff;
for (i = 0; i < n; i++) {
gdouble re = a[i][0], im = a[i][1];
gdouble h = sqrt(re*re + im*im) + s2;
a[i][0] /= h;
a[i][1] /= h;
}
}
/**
* gwy_data_field_correlation_search:
* @dfield: A data field to search.
* @kernel: Detail to find (kernel).
* @kernel_weight: Kernel weight, or %NULL. If given, its dimensions must match @kernel.
* @target: Data field to fill with the score. It will be resampled to match @dfield.
* @method: Method, determining the type of output to put into @target.
* @regcoeff: Regularisation coefficient, any positive number. Pass something like 0.1 if unsure. You can also pass
* zero, it means the same as %G_MINDOUBLE.
* @exterior: Exterior pixels handling.
* @fill_value: The value to use with %GWY_EXTERIOR_FIXED_VALUE exterior.
*
* Performs correlation search of a detail in a larger data field.
*
* There are two basic classes of methods: Covariance (products of kernel and data values are summed) and height
* difference (squared differences between kernel and data values are summed). For the second class, the sign of the
* output is inverted. So in both cases higher values mean better match. All methods are implemented efficiently
* using FFT.
*
* Usually you want to use %GWY_CORR_SEARCH_COVARIANCE or %GWY_CORR_SEARCH_HEIGHT_DIFF, in which the absolute data
* offsets play no role (only the differences).
*
* If the detail can also occur with different height scales, use %GWY_CORR_SEARCH_COVARIANCE_SCORE or
* %GWY_CORR_SEARCH_HEIGHT_DIFF_SCORE in which the local data variance is normalised. In this case @dfield regions
* with very small (or zero) variance can lead to odd results and spurious maxima. Use @regcoeff to suppress them:
* Score of image details is suppressed if their variance is @regcoeff times the mean local variance.
*
* If @kernel_weight is non-%NULL is allows specify masking/weighting of kernel. The simplest use is masking when
* searching for a non-rectangular detail. Fill @kernel_weight with 1s for important kernel pixels and with 0s for
* irrelevant pixels. However, you can use arbitrary non-negative weights.
*
* Since: 2.50
**/
void
gwy_data_field_correlation_search(GwyDataField *dfield,
GwyDataField *kernel,
GwyDataField *kernel_weight,
GwyDataField *target,
GwyCorrSearchType method,
gdouble regcoeff,
GwyExteriorType exterior,
gdouble fill_value)
{
GwyDataField *kappa;
guint xres, yres, kxres, kyres, xsize, ysize, cstride;
guint extend_left, extend_right, extend_up, extend_down;
guint i;
gdouble kmu, ks2, ksigma2, wq, S2;
gboolean is_normal, is_score;
fftw_complex *cbufA, *cbufB;
gdouble *extdata, *t, *u = NULL;
fftw_plan fplan, bplan;
RectExtendFunc extend_rect;
GwySIUnit *funit, *kunit;
g_return_if_fail(GWY_IS_DATA_FIELD(dfield));
xres = dfield->xres;
yres = dfield->yres;
g_return_if_fail(GWY_IS_DATA_FIELD(kernel));
g_return_if_fail(GWY_IS_DATA_FIELD(target));
kxres = kernel->xres;
kyres = kernel->yres;
if (kernel_weight) {
g_return_if_fail(GWY_IS_DATA_FIELD(kernel_weight));
g_return_if_fail(kernel_weight->xres == kxres);
g_return_if_fail(kernel_weight->yres == kyres);
}
ensure_defined_exterior(&exterior, &fill_value);
if (!(extend_rect = _gwy_get_rect_extend_func(exterior)))
return;
regcoeff = MAX(regcoeff, G_MINDOUBLE);
is_normal = (method == GWY_CORR_SEARCH_COVARIANCE || method == GWY_CORR_SEARCH_HEIGHT_DIFF);
is_score = (method == GWY_CORR_SEARCH_COVARIANCE_SCORE
|| method == GWY_CORR_SEARCH_HEIGHT_DIFF_SCORE
|| method == GWY_CORR_SEARCH_PHASE_ONLY_SCORE);
gwy_data_field_resample(target, xres, yres, GWY_INTERPOLATION_NONE);
target->xreal = dfield->xreal;
target->yreal = dfield->yreal;
target->xoff = dfield->xoff;
target->yoff = dfield->yoff;
_gwy_copy_si_unit(dfield->si_unit_xy, &target->si_unit_xy);
/* Scores are always unitless, even for HEIGHT_DIFF, because we normalise
* by (local) rms of the same field. */
if (is_score)
_gwy_copy_si_unit(NULL, &target->si_unit_z);
else if (method == GWY_CORR_SEARCH_COVARIANCE_RAW || method == GWY_CORR_SEARCH_COVARIANCE) {
funit = gwy_data_field_get_si_unit_z(dfield);
kunit = gwy_data_field_get_si_unit_z(kernel);
gwy_si_unit_multiply(funit, kunit, gwy_data_field_get_si_unit_z(target));
}
else if (method == GWY_CORR_SEARCH_HEIGHT_DIFF_RAW || method == GWY_CORR_SEARCH_HEIGHT_DIFF) {
funit = gwy_data_field_get_si_unit_z(dfield);
kunit = gwy_data_field_get_si_unit_z(kernel);
if (!gwy_si_unit_equal(funit, kunit))
g_warning("Image and kernel should be the same physical quantity for height-difference search.");
gwy_si_unit_power(funit, 2, gwy_data_field_get_si_unit_z(target));
}
else {
g_assert_not_reached();
}
/* Normalise ∑_i w[i] = 1.
*
* Calculate kernel characteristics (if necessary):
* μ = ∑_i w[i] * k[i]
* s² = ∑_i w[i] * k²[i]
* σ² = ∑_i w[i] (k[i] - μ)² = s² - μ²
*
* Create modified kernel:
* κ[i] = w[i] * k[i] for RAW
* w[i] * (k[i] - μ) for NORMAL or SCORE
*
* Define mean local variance:
* S² = regcoeff/N * ∑_j σ²[j]
*
* For COVARIANCE outputs we then have:
* G[j] = 1/u[j] ∑_i κ[i] z[j+i]
* where u²[j] = 1 for RAW and NORMAL
* (σ²[j] + S²) * σ² for SCORE
* and
* μ[j] = ∑_i w[i] * z[k+j]
* s²[j] = ∑_i w[i] * z²[k+j]
* σ²[j] = ∑_i w[i] * (z[k+j] - μ[j])² = s²[j] - μ²[j]
*
* Therefore, for RAW and NORMAL we only modify kernel from k[i] to κ[i]. For SCORE we need to calculate also
* s²[j] and μ²[j], i.e. two additional correlations with w[i]. Since the local averages would be calculated as
* correlations anyway and the modification of k[i] is amortised, we do not save anything substantial by treating
* NULL kernel_weight specially. Just create one when not given.
*
* For HEIGHT_DIFF outputs we then have:
* H[j] = 2G[j] - s²[j] - s² for RAW
* = 2G[j] - σ²[j] - σ² for NORMAL
* = 2G[j] - 2 + S²/(σ²[j] + S²) for SCORE
* where G[j] is always calculated according to the corresponding RAW/NORMAL/SCORE formula above.
*/
if (kernel_weight) {
if (gwy_data_field_get_min(kernel_weight) < 0.0) {
g_warning("Invalid negative values in kernel_weight.");
gwy_data_field_clear(target);
return;
}
else {
wq = gwy_data_field_get_sum(kernel_weight);
if (!wq) {
gwy_data_field_clear(target);
return;
}
g_object_ref(kernel_weight);
wq = 1.0/wq;
}
}
else {
kernel_weight = gwy_data_field_new_alike(kernel, FALSE);
gwy_data_field_fill(kernel_weight, 1.0/(kxres*kyres));
wq = 1.0;
}
/* Do not physically modify kernel_weight->data, multiply them with wq instead. */
characterise_kernel(kernel, kernel_weight, wq, &kmu, &ks2, &ksigma2);
gwy_debug("kmu %g, ks %g, ksigma %g (wq %g)", kmu, sqrt(ks2), sqrt(ksigma2), wq);
if (ksigma2 <= 0.0) {
gwy_data_field_clear(target);
g_object_unref(kernel_weight);
return;
}
kappa = gwy_data_field_duplicate(kernel);
if (is_normal || is_score)
gwy_data_field_add(kappa, -kmu);
gwy_data_field_multiply_fields(kappa, kappa, kernel_weight);
xsize = gwy_fft_find_nice_size(xres + kxres - 1);
ysize = gwy_fft_find_nice_size(yres + kyres - 1);
make_symmetrical_extension(xres, xsize, &extend_left, &extend_right);
make_symmetrical_extension(yres, ysize, &extend_up, &extend_down);
cstride = xsize/2 + 1;
cbufA = gwy_fftw_new_complex(cstride*ysize);
cbufB = gwy_fftw_new_complex(cstride*ysize);
extdata = gwy_fftw_new_real(xsize*ysize);
/* Ensure invalidate for gwy_data_field_normalize(). */
t = gwy_data_field_get_data(target);
fplan = gwy_fftw_plan_dft_r2c_2d(ysize, xsize, extdata, cbufB, FFTW_DESTROY_INPUT | FFTW_ESTIMATE);
bplan = gwy_fftw_plan_dft_c2r_2d(ysize, xsize, cbufB, extdata, FFTW_DESTROY_INPUT | FFTW_ESTIMATE);
extend_rect(dfield->data, xres, extdata, xsize,
0, 0, xres, yres, xres, yres,
extend_left, extend_right, extend_up, extend_down,
fill_value);
gwy_fftw_execute(fplan);
if (method == GWY_CORR_SEARCH_PHASE_ONLY_SCORE)
normalise_fourier_coeffs(cbufB, cstride*ysize, regcoeff);
gwy_assign(cbufA, cbufB, cstride*ysize);
extend_kernel_rect(kappa->data, kxres, kyres, extdata, xsize, ysize, xsize);
gwy_fftw_execute(fplan);
if (method == GWY_CORR_SEARCH_PHASE_ONLY_SCORE)
normalise_fourier_coeffs(cbufB, cstride*ysize, regcoeff);
complex_conj_multiply_with(cbufB, cbufA, cstride*ysize);
gwy_fftw_execute(bplan);
extract_result(extdata, xsize, extend_left, extend_up, t, xres, yres, wq/(xsize*ysize));
if (method == GWY_CORR_SEARCH_PHASE_ONLY_SCORE) {
/* The values scale weird for POC. There are obviously field and kernel size dependent factors, but
* that does not seem to capture it and give a nice predictable range. */
gwy_data_field_normalize(target);
}
else if (is_score || method == GWY_CORR_SEARCH_HEIGHT_DIFF) {
/* We need σ²[j] and, therefore, also μ[j]. */
extend_kernel_rect(kernel_weight->data, kxres, kyres, extdata, xsize, ysize, xsize);
gwy_fftw_execute(fplan);
complex_conj_multiply_with_swap(cbufB, cbufA, cstride*ysize);
gwy_fftw_execute(bplan);
u = g_new(gdouble, xres*yres);
extract_result(extdata, xsize, extend_left, extend_up, u, xres, yres, wq/(xsize*ysize));
extend_rect(dfield->data, xres, extdata, xsize,
0, 0, xres, yres, xres, yres,
extend_left, extend_right, extend_up, extend_down,
fill_value);
square_values(extdata, xsize*ysize);
gwy_fftw_execute(fplan);
complex_multiply_with_conj(cbufB, cbufA, cstride*ysize);
gwy_fftw_execute(bplan);
S2 = extract_sigma2_result(extdata, xsize, extend_left, extend_up, u, xres, yres, wq/(xsize*ysize));
gwy_debug("S %g", sqrt(S2));
S2 *= regcoeff;
if (is_score) {
for (i = 0; i < xres*yres; i++)
u[i] += S2;
for (i = 0; i < xres*yres; i++)
t[i] /= sqrt(u[i]*ksigma2);
}
if (method == GWY_CORR_SEARCH_HEIGHT_DIFF) {
for (i = 0; i < xres*yres; i++)
t[i] = 2.0*t[i] - u[i] - ksigma2;
}
if (method == GWY_CORR_SEARCH_HEIGHT_DIFF_SCORE) {
for (i = 0; i < xres*yres; i++)
t[i] = 2.0*t[i] - 2.0 + S2/u[i];
}
}
if (method == GWY_CORR_SEARCH_HEIGHT_DIFF_RAW) {
/* We only need s²[j]. */
extend_rect(dfield->data, xres, extdata, xsize,
0, 0, xres, yres, xres, yres,
extend_left, extend_right, extend_up, extend_down,
fill_value);
square_values(extdata, xsize*ysize);
gwy_fftw_execute(fplan);
gwy_assign(cbufA, cbufB, cstride*ysize);
extend_kernel_rect(kernel_weight->data, kxres, kyres, extdata, xsize, ysize, xsize);
gwy_fftw_execute(fplan);
complex_conj_multiply_with(cbufB, cbufA, cstride*ysize);
gwy_fftw_execute(bplan);
u = g_new(gdouble, xres*yres);
extract_result(extdata, xsize, extend_left, extend_up, u, xres, yres, wq/(xsize*ysize));
for (i = 0; i < xres*yres; i++)
t[i] = 2.0*t[i] - u[i] - ks2;
}
g_free(u);
fftw_free(cbufB);
fftw_free(cbufA);
fftw_free(extdata);
fftw_destroy_plan(bplan);
fftw_destroy_plan(fplan);
g_object_unref(kernel_weight);
g_object_unref(kappa);
gwy_data_field_invalidate(target);
}
/************************** Documentation ****************************/
/**
* SECTION:correlation
* @title: correlation
* @short_description: Correlation and crosscorrelation
**/
/* vim: set cin columns=120 tw=118 et ts=4 sw=4 cino=>1s,e0,n0,f0,{0,}0,^0,\:1s,=0,g1s,h0,t0,+1s,c3,(0,u0 : */
|