File: elliptic.c

package info (click to toggle)
gwyddion 2.67-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 54,152 kB
  • sloc: ansic: 412,023; python: 7,885; sh: 5,492; makefile: 4,957; xml: 3,954; cpp: 2,107; pascal: 418; perl: 154; ruby: 130
file content (672 lines) | stat: -rw-r--r-- 22,332 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
/*
 *  $Id: elliptic.c 24651 2022-03-08 14:50:06Z yeti-dn $
 *  Copyright (C) 2005-2022 David Necas (Yeti), Petr Klapetek, Chris Anderson.
 *  E-mail: yeti@gwyddion.net, klapetek@gwyddion.net, sidewinder.asu@gmail.com.
 *
 *  This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
 *  License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
 *  later version.
 *
 *  This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
 *  warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 *  details.
 *
 *  You should have received a copy of the GNU General Public License along with this program; if not, write to the
 *  Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <string.h>
#include <libgwyddion/gwymacros.h>
#include <libgwyddion/gwymath.h>
#include <libprocess/elliptic.h>
#include "gwyprocessinternal.h"

typedef enum {
    GWY_ELLIPTIC_COUNT,
    GWY_ELLIPTIC_FILL,
    GWY_ELLIPTIC_EXTRACT,
    GWY_ELLIPTIC_UNEXTRACT,
} GwyEllipticOperation;

static gint
elliptic_area_do(GwyDataField *data_field,
                 gint col, gint row,
                 gint width, gint height,
                 GwyEllipticOperation op, gdouble value, gdouble *buffer)
{
    gint i, j, jfrom, jto, xres, yres, count, ifrom, ito, n;
    gdouble a, b, s;
    gdouble *d;

    if (!width || !height)                    /* Compatibility */
        return 0;
    g_return_val_if_fail(GWY_IS_DATA_FIELD(data_field), 0);

    a = width/2.0;
    b = height/2.0;
    xres = data_field->xres;
    yres = data_field->yres;
    count = 0;

    ifrom = MAX(0, row);
    ito = MIN(row + height-1, yres-1);
    for (i = ifrom; i <= ito; i++) {
        d = data_field->data + i*xres;
        s = (i - row + 0.5)/b;
        s = s*(2.0 - s);
        if (s <= 0.0)
            continue;
        s = sqrt(s);
        jfrom = (gint)ceil(a*(1.0 - s) - 0.5) + col;
        jto = (gint)floor(a*(1.0 + s) - 0.5) + col;
        jfrom = MAX(jfrom, 0);
        jto = MIN(jto, xres-1);
        n = jto - jfrom + 1;
        g_return_val_if_fail(n >= 0, 0);
        d += jfrom;
        if (op == GWY_ELLIPTIC_FILL) {
            for (j = 0; j < n; j++)
                d[j] = value;
        }
        else if (op == GWY_ELLIPTIC_EXTRACT) {
            gwy_assign(buffer + count, d, n);
        }
        else if (op == GWY_ELLIPTIC_UNEXTRACT) {
            gwy_assign(d, buffer + count, n);
        }
        else {
            g_assert(op == GWY_ELLIPTIC_COUNT);
        }
        count += n;
    }

    return count;
}

/**
 * gwy_data_field_elliptic_area_fill:
 * @data_field: A data field.
 * @col: Upper-left bounding box column coordinate.
 * @row: Upper-left bounding box row coordinate.
 * @width: Bounding box width (number of columns).
 * @height: Bounding box height (number of rows).
 * @value: Value to be entered.
 *
 * Fills an elliptic region of a data field with given value.
 *
 * The elliptic region is defined by its bounding box.  In versions prior to 2.59 the bounding box must be completely
 * contained in the data field.  Since version 2.59 the ellipse can intersect the data field in any manner.
 *
 * Returns: The number of filled values.
 **/
gint
gwy_data_field_elliptic_area_fill(GwyDataField *data_field,
                                  gint col, gint row,
                                  gint width, gint height,
                                  gdouble value)
{
    gint count;

    count = elliptic_area_do(data_field, col, row, width, height, GWY_ELLIPTIC_FILL, value, NULL);
    if (count)
        gwy_data_field_invalidate(data_field);

    return count;
}

/**
 * gwy_data_field_elliptic_area_extract:
 * @data_field: A data field.
 * @col: Upper-left bounding box column coordinate.
 * @row: Upper-left bounding box row coordinate.
 * @width: Bounding box width (number of columns).
 * @height: Bounding box height (number of rows).
 * @data: Location to store the extracted values to.  Its size has to be sufficient to contain all the extracted
 *        values.  As a conservative estimate @width*@height can be used, or the size can be calculated with
 *        gwy_data_field_get_elliptic_area_size().
 *
 * Extracts values from an elliptic region of a data field.
 *
 * The elliptic region is defined by its bounding box.  In versions prior to 2.59 the bounding box must be completely
 * contained in the data field.  Since version 2.59 the ellipse can intersect the data field in any manner.
 *
 * Returns: The number of extracted values.
 **/
gint
gwy_data_field_elliptic_area_extract(GwyDataField *data_field,
                                     gint col, gint row,
                                     gint width, gint height,
                                     gdouble *data)
{
    return elliptic_area_do(data_field, col, row, width, height, GWY_ELLIPTIC_EXTRACT, 0.0, data);
}

/**
 * gwy_data_field_elliptic_area_unextract:
 * @data_field: A data field.
 * @col: Upper-left bounding box column coordinate.
 * @row: Upper-left bounding box row coordinate.
 * @width: Bounding box width (number of columns).
 * @height: Bounding box height (number of rows).
 * @data: The values to put back.  It must be the same array as in previous gwy_data_field_elliptic_area_extract().
 *
 * Puts values back to an elliptic region of a data field.
 *
 * The elliptic region is defined by its bounding box.  In versions prior to 2.59 the bounding box must be completely
 * contained in the data field.  Since version 2.59 the ellipse can intersect the data field in any manner.
 *
 * This method does the reverse of gwy_data_field_elliptic_area_extract() allowing to implement pixel-wise filters on
 * elliptic areas.  Values from @data are put back to the same positions gwy_data_field_elliptic_area_extract() took
 * them from.
 **/
void
gwy_data_field_elliptic_area_unextract(GwyDataField *data_field,
                                       gint col, gint row,
                                       gint width, gint height,
                                       const gdouble *data)
{
    gint count;

    count = elliptic_area_do(data_field, col, row, width, height, GWY_ELLIPTIC_UNEXTRACT, 0.0, (gdouble*)data);
    if (count)
        gwy_data_field_invalidate(data_field);
}

/**
 * gwy_data_field_get_elliptic_intersection:
 * @data_field: A data field.
 * @col: Upper-left bounding box column coordinate.
 * @row: Upper-left bounding box row coordinate.
 * @width: Bounding box width.
 * @height: Bounding box height.
 *
 * Calculates an upper bound of the number of samples in an elliptic region intersecting a data field.
 *
 * Returns: The number of pixels in an elliptic region with given rectangular bounds (or its upper bound).
 *
 * Since: 2.59
 **/
gint
gwy_data_field_get_elliptic_intersection(GwyDataField *data_field,
                                         gint col, gint row,
                                         gint width, gint height)
{
    return elliptic_area_do(data_field, col, row, width, height, GWY_ELLIPTIC_COUNT, 0.0, NULL);
}

/**
 * gwy_data_field_get_elliptic_area_size:
 * @width: Bounding box width.
 * @height: Bounding box height.
 *
 * Calculates an upper bound of the number of samples in an elliptic region.
 *
 * This function is useful for elliptic areas more or less contained within the data field.  Otherwise the returned
 * size can be overestimated a lot. Use gwy_data_field_get_elliptic_intersection() for elliptic areas intersecting the
 * data field in arbitrary manner.
 *
 * Returns: The number of pixels in an elliptic region with given rectangular bounds (or its upper bound).
 **/
gint
gwy_data_field_get_elliptic_area_size(gint width, gint height)
{
    gint i, from, to, count;
    gdouble a, b, s;

    if (width <= 0 || height <= 0)
        return 0;

    a = width/2.0;
    b = height/2.0;
    count = 0;

    for (i = 0; i < height; i++) {
        s = (i + 0.5)/b;
        s = s*(2.0 - s);
        if (s <= 0)
            continue;
        s = sqrt(s);
        from = ceil(a*(1.0 - s) - 0.5);
        to = floor(a*(1.0 + s) - 0.5);
        from = MAX(from, 0);
        to = MIN(to, width-1);
        count += MAX(to - from + 1, 0);
    }

    return count;
}

/**
 * gwy_data_field_local_maximum:
 * @dfield: A two-dimensional data field.
 * @x: Approximate maximum @x-location to be improved (in pixels).
 * @y: Approximate maximum @y-location to be improved (in pixels).
 * @ax: Horizontal search radius.
 * @ay: Vertical search radius.
 *
 * Searches an elliptical area in a data field for local maximum.
 *
 * The area may stick outside the data field.
 *
 * The function first finds the maximum within the ellipse, intersected with the data field and then tries subpixel
 * refinement.  The maximum is considered successfully located if it is inside the data field, i.e. not on edge, there
 * is no higher value in its 8-neighbourhood, and the subpixel refinement of its position succeeds (which usually
 * happens when the first two conditions are met, but not always).
 *
 * Even if the function returns %FALSE the values of @x and @y are reasonable, but they may not correspond to an
 * actual maximum.
 *
 * The radii can be zero.  A single pixel is then examined, but if it is indeed a local maximum, its position is
 * refined.
 *
 * Returns: %TRUE if the maximum was successfully located.  %FALSE when the location is problematic and should not be
 *          used.
 *
 * Since: 2.49
 **/
gboolean
gwy_data_field_local_maximum(GwyDataField *dfield,
                             gdouble *x, gdouble *y,
                             gint ax, gint ay)
{
    gint xj, yi, mi, mj, i, j, k;
    gint xres, yres, xfrom, xto, yfrom, yto;
    gdouble xx, yy, v, max;
    const gdouble *d;
    gdouble z[9];
    gboolean ok;

    g_return_val_if_fail(GWY_IS_DATA_FIELD(dfield), FALSE);
    g_return_val_if_fail(x, FALSE);
    g_return_val_if_fail(y, FALSE);

    xres = dfield->xres;
    yres = dfield->yres;
    xj = (gint)(*x);
    yi = (gint)(*y);
    ax = ABS(ax);
    ay = ABS(ay);

    gwy_debug("searching around: %g, %g (%d+-%d, %d+-%d)", *x, *y, xj, ax, yi, ay);
    mi = mj = 0;
    max = -G_MAXDOUBLE;
    yfrom = MAX(yi - ay, 0) - yi;
    yto = MIN(yi + ay, yres-1) - yi;
    for (i = yfrom; i <= yto; i++) {
        v = i/(ay + 0.5);
        k = (gint)floor((ax + 0.5)*sqrt(1.0 - v*v));
        xfrom = MAX(xj - k, 0) - xj;
        xto = MIN(xj + k, xres-1) - xj;
        d = dfield->data + (i + yi)*xres + (xj + xfrom);
        for (j = xfrom; j <= xto; j++, d++) {
            if (*d > max) {
                max = *d;
                mi = i;
                mj = j;
            }
        }
    }
    mj += xj;
    mi += yi;
    gwy_debug("pixel maximum at: %d, %d", mj, mi);

    /* No pixels found at all. */
    if (max == -G_MAXDOUBLE)
        return FALSE;

    /* Data field edge. */
    *x = mj;
    *y = mi;
    if (mi == 0 || mi == yres-1 || mj == 0 || mj == xres-1)
        return FALSE;

    d = dfield->data;
    k = mi*xres + mj;
    for (i = -1; i <= 1; i++) {
        for (j = -1; j <= 1; j++) {
            v = d[k + i*xres + j];
            /* Not an actual maximum. */
            if ((i || j) && v > max)
                return FALSE;
            z[3*(i + 1) + (j + 1)] = v;
        }
    }
    ok = gwy_math_refine_maximum_2d(z, &xx, &yy);
    gwy_debug("refinement by (%g, %g)", xx, yy);
    if (!ok)
        return FALSE;

    *x += xx;
    *y += yy;
    return TRUE;
}

/**
 * gwy_data_field_circular_area_fill:
 * @data_field: A data field.
 * @col: Row index of circular area centre.
 * @row: Column index of circular area centre.
 * @radius: Circular area radius (in pixels).  Any value is allowed, although to get areas that do not deviate from
 *          true circles after pixelization too much, half-integer values are recommended, integer values are NOT
 *          recommended.
 * @value: Value to be entered.
 *
 * Fills an elliptic region of a data field with given value.
 *
 * Returns: The number of filled values.
 **/
gint
gwy_data_field_circular_area_fill(GwyDataField *data_field,
                                  gint col, gint row,
                                  gdouble radius,
                                  gdouble value)
{
    gint i, j, r, r2, count, xres;
    gint ifrom, jfrom, ito, jto;
    gdouble *d, *drow;
    gdouble s;

    g_return_val_if_fail(GWY_IS_DATA_FIELD(data_field), 0);

    if (radius < 0.0)
        return 0;

    r2 = floor(radius*radius + 1e-12);
    r = floor(radius + 1e-12);
    xres = data_field->xres;
    d = data_field->data;
    count = 0;

    /* Clip */
    ifrom = MAX(row - r, 0) - row;
    ito = MIN(row + r, data_field->yres-1) - row;

    for (i = ifrom; i <= ito; i++) {
        s = sqrt(r2 - i*i);
        jfrom = ceil(-s);
        jto = floor(s);
        if (jfrom + col < 0)
            jfrom = -col;
        if (jto + col >= xres)
            jto = xres-1 - col;
        if (jfrom > jto)
            continue;

        drow = d + (row + i)*xres + col + jfrom;
        for (j = jto+1 - jfrom; j; j--, drow++)
            *drow = value;
        count += MAX(jto+1 - jfrom, 0);
    }

    gwy_data_field_invalidate(data_field);

    return count;
}

/**
 * gwy_data_field_circular_area_extract:
 * @data_field: A data field.
 * @col: Row index of circular area centre.
 * @row: Column index of circular area centre.
 * @radius: Circular area radius (in pixels).  See gwy_data_field_circular_area_extract_with_pos() for caveats.
 * @data: Location to store the extracted values to.  See gwy_data_field_circular_area_extract_with_pos().
 *
 * Extracts values from a circular region of a data field.
 *
 * Returns: The number of extracted values.  It can be zero when the inside of the circle does not intersect with the
 *          data field.
 **/
gint
gwy_data_field_circular_area_extract(GwyDataField *data_field,
                                     gint col, gint row,
                                     gdouble radius,
                                     gdouble *data)
{
    gint i, r, r2, count, xres;
    gint ifrom, jfrom, ito, jto;
    const gdouble *d;
    gdouble s;

    g_return_val_if_fail(GWY_IS_DATA_FIELD(data_field), 0);
    g_return_val_if_fail(data, 0);

    if (radius < 0.0)
        return 0;

    r2 = floor(radius*radius + 1e-12);
    r = floor(radius + 1e-12);
    xres = data_field->xres;
    d = data_field->data;
    count = 0;

    /* Clip */
    ifrom = MAX(row - r, 0) - row;
    ito = MIN(row + r, data_field->yres-1) - row;

    for (i = ifrom; i <= ito; i++) {
        s = sqrt(r2 - i*i);
        jfrom = ceil(-s);
        jto = floor(s);
        if (jfrom + col < 0)
            jfrom = -col;
        if (jto + col >= xres)
            jto = xres-1 - col;
        if (jto >= jfrom) {
            gwy_assign(data + count, d + (row + i)*xres + col + jfrom, jto - jfrom + 1);
            count += jto - jfrom + 1;
        }
    }

    return count;
}

/**
 * gwy_data_field_circular_area_extract_with_pos:
 * @data_field: A data field.
 * @col: Row index of circular area centre.
 * @row: Column index of circular area centre.
 * @radius: Circular area radius (in pixels).  Any value is allowed, although to get areas that do not deviate from
 *          true circles after pixelization too much, half-integer values are recommended, integer radii are NOT
 *          recommended.
 * @data: Location to store the extracted values to.  Its size has to be sufficient to contain all the extracted
 *        values.  As a conservative estimate (2*floor(@radius)+1)^2 can be used, or the size can be calculated with
 *        gwy_data_field_get_circular_area_size().
 * @xpos: Location to store relative column indices of values in @data to, the size requirements are the same as for
 *        @data.
 * @ypos: Location to store relative tow indices of values in @data to, the size requirements are the same as for
 *        @data.
 *
 * Extracts values with positions from a circular region of a data field.
 *
 * The row and column indices stored to @xpos and @ypos are relative to the area centre, i.e. to (@col, @row).  The
 * central pixel will therefore have 0 at the corresponding position in both @xpos and @ypos.
 *
 * Returns: The number of extracted values.  It can be zero when the inside of the circle does not intersect with the
 *          data field.
 *
 * Since: 2.2
 **/
gint
gwy_data_field_circular_area_extract_with_pos(GwyDataField *data_field,
                                              gint col, gint row,
                                              gdouble radius,
                                              gdouble *data,
                                              gint *xpos,
                                              gint *ypos)
{
    gint i, j, r, r2, count, xres;
    gint ifrom, jfrom, ito, jto;
    const gdouble *d;
    gdouble s;

    g_return_val_if_fail(GWY_IS_DATA_FIELD(data_field), 0);
    g_return_val_if_fail(data, 0);

    if (radius < 0.0)
        return 0;

    r2 = floor(radius*radius + 1e-12);
    r = floor(radius + 1e-12);
    xres = data_field->xres;
    d = data_field->data;
    count = 0;

    /* Clip */
    ifrom = MAX(row - r, 0) - row;
    ito = MIN(row + r, data_field->yres-1) - row;

    for (i = ifrom; i <= ito; i++) {
        s = sqrt(r2 - i*i);
        jfrom = ceil(-s);
        jto = floor(s);
        if (jfrom + col < 0)
            jfrom = -col;
        if (jto + col >= xres)
            jto = xres-1 - col;
        if (jto >= jfrom) {
            gwy_assign(data + count, d + (row + i)*xres + col + jfrom, jto - jfrom + 1);
            for (j = jfrom; j <= jto; j++) {
                xpos[count] = j;
                ypos[count] = i;
                count++;
            }
        }
    }

    return count;
}

/**
 * gwy_data_field_circular_area_unextract:
 * @data_field: A data field.
 * @col: Row index of circular area centre.
 * @row: Column index of circular area centre.
 * @radius: Circular area radius (in pixels).
 * @data: The values to put back.  It must be the same array as in previous gwy_data_field_circular_area_unextract().
 *
 * Puts values back to a circular region of a data field.
 *
 * This method does the reverse of gwy_data_field_circular_area_extract() allowing to implement pixel-wise filters on
 * circular areas.  Values from @data are put back to the same positions gwy_data_field_circular_area_extract() took
 * them from.
 **/
void
gwy_data_field_circular_area_unextract(GwyDataField *data_field,
                                       gint col, gint row,
                                       gdouble radius,
                                       const gdouble *data)
{
    gint i, r, r2, count, xres;
    gint ifrom, jfrom, ito, jto;
    gdouble *d;
    gdouble s;

    g_return_if_fail(GWY_IS_DATA_FIELD(data_field));
    g_return_if_fail(data);

    if (radius < 0.0)
        return;

    r2 = floor(radius*radius + 1e-12);
    r = floor(radius + 1e-12);
    xres = data_field->xres;
    d = data_field->data;
    count = 0;

    /* Clip */
    ifrom = MAX(row - r, 0) - row;
    ito = MIN(row + r, data_field->yres-1) - row;

    for (i = ifrom; i <= ito; i++) {
        s = sqrt(r2 - i*i);
        jfrom = ceil(-s);
        jto = floor(s);
        if (jfrom + col < 0)
            jfrom = -col;
        if (jto + col >= xres)
            jto = xres-1 - col;
        if (jto >= jfrom) {
            gwy_assign(d + (row + i)*xres + col + jfrom, data + count, jto - jfrom + 1);
            count += jto - jfrom + 1;
        }
    }

    gwy_data_field_invalidate(data_field);
}

/**
 * gwy_data_field_get_circular_area_size:
 * @radius: Circular area radius (in pixels).
 *
 * Calculates an upper bound of the number of samples in a circular region.
 *
 * Returns: The number of pixels in a circular region with given rectangular bounds (or its upper bound).
 **/
gint
gwy_data_field_get_circular_area_size(gdouble radius)
{
    gint i, r, r2, count, jto, jfrom;
    gdouble s;

    if (radius < 0.0)
        return 0;

    r2 = floor(radius*radius + 1e-12);
    r = floor(radius + 1e-12);
    count = 0;

    for (i = -r; i <= r; i++) {
        s = sqrt(r2 - i*i);
        jfrom = ceil(-s);
        jto = floor(s);
        count += jto - jfrom + 1;
    }

    return count;
}

/************************** Documentation ****************************/

/**
 * SECTION:elliptic
 * @title: elliptic
 * @short_description: Functions to work with elliptic areas
 *
 * Methods for extraction and putting back data from/to elliptic and circular areas can be used to implement
 * sample-wise operations, that is operations that depend only on sample value not on its position, on these areas:
 *
 * |[gdouble *data;
 * gint n, i;
 *
 * data = g_new(gdouble, width*height);
 * n = gwy_data_field_elliptic_area_extract(data_field,
 *                                          col, row, width, height,
 *                                          data);
 * for (i = 0; i < n; i++) {
 *    ... do something with data[i] ...
 * }
 * gwy_data_field_elliptic_area_unextract(data_field,
 *                                        col, row, width, height,
 *                                        data);]|
 *
 * Another possibility is to use #GwyDataLine methods on the extracted data (in practice one would use the same data
 * line repeatedly, of course):
 *
 * |[GwyDataLine *data_line;
 * gdouble *data;
 * gint n;
 *
 * n = gwy_data_field_get_elliptic_area_size(data_field, width, height);
 * data_line = gwy_data_line_new(n, 1.0, FALSE);
 * data = gwy_data_line_get_data(data_line);
 * gwy_data_field_elliptic_area_extract(data_field,
 *                                      col, row, width, height,
 *                                      data);
 * gwy_data_line_pixelwise_filter(data_line, ...);
 * gwy_data_field_elliptic_area_unextract(data_field,
 *                                        col, row, width, height,
 *                                        data);
 * g_object_unref(data_line);]|
 **/

/* vim: set cin columns=120 tw=118 et ts=4 sw=4 cino=>1s,e0,n0,f0,{0,}0,^0,\:1s,=0,g1s,h0,t0,+1s,c3,(0,u0 : */