1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
|
/*
* $Id: grains-values.c 25654 2023-09-12 15:02:12Z yeti-dn $
* Copyright (C) 2003-2018 David Necas (Yeti), Petr Klapetek.
* E-mail: yeti@gwyddion.net, klapetek@gwyddion.net.
*
* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with this program; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <string.h>
#include <libgwyddion/gwymacros.h>
#include <libgwyddion/gwymath.h>
#include <libprocess/linestats.h>
#include <libprocess/arithmetic.h>
#include <libprocess/correct.h>
#include <libprocess/grains.h>
#include "gwyprocessinternal.h"
#define ONE G_GUINT64_CONSTANT(1)
typedef struct {
gdouble xa;
gdouble ya;
gdouble xb;
gdouble yb;
gdouble r2;
} Edge;
typedef struct {
guint size;
guint len;
Edge *edges;
} EdgeQueue;
typedef struct {
gdouble x;
gdouble y;
gdouble R2;
guint size; /* For candidate sorting. */
} InscribedDisc;
enum { NDIRECTIONS = 12 };
static const gdouble shift_directions[NDIRECTIONS*2] = {
1.0, 0.0,
0.9914448613738104, 0.1305261922200516,
0.9659258262890683, 0.2588190451025207,
0.9238795325112867, 0.3826834323650898,
0.8660254037844387, 0.5,
0.7933533402912352, 0.6087614290087207,
0.7071067811865476, 0.7071067811865475,
0.6087614290087207, 0.7933533402912352,
0.5, 0.8660254037844386,
0.3826834323650898, 0.9238795325112867,
0.2588190451025207, 0.9659258262890683,
0.1305261922200517, 0.9914448613738104,
};
/**
* gwy_data_field_grains_get_distribution:
* @data_field: Data field used for marking. For some quantities its values are not used, but units and physical
* dimensions are always taken from it.
* @grain_field: Data field (mask) of marked grains. Note if you pass non-%NULL @grains all grain information is
* taken from it and @grain_field can be even %NULL then.
* @distribution: Data line to store grain distribution to.
* @grains: Grain numbers filled with gwy_data_field_number_grains() if you have it, or %NULL (the function then finds
* grain numbers itself which is not efficient for repeated use on the same grain field).
* @ngrains: The number of grains as returned by gwy_data_field_number_grains(). Ignored in @grains is %NULL.
* @quantity: The quantity to calculate.
* @nstats: The number of samples to take on the distribution function. If nonpositive, a suitable resolution is
* determined automatically.
*
* Computes distribution of requested grain characteristics.
*
* Puts number of grains vs. grain value data into @distribution, units, scales and offsets of @distribution are
* updated accordingly.
*
* Note the @i-th bin is [@i*@dx+@off,(@i+1)*@dx+@off] so the central value you probably want to use for plotting is
* (@i+0.5)*@dx+@off (where @dx is the @distribution data line pixel size, @off is its offset).
*
* Returns: A data line with the distribution: @distribution itself if it was not %NULL, otherwise a newly created
* #GwyDataLine caller must destroy. If there are no grains, %NULL is returned and @distribution is not
* changed.
**/
GwyDataLine*
gwy_data_field_grains_get_distribution(GwyDataField *data_field,
GwyDataField *grain_field,
GwyDataLine *distribution,
gint ngrains,
const gint *grains,
GwyGrainQuantity quantity,
gint nstats)
{
GwyDataLine *values;
gint *mygrains = NULL;
g_return_val_if_fail(GWY_IS_DATA_FIELD(data_field), FALSE);
g_return_val_if_fail(grains || GWY_IS_DATA_FIELD(grain_field), FALSE);
g_return_val_if_fail(!grain_field || (grain_field->xres == data_field->xres
&& grain_field->yres == data_field->yres), FALSE);
g_return_val_if_fail(!distribution || GWY_IS_DATA_LINE(distribution), FALSE);
/* Calculate raw statistics */
if (!grains) {
grains = mygrains = g_new0(gint, grain_field->xres*grain_field->yres);
ngrains = gwy_data_field_number_grains(grain_field, mygrains);
}
if (!ngrains) {
g_free(mygrains);
return NULL;
}
values = gwy_data_line_new(ngrains + 1, 1.0, FALSE);
gwy_data_field_grains_get_values(data_field, values->data, ngrains, grains, quantity);
g_free(mygrains);
values->res--;
values->data[0] = values->data[values->res];
if (!distribution)
distribution = gwy_data_line_new(1, 1.0, FALSE);
gwy_data_line_distribution(values, distribution, 0.0, 0.0, FALSE, nstats);
g_object_unref(values);
return distribution;
}
/* See stats.c for description, this function calculates twice `contribution of one corner' (the twice is to move
* multiplications from inner loops) */
static inline gdouble
square_area2w_1c(gdouble z1, gdouble z2, gdouble z4, gdouble c,
gdouble x, gdouble y)
{
return sqrt(1.0 + (z1 - z2)*(z1 - z2)/x + (z1 + z2 - c)*(z1 + z2 - c)/y)
+ sqrt(1.0 + (z1 - z4)*(z1 - z4)/y + (z1 + z4 - c)*(z1 + z4 - c)/x);
}
/**
* find_grain_convex_hull:
* @xres: The number of columns in @grains.
* @yres: The number of rows in @grains.
* @grains: Grain numbers filled with gwy_data_field_number_grains().
* @pos: Position of the top-left vertex of grain's convex hull.
* @vertices: Array to fill with vertices.
*
* Finds vertices of a grain's convex hull.
*
* The grain is identified by @pos which must lie in a grain.
*
* The positions are returned as indices to vertex grid. NB: The size of the grid is (@xres + 1)*(@yres + 1), not
* @xres*@yres.
*
* The method is a bit naive, some atan2() calculations could be easily saved.
**/
static void
find_grain_convex_hull(gint xres, gint yres,
const gint *grains,
gint pos,
GArray *vertices)
{
enum { RIGHT = 0, DOWN, LEFT, UP } newdir, dir;
const GridPoint *cur, *mid, *prev;
GridPoint v;
gdouble phi, phim;
gint initpos, gno;
g_return_if_fail(grains[pos]);
g_array_set_size(vertices, 0);
initpos = pos;
gno = grains[pos];
v.i = pos/xres;
v.j = pos % xres;
g_array_append_val(vertices, v);
newdir = RIGHT;
do {
dir = newdir;
if (dir == RIGHT) {
v.j++;
if (v.i > 0 && v.j < xres && grains[(v.i-1)*xres + v.j] == gno)
newdir = UP;
else if (v.j < xres && grains[v.i*xres + v.j] == gno)
newdir = RIGHT;
else
newdir = DOWN;
}
else if (dir == DOWN) {
v.i++;
if (v.j < xres && v.i < yres && grains[v.i*xres + v.j] == gno)
newdir = RIGHT;
else if (v.i < yres && grains[v.i*xres + v.j-1] == gno)
newdir = DOWN;
else
newdir = LEFT;
}
else if (dir == LEFT) {
v.j--;
if (v.i < yres && v.j > 0 && grains[v.i*xres + v.j-1] == gno)
newdir = DOWN;
else if (v.j > 0 && grains[(v.i-1)*xres + v.j-1] == gno)
newdir = LEFT;
else
newdir = UP;
}
else if (dir == UP) {
v.i--;
if (v.j > 0 && v.i > 0 && grains[(v.i-1)*xres + v.j-1] == gno)
newdir = LEFT;
else if (v.i > 0 && grains[(v.i-1)*xres + v.j] == gno)
newdir = UP;
else
newdir = RIGHT;
}
else {
g_assert_not_reached();
}
/* When we turn right, the previous point is a potential vertex, and it can also supersed previous vertices. */
if (newdir == (dir + 1) % 4) {
g_array_append_val(vertices, v);
while (vertices->len > 2) {
cur = &g_array_index(vertices, GridPoint, vertices->len-1);
mid = &g_array_index(vertices, GridPoint, vertices->len-2);
prev = &g_array_index(vertices, GridPoint, vertices->len-3);
phi = atan2(cur->i - mid->i, cur->j - mid->j);
phim = atan2(mid->i - prev->i, mid->j - prev->j);
phi = gwy_canonicalize_angle(phi - phim, TRUE, TRUE);
/* This should be fairly safe as (a) not real harm is done when we have an occasional extra vertex (b)
* the greatest possible angle is π/2 */
if (phi > 1e-12 && phi < G_PI)
break;
/* Get rid of mid, it is in a locally concave part */
g_array_index(vertices, GridPoint, vertices->len-2) = *cur;
g_array_set_size(vertices, vertices->len-1);
}
}
} while (v.i*xres + v.j != initpos);
/* The last point is duplicated first point */
g_array_set_size(vertices, vertices->len-1);
}
/**
* grain_maximum_bound:
* @vertices: Convex hull vertex list.
* @qx: Scale (pixel size) in x-direction.
* @qy: Scale (pixel size) in y-direction.
* @vx: Location to store vector x component to.
* @vy: Location to store vector y component to.
*
* Given a list of integer convex hull vertices, return the vector between the two most distance vertices.
*
* FIXME: This is a blatantly naive O(n^2) algorithm.
**/
static void
grain_maximum_bound(GArray *vertices,
gdouble qx, gdouble qy,
gdouble *vx, gdouble *vy)
{
const GridPoint *a, *x;
gdouble vm, v, dx, dy;
guint g1, g2;
vm = -G_MAXDOUBLE;
for (g1 = 0; g1 < vertices->len; g1++) {
a = &g_array_index(vertices, GridPoint, g1);
for (g2 = g1 + 1; g2 < vertices->len; g2++) {
x = &g_array_index(vertices, GridPoint, g2);
dx = qx*(x->j - a->j);
dy = qy*(x->i - a->i);
v = dx*dx + dy*dy;
if (v > vm) {
vm = v;
*vx = dx;
*vy = dy;
}
}
}
}
/**
* grain_minimum_bound:
* @vertices: Convex hull vertex list.
* @qx: Scale (pixel size) in x-direction.
* @qy: Scale (pixel size) in y-direction.
* @vx: Location to store vector x component to.
* @vy: Location to store vector y component to.
*
* Given a list of integer convex hull vertices, return the vector corresponding to the minimum linear projection.
*
* FIXME: This is a blatantly naive O(n^2) algorithm.
**/
static void
grain_minimum_bound(GArray *vertices,
gdouble qx, gdouble qy,
gdouble *vx, gdouble *vy)
{
const GridPoint *a, *b, *x;
gdouble vm, vm1, v, s, b2, bx, by, dx, dy, vx1, vy1;
guint g1, g1p, g2;
g_return_if_fail(vertices->len >= 3);
vm = G_MAXDOUBLE;
for (g1 = 0; g1 < vertices->len; g1++) {
a = &g_array_index(vertices, GridPoint, g1);
g1p = (g1 + 1) % vertices->len;
b = &g_array_index(vertices, GridPoint, g1p);
bx = qx*(b->j - a->j);
by = qy*(b->i - a->i);
b2 = bx*bx + by*by;
vm1 = vx1 = vy1 = -G_MAXDOUBLE;
for (g2 = 0; g2 < vertices->len; g2++) {
x = &g_array_index(vertices, GridPoint, g2);
dx = qx*(x->j - a->j);
dy = qy*(x->i - a->i);
s = (dx*bx + dy*by)/b2;
dx -= s*bx;
dy -= s*by;
v = dx*dx + dy*dy;
if (v > vm1) {
vm1 = v;
vx1 = dx;
vy1 = dy;
}
}
if (vm1 < vm) {
vm = vm1;
*vx = vx1;
*vy = vy1;
}
}
}
static gdouble
grain_convex_hull_area(GArray *vertices, gdouble dx, gdouble dy)
{
const GridPoint *a = &g_array_index(vertices, GridPoint, 0),
*b = &g_array_index(vertices, GridPoint, 1),
*c = &g_array_index(vertices, GridPoint, 2);
gdouble s = 0.0;
guint i;
g_return_val_if_fail(vertices->len >= 4, 0.0);
for (i = 2; i < vertices->len; i++) {
gdouble bx = b->j - a->j, by = b->i - a->i,
cx = c->j - a->j, cy = c->i - a->i;
s += 0.5*(bx*cy - by*cx);
b = c;
c++;
}
return dx*dy*s;
}
static void
grain_convex_hull_centre(GArray *vertices,
gdouble dx, gdouble dy,
gdouble *centrex, gdouble *centrey)
{
const GridPoint *a = &g_array_index(vertices, GridPoint, 0),
*b = &g_array_index(vertices, GridPoint, 1),
*c = &g_array_index(vertices, GridPoint, 2);
gdouble s = 0.0, xc = 0.0, yc = 0.0;
guint i;
g_return_if_fail(vertices->len >= 4);
for (i = 2; i < vertices->len; i++) {
gdouble bx = b->j - a->j, by = b->i - a->i, cx = c->j - a->j, cy = c->i - a->i;
gdouble s1 = bx*cy - by*cx;
xc += s1*(a->j + b->j + c->j);
yc += s1*(a->i + b->i + c->i);
s += s1;
b = c;
c++;
}
*centrex = xc*dx/(3.0*s);
*centrey = yc*dy/(3.0*s);
}
static gdouble
minimize_circle_radius(InscribedDisc *circle, GArray *vertices,
gdouble dx, gdouble dy)
{
const GridPoint *v = (const GridPoint*)vertices->data;
gdouble x = circle->x, y = circle->y, r2best = 0.0;
guint n = vertices->len;
while (n--) {
gdouble deltax = dx*v->j - x, deltay = dy*v->i - y;
gdouble r2 = deltax*deltax + deltay*deltay;
if (r2 > r2best)
r2best = r2;
v++;
}
return r2best;
}
static void
improve_circumscribed_circle(InscribedDisc *circle, GArray *vertices,
gdouble dx, gdouble dy)
{
gdouble eps = 1.0, improvement, qgeom = sqrt(dx*dy);
do {
InscribedDisc best = *circle;
guint i;
improvement = 0.0;
for (i = 0; i < NDIRECTIONS; i++) {
InscribedDisc cand;
gdouble sx = eps*qgeom*shift_directions[2*i], sy = eps*qgeom*shift_directions[2*i + 1];
cand.size = circle->size;
cand.x = circle->x + sx;
cand.y = circle->y + sy;
if ((cand.R2 = minimize_circle_radius(&cand, vertices, dx, dy)) < best.R2)
best = cand;
cand.x = circle->x - sy;
cand.y = circle->y + sx;
if ((cand.R2 = minimize_circle_radius(&cand, vertices, dx, dy)) < best.R2)
best = cand;
cand.x = circle->x - sx;
cand.y = circle->y - sy;
if ((cand.R2 = minimize_circle_radius(&cand, vertices, dx, dy)) < best.R2)
best = cand;
cand.x = circle->x + sy;
cand.y = circle->y - sx;
if ((cand.R2 = minimize_circle_radius(&cand, vertices, dx, dy)) < best.R2)
best = cand;
}
if (best.R2 < circle->R2) {
improvement = (best.R2 - circle->R2)/(dx*dy);
*circle = best;
}
else {
eps *= 0.5;
}
} while (eps > 1e-3 || improvement > 1e-3);
}
static guint*
grain_maybe_realloc(guint *grain, guint w, guint h, guint *grainsize)
{
if (w*h > *grainsize) {
g_free(grain);
*grainsize = w*h;
grain = g_new(guint, *grainsize);
}
return grain;
}
static guint*
extract_upsampled_square_pixel_grain(const guint *grains, guint xres, guint gno,
const gint *bbox,
guint *grain, guint *grainsize,
guint *widthup, guint *heightup,
gdouble dx, gdouble dy)
{
gint col = bbox[0], row = bbox[1], w = bbox[2], h = bbox[3];
guint w2 = 2*w, h2 = 2*h;
guint i, j;
/* Do not bother with nearly square pixels and upsample also 2×2. */
if (fabs(log(dy/dx)) < 0.05) {
grain = grain_maybe_realloc(grain, w2, h2, grainsize);
for (i = 0; i < h; i++) {
guint k2 = w2*(2*i);
guint k = (i + row)*xres + col;
for (j = 0; j < w; j++, k++, k2 += 2) {
guint v = (grains[k] == gno) ? G_MAXUINT : 0;
grain[k2] = v;
grain[k2+1] = v;
grain[k2 + w2] = v;
grain[k2 + w2+1] = v;
}
}
}
else if (dy < dx) {
/* Horizontal upsampling, precalculate index map to use in each row. */
guint *indices;
w2 = GWY_ROUND(dx/dy*w2);
grain = grain_maybe_realloc(grain, w2, h2, grainsize);
indices = (guint*)g_slice_alloc(w2*sizeof(guint));
for (j = 0; j < w2; j++) {
gint jj = (gint)floor(0.5*j*dy/dx);
indices[j] = CLAMP(jj, 0, (gint)w-1);
}
for (i = 0; i < h; i++) {
guint k = (i + row)*xres + col;
guint k2 = w2*(2*i);
for (j = 0; j < w2; j++) {
guint v = (grains[k + indices[j]] == gno) ? G_MAXUINT : 0;
grain[k2 + j] = v;
grain[k2 + w2 + j] = v;
}
}
g_slice_free1(w2*sizeof(guint), indices);
}
else {
/* Vertical upsampling, rows are 2× scaled copies but uneven. */
h2 = GWY_ROUND(dy/dx*h2);
grain = grain_maybe_realloc(grain, w2, h2, grainsize);
for (i = 0; i < h2; i++) {
guint k, k2 = i*w2;
gint ii = (gint)floor(0.5*i*dx/dy);
ii = CLAMP(ii, 0, (gint)h-1);
k = (ii + row)*xres + col;
for (j = 0; j < w; j++) {
guint v = (grains[k + j] == gno) ? G_MAXUINT : 0;
grain[k2 + 2*j] = v;
grain[k2 + 2*j + 1] = v;
}
}
}
*widthup = w2;
*heightup = h2;
return grain;
}
static gint
compare_candidates(gconstpointer a,
gconstpointer b)
{
const InscribedDisc *da = (const InscribedDisc*)a;
const InscribedDisc *db = (const InscribedDisc*)b;
if (da->size > db->size)
return -1;
if (da->size < db->size)
return 1;
if (da->R2 < db->R2)
return -1;
if (da->R2 > db->R2)
return 1;
return 0;
}
static void
find_disc_centre_candidates(GArray *candidates,
PixelQueue *inqueue,
const guint *grain,
guint width, guint height,
gdouble dx, gdouble dy,
gdouble centrex, gdouble centrey)
{
guint m;
g_array_set_size(candidates, 0);
for (m = 0; m < inqueue->len; m++) {
GridPoint *mpt = inqueue->points + m;
guint i = mpt->i, j = mpt->j, k = i*width + j, size = 8*grain[k], w;
InscribedDisc cand;
if (i && j && (w = grain[k - width-1]) != G_MAXUINT)
size += w;
if (i && (w = grain[k - width]) != G_MAXUINT)
size += 2*w;
if (i && j < width-1 && (w = grain[k - width+1]) != G_MAXUINT)
size += w;
if (j && (w = grain[k-1]) != G_MAXUINT)
size += 2*w;
if (j < width-1 && (w = grain[k+1]) != G_MAXUINT)
size += 2*w;
if (i < height-1 && j && (w = grain[k + width-1]) != G_MAXUINT)
size += w;
if (i < height-1 && (w = grain[k + width]) != G_MAXUINT)
size += 2*w;
if (i < height-1 && j < width-1 && (w = grain[k + width+1]) != G_MAXUINT)
size += w;
cand.x = (mpt->j + 0.5)*dx;
cand.y = (mpt->i + 0.5)*dy;
cand.size = size;
/* Use R2 temporarily for distance from the entire grain centre; this is only for sorting below. */
cand.R2 = ((cand.x - centrex)*(cand.x - centrex) + (cand.y - centrey)*(cand.y - centrey));
g_array_append_val(candidates, cand);
}
g_array_sort(candidates, &compare_candidates);
}
static inline void
edge_list_add(EdgeQueue *queue,
gdouble xa, gdouble ya,
gdouble xb, gdouble yb)
{
if (G_UNLIKELY(queue->len == queue->size)) {
queue->size = MAX(2*queue->size, 16);
queue->edges = g_renew(Edge, queue->edges, queue->size);
}
queue->edges[queue->len].xa = xa;
queue->edges[queue->len].ya = ya;
queue->edges[queue->len].xb = xb;
queue->edges[queue->len].yb = yb;
queue->len++;
}
static void
find_all_edges(EdgeQueue *edges,
const gint *grains, guint xres,
guint gno, const gint *bbox,
gdouble dx, gdouble dy)
{
guint col = bbox[0], row = bbox[1], w = bbox[2], h = bbox[3];
guint i, j;
guint *vertices;
edges->len = 0;
vertices = g_slice_alloc((w + 1)*sizeof(guint));
for (j = 0; j <= w; j++)
vertices[j] = G_MAXUINT;
for (i = 0; i <= h; i++) {
guint k = (i + row)*xres + col;
guint vertex = G_MAXUINT;
for (j = 0; j <= w; j++, k++) {
/*
* 1 2
* 3 4
*/
guint g0 = i && j && grains[k - xres - 1] == gno;
guint g1 = i && j < w && grains[k - xres] == gno;
guint g2 = i < h && j && grains[k - 1] == gno;
guint g3 = i < h && j < w && grains[k] == gno;
guint g = g0 | (g1 << 1) | (g2 << 2) | (g3 << 3);
if (g == 8 || g == 7) {
vertex = j;
vertices[j] = i;
}
else if (g == 2 || g == 13) {
edge_list_add(edges, dx*j, dy*vertices[j], dx*j, dy*i);
vertex = j;
vertices[j] = G_MAXUINT;
}
else if (g == 4 || g == 11) {
edge_list_add(edges, dx*vertex, dy*i, dx*j, dy*i);
vertex = G_MAXUINT;
vertices[j] = i;
}
else if (g == 1 || g == 14) {
edge_list_add(edges, dx*vertex, dy*i, dx*j, dy*i);
edge_list_add(edges, dx*j, dy*vertices[j], dx*j, dy*i);
vertex = G_MAXUINT;
vertices[j] = G_MAXUINT;
}
else if (g == 6 || g == 9) {
edge_list_add(edges, dx*vertex, dy*i, dx*j, dy*i);
edge_list_add(edges, dx*j, dy*vertices[j], dx*j, dy*i);
vertex = j;
vertices[j] = i;
}
}
}
g_slice_free1((w + 1)*sizeof(guint), vertices);
}
static gdouble
maximize_disc_radius(InscribedDisc *disc, Edge *edges, guint n)
{
gdouble x = disc->x, y = disc->y, r2best = HUGE_VAL;
while (n--) {
gdouble rax = edges->xa - x, ray = edges->ya - y,
rbx = edges->xb - x, rby = edges->yb - y,
deltax = edges->xb - edges->xa, deltay = edges->yb - edges->ya;
gdouble ca = -(deltax*rax + deltay*ray),
cb = deltax*rbx + deltay*rby;
if (ca <= 0.0)
edges->r2 = rax*rax + ray*ray;
else if (cb <= 0.0)
edges->r2 = rbx*rbx + rby*rby;
else {
gdouble tx = cb*rax + ca*rbx, ty = cb*ray + ca*rby, D = ca + cb;
edges->r2 = (tx*tx + ty*ty)/(D*D);
}
if (edges->r2 < r2best)
r2best = edges->r2;
edges++;
}
return r2best;
}
static guint
filter_relevant_edges(EdgeQueue *edges, gdouble r2, gdouble eps)
{
Edge *edge = edges->edges, *enear = edges->edges;
gdouble limit = sqrt(r2) + 4.0*eps + 0.5;
guint i;
limit *= limit;
for (i = edges->len; i; i--, edge++) {
if (edge->r2 <= limit) {
if (edge != enear)
GWY_SWAP(Edge, *edge, *enear);
enear++;
}
}
return enear - edges->edges;
}
static void
improve_inscribed_disc(InscribedDisc *disc, EdgeQueue *edges, guint dist)
{
gdouble eps = 0.5 + 0.25*(dist > 4) + 0.25*(dist > 16), improvement;
guint nsuccessiveimprovements = 0;
do {
InscribedDisc best;
guint i, nr;
disc->R2 = maximize_disc_radius(disc, edges->edges, edges->len);
eps = MIN(eps, 0.5*sqrt(disc->R2));
best = *disc;
nr = filter_relevant_edges(edges, best.R2, eps);
improvement = 0.0;
for (i = 0; i < NDIRECTIONS; i++) {
InscribedDisc cand;
gdouble sx = eps*shift_directions[2*i], sy = eps*shift_directions[2*i + 1];
cand.size = disc->size;
cand.x = disc->x + sx;
cand.y = disc->y + sy;
if ((cand.R2 = maximize_disc_radius(&cand, edges->edges, nr)) > best.R2)
best = cand;
cand.x = disc->x - sy;
cand.y = disc->y + sx;
if ((cand.R2 = maximize_disc_radius(&cand, edges->edges, nr)) > best.R2)
best = cand;
cand.x = disc->x - sx;
cand.y = disc->y - sy;
if ((cand.R2 = maximize_disc_radius(&cand, edges->edges, nr)) > best.R2)
best = cand;
cand.x = disc->x + sy;
cand.y = disc->y - sx;
if ((cand.R2 = maximize_disc_radius(&cand, edges->edges, nr)) > best.R2)
best = cand;
}
if (best.R2 > disc->R2) {
improvement = sqrt(best.R2) - sqrt(disc->R2);
*disc = best;
/* This scales up *each* successive improvement after 3 so eps can grow very quickly. */
if (nsuccessiveimprovements++ > 2)
eps *= 1.5;
}
else {
eps *= 0.5;
nsuccessiveimprovements = 0;
}
} while (eps > 1e-3 || improvement > 1e-3);
}
/**
* gwy_data_field_grains_get_values:
* @data_field: Data field used for marking. For some quantities its values are not used, but its dimensions
* determine the dimensions of @grains.
* @values: Array of size @ngrains+1 to put grain values to. It can be %NULL to allocate and return a new array.
* @grains: Grain numbers filled with gwy_data_field_number_grains().
* @ngrains: The number of grains as returned by gwy_data_field_number_grains().
* @quantity: The quantity to calculate.
*
* Calculates characteristics of grains.
*
* This is a bit low-level function, see also gwy_data_field_grains_get_distribution().
*
* The array @values will be filled with the requested grain value for each individual grain (0th item of @values
* which does not correspond to any grain will be overwritten with an arbitrary value and should be ignored).
*
* The grain numbers serve as indices in @values. Therefore as long as the same @grains is used, the same position in
* @values corresponds to the same particular grain. This enables one for instance to calculate grain sizes and grain
* heights and then correlate them.
*
* Returns: @values itself if it was not %NULL, otherwise a newly allocated array that caller has to free.
**/
gdouble*
gwy_data_field_grains_get_values(GwyDataField *data_field,
gdouble *values,
gint ngrains,
const gint *grains,
GwyGrainQuantity quantity)
{
gdouble *allvalues[1];
if (!values)
values = g_new(gdouble, ngrains + 1);
allvalues[0] = values;
gwy_data_field_grains_get_quantities(data_field, allvalues, &quantity, 1, ngrains, grains);
return values;
}
static gdouble*
ensure_buffer(GwyGrainQuantity quantity,
gdouble **quantity_data,
guint ngrains,
gdouble fillvalue,
GList **buffers)
{
gdouble *buf, *b;
guint gno;
if (quantity_data[quantity]) {
buf = quantity_data[quantity];
if (!fillvalue)
gwy_clear(buf, ngrains + 1);
}
else {
buf = fillvalue ? g_new(gdouble, ngrains + 1) : g_new0(gdouble, ngrains + 1);
*buffers = g_list_prepend(*buffers, buf);
}
if (fillvalue) {
for (gno = ngrains+1, b = buf; gno; gno--)
*(b++) = fillvalue;
}
return buf;
}
/* Note all coordinates are pixel-wise, not real. For linear and quadratic, the origin is always the grain centre. */
static void
calculate_grain_aux(GwyDataField *data_field,
const gint *grains,
guint ngrains,
gint *sizes, gint *boundpos,
gdouble *min, gdouble *max,
gdouble *xvalue, gdouble *yvalue, gdouble *zvalue,
gdouble *linear, gdouble *quadratic)
{
guint xres, yres, i, j, k, n, gno, nn;
gdouble z;
const gdouble *d;
const gint *g;
gdouble *t;
xres = data_field->xres;
yres = data_field->yres;
nn = xres*yres;
if (sizes) {
for (k = nn, g = grains; k; k--, g++) {
gno = *g;
sizes[gno]++;
}
}
if (boundpos) {
for (k = 0, g = grains; k < nn; k++, g++) {
gno = *g;
if (boundpos[gno] == -1)
boundpos[gno] = k;
}
}
if (min) {
for (k = nn, g = grains, d = data_field->data; k; k--, g++, d++) {
gno = *g;
z = *d;
if (z < min[gno])
min[gno] = z;
}
}
if (max) {
for (k = nn, g = grains, d = data_field->data; k; k--, g++, d++) {
gno = *g;
z = *d;
if (z > max[gno])
max[gno] = z;
}
}
if (zvalue) {
g_assert(sizes);
for (k = nn, g = grains, d = data_field->data; k; k--, g++, d++) {
gno = *g;
z = *d;
zvalue[gno] += z;
}
for (gno = 0; gno <= ngrains; gno++) {
n = sizes[gno];
zvalue[gno] /= n;
}
}
if (xvalue) {
g_assert(sizes);
g = grains;
for (i = 0; i < yres; i++) {
for (j = 0; j < xres; j++, g++) {
gno = *g;
xvalue[gno] += j;
}
}
for (gno = 0; gno <= ngrains; gno++) {
n = sizes[gno];
xvalue[gno] /= n;
}
}
if (yvalue) {
g_assert(sizes);
g = grains;
for (i = 0; i < yres; i++) {
for (j = 0; j < xres; j++, g++) {
gno = *g;
yvalue[gno] += i;
}
}
for (gno = 0; gno <= ngrains; gno++) {
n = sizes[gno];
yvalue[gno] /= n;
}
}
if (linear) {
g_assert(xvalue && yvalue);
g = grains;
d = data_field->data;
for (i = 0; i < yres; i++) {
for (j = 0; j < xres; j++, g++, d++) {
gdouble x, y;
gno = *g;
t = linear + 5*gno;
x = j - xvalue[gno];
y = i - yvalue[gno];
z = *d;
*(t++) += x*x;
*(t++) += x*y;
*(t++) += y*y;
*(t++) += x*z;
*t += y*z;
}
}
}
if (quadratic) {
g_assert(xvalue && yvalue);
g = grains;
d = data_field->data;
for (i = 0; i < yres; i++) {
for (j = 0; j < xres; j++, g++, d++) {
gdouble x, y, xx, yy, xy;
gno = *g;
t = quadratic + 12*gno;
x = j - xvalue[gno];
y = i - yvalue[gno];
xx = x*x;
xy = x*y;
yy = y*y;
z = *d;
*(t++) += xx*x;
*(t++) += xx*y;
*(t++) += x*yy;
*(t++) += y*yy;
*(t++) += xx*xx;
*(t++) += xx*xy;
*(t++) += xx*yy;
*(t++) += xy*yy;
*(t++) += yy*yy;
*(t++) += xx*z;
*(t++) += xy*z;
*t += yy*z;
}
}
}
}
static void
integrate_grain_volume0(const gdouble *d, const gint *grains,
gint xres, gint yres,
gdouble *volume, guint ngrains,
gdouble pixelarea)
{
gint i, j, gno;
gwy_clear(volume, ngrains + 1);
for (i = 0; i < yres; i++) {
for (j = 0; j < xres; j++) {
gint ix, ipx, imx, jp, jm;
gdouble v;
ix = i*xres;
if (!(gno = grains[ix + j]))
continue;
imx = (i > 0) ? ix-xres : ix;
ipx = (i < yres-1) ? ix+xres : ix;
jm = (j > 0) ? j-1 : j;
jp = (j < xres-1) ? j+1 : j;
v = (52.0*d[ix + j] + 10.0*(d[imx + j] + d[ix + jm] + d[ix + jp] + d[ipx + j])
+ (d[imx + jm] + d[imx + jp] + d[ipx + jm] + d[ipx + jp]));
volume[gno] += v;
}
}
for (gno = 0; gno <= ngrains; gno++)
volume[gno] *= pixelarea/96.0;
}
/* This returns the signed distance of the median line (in coordinate system rotate to idir direction). */
static gdouble
median_cut_for_direction(guint idir,
guint gno, const guint *csizes, const GwyXY *coords,
gdouble *rotcoords)
{
gdouble ca, sa;
guint k, kfrom, kto;
guint ranks[2];
gdouble mm[2];
if (idir < NDIRECTIONS) {
ca = shift_directions[2*idir];
sa = shift_directions[2*idir + 1];
}
else {
sa = -shift_directions[2*(idir - NDIRECTIONS)];
ca = shift_directions[2*(idir - NDIRECTIONS) + 1];
}
kfrom = 4*csizes[gno - 1];
kto = 4*csizes[gno];
for (k = kfrom; k < kto; k++)
rotcoords[k - kfrom] = sa*coords[k].x - ca*coords[k].y;
/* The length is a multiple of 4, i.e. even. So we calculate the average of the two median candidates. */
ranks[0] = (kto - kfrom)/2 - 1;
ranks[1] = (kto - kfrom)/2;
gwy_math_kth_ranks(kto - kfrom, rotcoords, 2, ranks, mm);
return 0.5*(mm[0] + mm[1]);
}
static gdouble
martin_intersection_length(guint idir, gdouble med,
gdouble qh, gdouble qv, gdouble qdiag,
guint gno, const gint *bbox,
const gdouble *xvalue, const gdouble *yvalue,
gint xres, const gint *grains)
{
gint jmin, jmax, imin, imax, i, j, len;
gdouble ca, sa, xc, yc, deltax, deltay, x, y;
bbox += 4*gno;
jmin = bbox[0];
imin = bbox[1];
jmax = bbox[0] + bbox[2]-1;
imax = bbox[1] + bbox[3]-1;
if (idir < NDIRECTIONS) {
ca = shift_directions[2*idir];
sa = shift_directions[2*idir + 1];
}
else {
sa = -shift_directions[2*(idir - NDIRECTIONS)];
ca = shift_directions[2*(idir - NDIRECTIONS) + 1];
}
/* Start from a point on the median line and go along it to either direction until we get outside of the bounding
* box. The +0.5 actually belongs to the floor() function but we can do it here. */
xc = xvalue[gno] + med*sa/qh + 0.5;
yc = yvalue[gno] - med*ca/qv + 0.5;
/* The step in real coordinates is qdiag. */
deltax = 0.061803398875*qdiag * ca/qh;
deltay = 0.061803398875*qdiag * sa/qv;
len = 0;
x = xc;
y = yc;
while (TRUE) {
j = (gint)floor(x);
if (j < jmin || j > jmax)
break;
i = (gint)floor(y);
if (i < imin || i > imax)
break;
if (grains[i*xres + j] == gno)
len++;
x += deltax;
y += deltay;
}
x = xc - deltax;
y = yc - deltay;
while (TRUE) {
j = (gint)floor(x);
if (j < jmin || j > jmax)
break;
i = (gint)floor(y);
if (i < imin || i > imax)
break;
if (grains[i*xres + j] == gno)
len++;
x -= deltax;
y -= deltay;
}
return len*0.061803398875*qdiag;
}
static gdouble
refine_diameter_direction(const gdouble *diams, guint k, gboolean is_max)
{
gint sign = is_max ? 1 : -1;
gdouble mvals[3];
gdouble x, phi;
mvals[0] = sign*diams[(k + 2*NDIRECTIONS-1) % (2*NDIRECTIONS)];
mvals[1] = sign*diams[k];
mvals[2] = sign*diams[(k + 1) % (2*NDIRECTIONS)];
gwy_math_refine_maximum_1d(mvals, &x);
phi = gwy_canonicalize_angle(G_PI - 0.5*G_PI*(k + x)/NDIRECTIONS, FALSE, FALSE);
return phi;
}
/**
* gwy_data_field_grains_get_quantities:
* @data_field: Data field used for marking. For some quantities its values are not used, but its dimensions
* determine the dimensions of @grains.
* @values: Array of @nquantities pointers to blocks of length @ngrains+1 to put the calculated grain values to. Each
* block corresponds to one requested quantity. %NULL can be passed to allocate and return a new array.
* @quantities: Array of @nquantities items that specify the requested #GwyGrainQuantity to put to corresponding items
* in @values. Quantities can repeat.
* @nquantities: The number of requested different grain values.
* @grains: Grain numbers filled with gwy_data_field_number_grains().
* @ngrains: The number of grains as returned by gwy_data_field_number_grains().
*
* Calculates multiple characteristics of grains simultaneously.
*
* See gwy_data_field_grains_get_values() for some discussion. This function is more efficient if several grain
* quantities need to be calculated since gwy_data_field_grains_get_values() can do lot of repeated work in such case.
*
* Returns: @values itself if it was not %NULL, otherwise a newly allocated array that caller has to free with
* g_free(), including the contained arrays.
*
* Since: 2.22
**/
gdouble**
gwy_data_field_grains_get_quantities(GwyDataField *data_field,
gdouble **values,
const GwyGrainQuantity *quantities,
guint nquantities,
guint ngrains,
const gint *grains)
{
/* The number of built-in quantities. */
enum { NQ = 49 };
enum {
NEED_SIZES = 1 << 0,
NEED_BOUNDPOS = 1 << 1,
NEED_MIN = 1 << 2,
NEED_MAX = 1 << 3,
NEED_XVALUE = (1 << 4) | NEED_SIZES,
NEED_YVALUE = (1 << 5) | NEED_SIZES,
NEED_CENTRE = NEED_XVALUE | NEED_YVALUE,
NEED_ZVALUE = (1 << 6) | NEED_SIZES,
NEED_LINEAR = (1 << 7) | NEED_ZVALUE | NEED_CENTRE,
NEED_QUADRATIC = (1 << 8) | NEED_LINEAR,
NEED_BBOX = (1 << 9),
INVALID = G_MAXUINT
};
static const guint need_aux[NQ] = {
NEED_SIZES, /* projected area */
NEED_SIZES, /* equiv square side */
NEED_SIZES, /* equiv disc radius */
0, /* surface area */
NEED_MAX, /* maximum */
NEED_MIN, /* minimum */
NEED_ZVALUE, /* mean */
NEED_SIZES, /* median */
NEED_SIZES, /* pixel area */
NEED_MIN | NEED_MAX, /* half-height area */
0, /* flat boundary length */
NEED_ZVALUE, /* rms */
NEED_BOUNDPOS, /* min bounding size */
NEED_BOUNDPOS, /* min bounding direction */
NEED_BOUNDPOS, /* max bounding size */
NEED_BOUNDPOS, /* max bounding direction */
NEED_XVALUE, /* centre x */
NEED_YVALUE, /* centre y */
0, /* volume, 0-based */
NEED_MIN | NEED_SIZES, /* volume, min-based */
NEED_BBOX | NEED_SIZES, /* volume, Laplace-based */
INVALID,
INVALID,
NEED_LINEAR, /* slope theta */
NEED_LINEAR, /* slope phi */
0, /* boundary minimum */
0, /* boundary maximum */
NEED_QUADRATIC, /* curvature centre x */
NEED_QUADRATIC, /* curvature centre y */
NEED_QUADRATIC, /* curvature centre z */
NEED_QUADRATIC, /* curvature invrad 1 */
NEED_QUADRATIC, /* curvature invrad 2 */
NEED_QUADRATIC, /* curvature direction 1 */
NEED_QUADRATIC, /* curvature direction 2 */
NEED_CENTRE | NEED_BBOX, /* inscribed disc radius */
NEED_CENTRE | NEED_BBOX, /* inscribed disc centre x */
NEED_CENTRE | NEED_BBOX, /* inscribed disc centre y */
NEED_BOUNDPOS, /* convex hull area */
NEED_BOUNDPOS, /* circumcircle radius */
NEED_BOUNDPOS, /* circumcircle centre x */
NEED_BOUNDPOS, /* circumcircle centre y */
NEED_CENTRE, /* mean radius */
NEED_LINEAR, /* equiv ellipse major axis */
NEED_LINEAR, /* equiv ellipse minor axis */
NEED_LINEAR, /* equiv ellipse major axis angle */
NEED_CENTRE | NEED_BBOX, /* minimum Martin diameter */
NEED_CENTRE | NEED_BBOX, /* minimum Martin diameter angle */
NEED_CENTRE | NEED_BBOX, /* maximum Martin diameter */
NEED_CENTRE | NEED_BBOX, /* maximum Martin diameter angle */
};
gdouble *quantity_data[NQ];
gboolean seen[NQ];
GList *l, *buffers = NULL;
guint *sizes = NULL;
gint *boundpos = NULL, *bbox = NULL;
gdouble *xvalue = NULL, *yvalue = NULL, *zvalue = NULL, *min = NULL, *max = NULL, *linear = NULL, *quadratic = NULL;
const gdouble *d;
gdouble *p;
gdouble qh, qv, qarea, qdiag, qgeom;
guint xres, yres, i, j, k, nn, gno;
g_return_val_if_fail(GWY_IS_DATA_FIELD(data_field), NULL);
g_return_val_if_fail(grains, NULL);
if (!nquantities)
return values;
g_return_val_if_fail(quantities, NULL);
if (!values) {
values = g_new(gdouble*, nquantities);
for (i = 0; i < nquantities; i++)
values[i] = g_new0(gdouble, ngrains + 1);
}
else {
for (i = 0; i < nquantities; i++)
gwy_clear(values[i], ngrains + 1);
}
xres = data_field->xres;
yres = data_field->yres;
nn = xres*yres;
gwy_debug("ngrains: %d, nn: %d", ngrains, nn);
/* Figure out which quantities are requested. */
gwy_clear(quantity_data, NQ);
for (i = 0; i < nquantities; i++) {
GwyGrainQuantity quantity = quantities[i];
if ((guint)quantity >= NQ || need_aux[quantity] == INVALID) {
g_warning("Invalid built-in grain quantity number %u.", quantity);
continue;
}
/* Take the first if the same quantity is requested multiple times. We will deal with this later. */
if (!quantity_data[quantity])
quantity_data[quantity] = values[i];
}
/* Figure out the auxiliary data to calculate. Do this after we gathered all quantities as some auxiliary data
* are in fact quantities too. */
for (i = 0; i < nquantities; i++) {
GwyGrainQuantity quantity = quantities[i];
guint need;
if ((guint)quantity >= NQ || need_aux[quantity] == INVALID)
continue;
need = need_aux[quantity];
/* Integer data */
if ((need & NEED_SIZES) && !sizes) {
sizes = g_new0(guint, ngrains + 1);
buffers = g_list_prepend(buffers, sizes);
}
if ((need & NEED_BOUNDPOS) && !boundpos) {
boundpos = g_new(gint, ngrains + 1);
buffers = g_list_prepend(buffers, boundpos);
for (gno = 0; gno <= ngrains; gno++)
boundpos[gno] = -1;
}
if ((need & NEED_BBOX) && !bbox) {
bbox = gwy_data_field_get_grain_bounding_boxes(data_field, ngrains, grains, NULL);
buffers = g_list_prepend(buffers, bbox);
}
/* Floating point data that coincide with some quantity. An array is allocated only if the corresponding
* quantity is not requested. Otherwise we use the supplied array. */
if (need & NEED_MIN)
min = ensure_buffer(GWY_GRAIN_VALUE_MINIMUM, quantity_data, ngrains, G_MAXDOUBLE, &buffers);
if (need & NEED_MAX)
max = ensure_buffer(GWY_GRAIN_VALUE_MAXIMUM, quantity_data, ngrains, -G_MAXDOUBLE, &buffers);
if (need & NEED_XVALUE)
xvalue = ensure_buffer(GWY_GRAIN_VALUE_CENTER_X, quantity_data, ngrains, 0.0, &buffers);
if (need & NEED_YVALUE)
yvalue = ensure_buffer(GWY_GRAIN_VALUE_CENTER_Y, quantity_data, ngrains, 0.0, &buffers);
if (need & NEED_ZVALUE)
zvalue = ensure_buffer(GWY_GRAIN_VALUE_MEAN, quantity_data, ngrains, 0.0, &buffers);
/* Complex floating point data */
if ((need & NEED_LINEAR) && !linear) {
linear = g_new0(gdouble, 5*(ngrains + 1));
buffers = g_list_prepend(buffers, linear);
}
if ((need & NEED_QUADRATIC) && !quadratic) {
quadratic = g_new0(gdouble, 12*(ngrains + 1));
buffers = g_list_prepend(buffers, quadratic);
}
}
/* Calculate auxiliary quantities (in pixel lateral coordinates) */
calculate_grain_aux(data_field, grains, ngrains, sizes, boundpos,
min, max, xvalue, yvalue, zvalue, linear, quadratic);
d = data_field->data;
qh = gwy_data_field_get_dx(data_field);
qv = gwy_data_field_get_dy(data_field);
qdiag = hypot(qh, qv);
qarea = qh*qv;
qgeom = sqrt(qarea);
/* Calculate specific requested quantities */
if ((p = quantity_data[GWY_GRAIN_VALUE_PIXEL_AREA])) {
for (gno = 0; gno <= ngrains; gno++)
p[gno] = sizes[gno];
}
if ((p = quantity_data[GWY_GRAIN_VALUE_PROJECTED_AREA])) {
for (gno = 0; gno <= ngrains; gno++)
p[gno] = qarea*sizes[gno];
}
if ((p = quantity_data[GWY_GRAIN_VALUE_EQUIV_SQUARE_SIDE])) {
for (gno = 0; gno <= ngrains; gno++)
p[gno] = sqrt(qarea*sizes[gno]);
}
if ((p = quantity_data[GWY_GRAIN_VALUE_EQUIV_DISC_RADIUS])) {
for (gno = 0; gno <= ngrains; gno++)
p[gno] = sqrt(qarea/G_PI*sizes[gno]);
}
if ((p = quantity_data[GWY_GRAIN_VALUE_SURFACE_AREA])) {
gdouble qh2 = qh*qh, qv2 = qv*qv;
gwy_clear(p, ngrains + 1);
/* Every contribution is calculated twice -- for each pixel (vertex) participating to a particular triangle */
for (i = 0; i < yres; i++) {
for (j = 0; j < xres; j++) {
gint ix, ipx, imx, jp, jm;
gdouble c;
ix = i*xres;
if (!(gno = grains[ix + j]))
continue;
imx = (i > 0) ? ix-xres : ix;
ipx = (i < yres-1) ? ix+xres : ix;
jm = (j > 0) ? j-1 : j;
jp = (j < xres-1) ? j+1 : j;
c = (d[ix + j] + d[ix + jm] + d[imx + jm] + d[imx + j])/2.0;
p[gno] += square_area2w_1c(d[ix + j], d[ix + jm], d[imx + j], c, qh2, qv2);
c = (d[ix + j] + d[ix + jp] + d[imx + jp] + d[imx + j])/2.0;
p[gno] += square_area2w_1c(d[ix + j], d[ix + jp], d[imx + j], c, qh2, qv2);
c = (d[ix + j] + d[ix + jm] + d[ipx + jm] + d[ipx + j])/2.0;
p[gno] += square_area2w_1c(d[ix + j], d[ix + jm], d[ipx + j], c, qh2, qv2);
c = (d[ix + j] + d[ix + jp] + d[ipx + jp] + d[ipx + j])/2.0;
p[gno] += square_area2w_1c(d[ix + j], d[ix + jp], d[ipx + j], c, qh2, qv2);
}
}
for (gno = 0; gno <= ngrains; gno++)
p[gno] *= qarea/8.0;
}
/* GWY_GRAIN_VALUE_MINIMUM is calculated directly. */
/* GWY_GRAIN_VALUE_MAXIMUM is calculated directly. */
/* GWY_GRAIN_VALUE_MEAN is calculated directly. */
if ((p = quantity_data[GWY_GRAIN_VALUE_MEDIAN])) {
guint *csizes = g_new0(guint, ngrains + 1);
guint *pos = g_new0(guint, ngrains + 1);
gdouble *tmp;
/* Find cumulative sizes (we care only about grains, ignore the outside-grains area) */
csizes[0] = 0;
csizes[1] = sizes[1];
for (gno = 2; gno <= ngrains; gno++)
csizes[gno] = sizes[gno] + csizes[gno-1];
tmp = g_new(gdouble, csizes[ngrains]);
/* Find where each grain starts in tmp sorted by grain # */
for (gno = 1; gno <= ngrains; gno++)
pos[gno] = csizes[gno-1];
/* Sort values by grain # to tmp */
for (k = 0; k < nn; k++) {
if ((gno = grains[k])) {
tmp[pos[gno]] = d[k];
pos[gno]++;
}
}
/* Find medians of each block */
for (gno = 1; gno <= ngrains; gno++)
p[gno] = gwy_math_median(csizes[gno] - csizes[gno-1], tmp + csizes[gno-1]);
/* Finalize */
g_free(csizes);
g_free(pos);
g_free(tmp);
}
if ((p = quantity_data[GWY_GRAIN_VALUE_HALF_HEIGHT_AREA])) {
gdouble *zhalf;
guint *zhsizes;
/* Find the grain half-heights, i.e. (z_min + z_max)/2, first */
zhalf = g_new(gdouble, ngrains + 1);
for (gno = 0; gno <= ngrains; gno++)
zhalf[gno] = (min[gno] + max[gno])/2.0;
/* Calculate the area of pixels above the half-heights */
zhsizes = g_new0(gint, ngrains + 1);
for (k = 0; k < nn; k++) {
gno = grains[k];
if (d[k] >= zhalf[gno])
zhsizes[gno]++;
}
for (gno = 0; gno <= ngrains; gno++)
p[gno] = qarea*zhsizes[gno];
/* Finalize */
g_free(zhalf);
g_free(zhsizes);
}
if ((p = quantity_data[GWY_GRAIN_VALUE_RMS])) {
gwy_clear(p, ngrains + 1);
for (k = 0; k < nn; k++) {
gno = grains[k];
p[gno] += (d[k] - zvalue[gno])*(d[k] - zvalue[gno]);
}
for (gno = 0; gno <= ngrains; gno++)
p[gno] = sqrt(p[gno]/sizes[gno]);
}
if ((p = quantity_data[GWY_GRAIN_VALUE_FLAT_BOUNDARY_LENGTH])) {
gwy_clear(p, ngrains + 1);
/* Note the cycles go to xres and yres inclusive as we calculate the boundary, not pixel interiors. */
for (i = 0; i <= yres; i++) {
for (j = 0; j <= xres; j++) {
gint g1, g2, g3, g4, f;
/* Hope compiler will optimize this mess... */
g1 = (i > 0 && j > 0) ? grains[i*xres + j - xres - 1] : 0;
g2 = (i > 0 && j < xres) ? grains[i*xres + j - xres] : 0;
g3 = (i < yres && j > 0) ? grains[i*xres + j - 1] : 0;
g4 = (i < yres && j < xres) ? grains[i*xres + j] : 0;
f = (g1 > 0) + (g2 > 0) + (g3 > 0) + (g4 > 0);
if (f == 0 || f == 4)
continue;
if (f == 1 || f == 3) {
/* Try to avoid too many if-thens by using the fact they are all either zero or an identical value
*/
p[g1 | g2 | g3 | g4] += qdiag/2.0;
}
else if (g1 && g4) {
/* This works for both g1 == g4 and g1 != g4 */
p[g1] += qdiag/2.0;
p[g4] += qdiag/2.0;
}
else if (g2 && g3) {
/* This works for both g2 == g3 and g2 != g3 */
p[g2] += qdiag/2.0;
p[g3] += qdiag/2.0;
}
else if (g1 == g2)
p[g1 | g3] += qh;
else if (g1 == g3)
p[g1 | g2] += qv;
else {
g_assert_not_reached();
}
}
}
}
if (quantity_data[GWY_GRAIN_VALUE_BOUNDARY_MINIMUM] || quantity_data[GWY_GRAIN_VALUE_BOUNDARY_MAXIMUM]) {
gdouble *pmin = quantity_data[GWY_GRAIN_VALUE_BOUNDARY_MINIMUM];
gdouble *pmax = quantity_data[GWY_GRAIN_VALUE_BOUNDARY_MAXIMUM];
if (pmin) {
for (gno = 0; gno <= ngrains; gno++)
pmin[gno] = G_MAXDOUBLE;
}
if (pmax) {
for (gno = 0; gno <= ngrains; gno++)
pmax[gno] = -G_MAXDOUBLE;
}
for (i = 0; i < yres; i++) {
for (j = 0; j < xres; j++) {
gdouble z;
/* Processing of the none-grain boundary is waste of time. */
if (!(gno = grains[i*xres + j]))
continue;
if (i && j && i < yres-1 && j < xres - 1
&& grains[(i - 1)*xres + j] == gno
&& grains[i*xres + j - 1] == gno
&& grains[i*xres + j + 1] == gno
&& grains[(i + 1)*xres + j] == gno)
continue;
z = d[i*xres + j];
if (pmin && z < pmin[gno])
pmin[gno] = z;
if (pmax && z > pmax[gno])
pmax[gno] = z;
}
}
}
if (quantity_data[GWY_GRAIN_VALUE_MINIMUM_BOUND_SIZE]
|| quantity_data[GWY_GRAIN_VALUE_MINIMUM_BOUND_ANGLE]
|| quantity_data[GWY_GRAIN_VALUE_MAXIMUM_BOUND_SIZE]
|| quantity_data[GWY_GRAIN_VALUE_MAXIMUM_BOUND_ANGLE]
|| quantity_data[GWY_GRAIN_VALUE_CONVEX_HULL_AREA]
|| quantity_data[GWY_GRAIN_VALUE_CIRCUMCIRCLE_R]
|| quantity_data[GWY_GRAIN_VALUE_CIRCUMCIRCLE_X]
|| quantity_data[GWY_GRAIN_VALUE_CIRCUMCIRCLE_Y]) {
gdouble *psmin = quantity_data[GWY_GRAIN_VALUE_MINIMUM_BOUND_SIZE];
gdouble *psmax = quantity_data[GWY_GRAIN_VALUE_MAXIMUM_BOUND_SIZE];
gdouble *pamin = quantity_data[GWY_GRAIN_VALUE_MINIMUM_BOUND_ANGLE];
gdouble *pamax = quantity_data[GWY_GRAIN_VALUE_MAXIMUM_BOUND_ANGLE];
gdouble *achull = quantity_data[GWY_GRAIN_VALUE_CONVEX_HULL_AREA];
gdouble *circcr = quantity_data[GWY_GRAIN_VALUE_CIRCUMCIRCLE_R];
gdouble *circcx = quantity_data[GWY_GRAIN_VALUE_CIRCUMCIRCLE_X];
gdouble *circcy = quantity_data[GWY_GRAIN_VALUE_CIRCUMCIRCLE_Y];
GArray *vertices;
/* Find the complete convex hulls */
vertices = g_array_new(FALSE, FALSE, sizeof(GridPoint));
for (gno = 1; gno <= ngrains; gno++) {
gdouble dx = qh, dy = qv;
find_grain_convex_hull(xres, yres, grains, boundpos[gno], vertices);
if (psmin || pamin) {
grain_minimum_bound(vertices, qh, qv, &dx, &dy);
if (psmin)
psmin[gno] = hypot(dx, dy);
if (pamin) {
pamin[gno] = gwy_canonicalize_angle(atan2(-dy, dx), FALSE, FALSE);
}
}
if (psmax || pamax) {
grain_maximum_bound(vertices, qh, qv, &dx, &dy);
if (psmax)
psmax[gno] = hypot(dx, dy);
if (pamax) {
pamax[gno] = gwy_canonicalize_angle(atan2(-dy, dx), FALSE, FALSE);
}
}
if (achull) {
achull[gno] = grain_convex_hull_area(vertices, qh, qv);
}
if (circcr || circcx || circcy) {
InscribedDisc circle = { 0.0, 0.0, 0.0, 0 };
grain_convex_hull_centre(vertices, qh, qv, &circle.x, &circle.y);
circle.R2 = minimize_circle_radius(&circle, vertices, qh, qv);
improve_circumscribed_circle(&circle, vertices, qh, qv);
if (circcr)
circcr[gno] = sqrt(circle.R2);
if (circcx)
circcx[gno] = circle.x + data_field->xoff;
if (circcy)
circcy[gno] = circle.y + data_field->yoff;
}
}
/* Finalize */
g_array_free(vertices, TRUE);
}
/* XXX: This must go before GWY_GRAIN_VALUE_CENTER_X and GWY_GRAIN_VALUE_CENTER_Y because we want them as pixel
* quantities. */
if (quantity_data[GWY_GRAIN_VALUE_INSCRIBED_DISC_R]
|| quantity_data[GWY_GRAIN_VALUE_INSCRIBED_DISC_X]
|| quantity_data[GWY_GRAIN_VALUE_INSCRIBED_DISC_Y]) {
gdouble *inscdr = quantity_data[GWY_GRAIN_VALUE_INSCRIBED_DISC_R];
gdouble *inscdx = quantity_data[GWY_GRAIN_VALUE_INSCRIBED_DISC_X];
gdouble *inscdy = quantity_data[GWY_GRAIN_VALUE_INSCRIBED_DISC_Y];
guint *grain = NULL;
guint grainsize = 0;
PixelQueue *inqueue = g_slice_new0(PixelQueue);
PixelQueue *outqueue = g_slice_new0(PixelQueue);
GArray *candidates = g_array_new(FALSE, FALSE, sizeof(InscribedDisc));
EdgeQueue edges = { 0, 0, NULL };
InscribedDisc *cand;
/*
* For each grain:
* Extract it, find all boundary pixels.
* Use (octagnoal) erosion to find disc centre candidate(s).
* For each candidate:
* Find maximum disc that fits with this centre.
* By expanding/moving try to find a larger disc until we cannot
* improve it.
*/
for (gno = 1; gno <= ngrains; gno++) {
guint width, height, dist;
gdouble dx, dy, centrex, centrey;
guint w = bbox[4*gno + 2], h = bbox[4*gno + 3];
gdouble xoff = qh*bbox[4*gno] + data_field->xoff, yoff = qv*bbox[4*gno + 1] + data_field->yoff;
guint ncand;
/* If the grain is rectangular, calculate the disc directly. Large rectangular grains are rare but the
* point is to catch grains with width of height of 1 here. */
if (sizes[gno] == w*h) {
dx = 0.5*w*qh;
dy = 0.5*h*qv;
if (inscdr)
inscdr[gno] = 0.999*MIN(dx, dy);
if (inscdx)
inscdx[gno] = dx + xoff;
if (inscdy)
inscdy[gno] = dy + yoff;
continue;
}
/* Upsampling twice combined with octagonal erosion has the nice property that we get candidate pixels in
* places such as corners or junctions of one-pixel thin lines. */
grain = extract_upsampled_square_pixel_grain(grains, xres, gno, bbox + 4*gno, grain, &grainsize,
&width, &height, qh, qv);
/* Size of upsamples pixel in original pixel coordinates. Normally equal to 1/2 and always approximately
* 1:1. */
dx = w*(qh/qgeom)/width;
dy = h*(qv/qgeom)/height;
/* Grain centre in squeezed pixel coordinates within the bbox. */
centrex = (xvalue[gno] + 0.5)*(qh/qgeom);
centrey = (yvalue[gno] + 0.5)*(qv/qgeom);
dist = _gwy_simple_dist_trans(grain, width, height, TRUE, GWY_DISTANCE_TRANSFORM_OCTAGONAL48,
inqueue, outqueue);
if (dist % 2 == 0) {
GWY_SWAP(PixelQueue*, inqueue, outqueue);
}
#if 0
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
if (!grain[i*width + j])
g_printerr("..");
else
g_printerr("%02u", grain[i*width + j]);
g_printerr("%c", j == width-1 ? '\n' : ' ');
}
}
#endif
/* Now inqueue is always non-empty and contains max-distance pixels of the upscaled grain. */
find_disc_centre_candidates(candidates, inqueue, grain, width, height, dx, dy, centrex, centrey);
find_all_edges(&edges, grains, xres, gno, bbox + 4*gno, qh/qgeom, qv/qgeom);
/* Try a few first candidates for the inscribed disc centre. */
ncand = MIN(15, candidates->len);
for (i = 0; i < ncand; i++) {
cand = &g_array_index(candidates, InscribedDisc, i);
improve_inscribed_disc(cand, &edges, dist);
}
cand = &g_array_index(candidates, InscribedDisc, 0);
for (i = 1; i < ncand; i++) {
if (g_array_index(candidates, InscribedDisc, i).R2 > cand->R2)
cand = &g_array_index(candidates, InscribedDisc, i);
}
if (inscdr)
inscdr[gno] = sqrt(cand->R2 * qarea);
if (inscdx)
inscdx[gno] = cand->x*qgeom + xoff;
if (inscdy)
inscdy[gno] = cand->y*qgeom + yoff;
}
g_free(grain);
g_free(inqueue->points);
g_free(outqueue->points);
g_slice_free(PixelQueue, inqueue);
g_slice_free(PixelQueue, outqueue);
g_free(edges.edges);
g_array_free(candidates, TRUE);
}
/* XXX: This must go before GWY_GRAIN_VALUE_CENTER_X and GWY_GRAIN_VALUE_CENTER_Y because we want them as pixel
* quantities. */
if ((p = quantity_data[GWY_GRAIN_VALUE_MEAN_RADIUS])) {
guint *blen = g_new0(guint, ngrains + 1);
k = 0;
for (i = 0; i < yres; i++) {
for (j = 0; j < xres; j++, k++) {
gdouble xc, yc;
if (!(gno = grains[k]))
continue;
xc = xvalue[gno];
yc = yvalue[gno];
if (!i || !grains[k - xres]) {
p[gno] += hypot(qh*(j+0.5 - xc), qv*(i - yc));
p[gno] += hypot(qh*(j+1 - xc), qv*(i - yc));
blen[gno] += 2;
}
if (!j || !grains[k-1]) {
p[gno] += hypot(qh*(j - xc), qv*(i - yc));
p[gno] += hypot(qh*(j - xc), qv*(i+0.5 - yc));
blen[gno] += 2;
}
if (j == xres-1 || !grains[k+1]) {
p[gno] += hypot(qh*(j+1 - xc), qv*(i+0.5 - yc));
p[gno] += hypot(qh*(j+1 - xc), qv*(i+1 - yc));
blen[gno] += 2;
}
if (i == yres-1 || !grains[k + xres]) {
p[gno] += hypot(qh*(j - xc), qv*(i+1 - yc));
p[gno] += hypot(qh*(j+0.5 - xc), qv*(i+1 - yc));
blen[gno] += 2;
}
}
}
for (gno = 1; gno <= ngrains; gno++)
p[gno] /= blen[gno];
g_free(blen);
}
/* XXX: This must go before GWY_GRAIN_VALUE_CENTER_X and GWY_GRAIN_VALUE_CENTER_Y because we want them as pixel
* quantities. */
if (quantity_data[GWY_GRAIN_VALUE_MINIMUM_MARTIN_DIAMETER]
|| quantity_data[GWY_GRAIN_VALUE_MINIMUM_MARTIN_ANGLE]
|| quantity_data[GWY_GRAIN_VALUE_MAXIMUM_MARTIN_DIAMETER]
|| quantity_data[GWY_GRAIN_VALUE_MAXIMUM_MARTIN_ANGLE]) {
gdouble *mmin = quantity_data[GWY_GRAIN_VALUE_MINIMUM_MARTIN_DIAMETER];
gdouble *mmax = quantity_data[GWY_GRAIN_VALUE_MAXIMUM_MARTIN_DIAMETER];
gdouble *phimin = quantity_data[GWY_GRAIN_VALUE_MINIMUM_MARTIN_ANGLE];
gdouble *phimax = quantity_data[GWY_GRAIN_VALUE_MAXIMUM_MARTIN_ANGLE];
guint *csizes = g_new0(guint, ngrains + 1);
guint *pos = g_new0(guint, ngrains + 1);
guint maxsize, t;
GwyXY *coords;
gdouble *rotcoords, *diams;
gdouble x, y;
/*
* For each grain:
* Extract all coordinates, real and grain-centered. Extract four
* points from each grain (this gives good median lines even for
* small L-shaped grains).
* For each selected direction:
* Rotate coordinates, find the ortohognal median line (using the
* ortogonal coordinate).
* Go along supersampled median line, count how many times we hit
* the grain (again, must use real-space angles).
* Find minimum and/or maximum.
*/
csizes[0] = 0;
csizes[1] = maxsize = sizes[1];
for (gno = 2; gno <= ngrains; gno++) {
csizes[gno] = sizes[gno] + csizes[gno-1];
if (sizes[gno] > maxsize)
maxsize = sizes[gno];
}
for (gno = 1; gno <= ngrains; gno++)
pos[gno] = 4*csizes[gno-1];
/* Extract coordinates */
coords = g_new(GwyXY, 4*csizes[ngrains]);
k = 0;
for (i = 0; i < yres; i++) {
for (j = 0; j < xres; j++, k++) {
if ((gno = grains[k])) {
x = qh*(j - xvalue[gno]);
y = qv*(i - yvalue[gno]);
t = pos[gno];
coords[t].x = x - 0.25*qh;
coords[t].y = y - 0.25*qv;
t++;
coords[t].x = x + 0.25*qh;
coords[t].y = y - 0.25*qv;
t++;
coords[t].x = x - 0.25*qh;
coords[t].y = y + 0.25*qv;
t++;
coords[t].x = x + 0.25*qh;
coords[t].y = y + 0.25*qv;
pos[gno] = t+1;
}
}
}
g_free(pos);
/* Find median lines by direction of each block */
rotcoords = g_new(gdouble, 4*maxsize);
diams = g_new(gdouble, 2*NDIRECTIONS);
for (gno = 1; gno <= ngrains; gno++) {
for (t = 0; t < 2*NDIRECTIONS; t++) {
gdouble med = median_cut_for_direction(t, gno, csizes, coords, rotcoords);
diams[t] = martin_intersection_length(t, med, qh, qv, qdiag, gno, bbox, xvalue, yvalue, xres, grains);
}
/* Find the minima/maxima. */
if (mmin || phimin) {
k = 0;
for (t = 1; t < 2*NDIRECTIONS; t++) {
if (diams[t] < diams[k])
k = t;
}
if (mmin)
mmin[gno] = diams[k];
if (phimin)
phimin[gno] = refine_diameter_direction(diams, k, FALSE);
}
if (mmax || phimax) {
k = 0;
for (t = 1; t < 2*NDIRECTIONS; t++) {
if (diams[t] > diams[k])
k = t;
}
if (mmax)
mmax[gno] = diams[k];
if (phimax)
phimax[gno] = refine_diameter_direction(diams, k, TRUE);
}
}
/* Finalize */
g_free(csizes);
g_free(coords);
g_free(rotcoords);
g_free(diams);
}
if (quantity_data[GWY_GRAIN_VALUE_EQUIV_ELLIPSE_MAJOR]
|| quantity_data[GWY_GRAIN_VALUE_EQUIV_ELLIPSE_MINOR]
|| quantity_data[GWY_GRAIN_VALUE_EQUIV_ELLIPSE_ANGLE]) {
gdouble *amaj = quantity_data[GWY_GRAIN_VALUE_EQUIV_ELLIPSE_MAJOR];
gdouble *amin = quantity_data[GWY_GRAIN_VALUE_EQUIV_ELLIPSE_MINOR];
gdouble *phi = quantity_data[GWY_GRAIN_VALUE_EQUIV_ELLIPSE_ANGLE];
for (gno = 1; gno <= ngrains; gno++) {
guint n = sizes[gno];
gdouble *lin = linear + 5*gno;
gdouble Jxx = qh*qh*(lin[0] + n/12.0)*qarea;
gdouble Jxy = qh*qv*lin[1]*qarea;
gdouble Jyy = qv*qv*(lin[2] + n/12.0)*qarea;
if (phi) {
gdouble Jeps = 1e-9*MAX(Jxx, Jyy);
if (fabs(Jxx - Jyy) > Jeps || fabs(Jxy) > Jeps)
phi[gno] = 0.5*atan2(-2.0*Jxy, Jxx - Jyy);
else
phi[gno] = 0.0;
}
if (amaj || amin) {
gdouble u = Jxx + Jyy, v = hypot(2.0*Jxy, Jxx - Jyy), w = sqrt(G_PI*sqrt(Jxx*Jyy - Jxy*Jxy));
if (amaj)
amaj[gno] = sqrt((u + v)/w);
if (amin)
amin[gno] = sqrt((u - v)/w);
}
}
}
if ((p = quantity_data[GWY_GRAIN_VALUE_CENTER_X])) {
for (gno = 0; gno <= ngrains; gno++)
p[gno] = qh*(p[gno] + 0.5) + data_field->xoff;
}
if ((p = quantity_data[GWY_GRAIN_VALUE_CENTER_Y])) {
for (gno = 0; gno <= ngrains; gno++)
p[gno] = qv*(p[gno] + 0.5) + data_field->yoff;
}
if (quantity_data[GWY_GRAIN_VALUE_VOLUME_0]
|| quantity_data[GWY_GRAIN_VALUE_VOLUME_MIN]) {
gdouble *pv0 = quantity_data[GWY_GRAIN_VALUE_VOLUME_0];
gdouble *pvm = quantity_data[GWY_GRAIN_VALUE_VOLUME_MIN];
if (pv0) {
integrate_grain_volume0(d, grains, xres, yres, pv0, ngrains, qarea);
if (pvm) {
for (gno = 0; gno <= ngrains; gno++)
pvm[gno] = pv0[gno] - qarea*min[gno]*sizes[gno];
}
}
else {
g_assert(pvm);
integrate_grain_volume0(d, grains, xres, yres, pvm, ngrains, qarea);
for (gno = 0; gno <= ngrains; gno++)
pvm[gno] -= qarea*min[gno]*sizes[gno];
}
}
if ((p = quantity_data[GWY_GRAIN_VALUE_VOLUME_LAPLACE])) {
/* Fail gracefully when there is one big `grain' over all data. */
if (ngrains == 1 && sizes[1] == xres*yres)
p[1] = 0.0;
else {
GwyDataField *difference = gwy_data_field_duplicate(data_field);
GwyDataField *mask = gwy_data_field_new_alike(data_field, FALSE);
gdouble *m = mask->data;
for (k = 0; k < nn; k++)
m[k] = grains[k];
gwy_data_field_laplace_solve(difference, mask, -1, 0.4);
g_object_unref(mask);
gwy_data_field_subtract_fields(difference, data_field, difference);
integrate_grain_volume0(difference->data, grains, xres, yres, p, ngrains, qarea);
g_object_unref(difference);
}
}
if (quantity_data[GWY_GRAIN_VALUE_SLOPE_THETA] || quantity_data[GWY_GRAIN_VALUE_SLOPE_PHI]) {
gdouble *ptheta = quantity_data[GWY_GRAIN_VALUE_SLOPE_THETA];
gdouble *pphi = quantity_data[GWY_GRAIN_VALUE_SLOPE_PHI];
for (gno = 1; gno <= ngrains; gno++) {
gdouble xx, yy, xy, xz, yz, det, bx, by;
gdouble *lin = linear + 5*gno;
xx = lin[0];
xy = lin[1];
yy = lin[2];
xz = lin[3];
yz = lin[4];
det = xx*yy - xy*xy;
if (det) {
bx = (xz*yy - xy*yz)/(qh*det);
by = (yz*xx - xy*xz)/(qv*det);
if (ptheta)
ptheta[gno] = atan(hypot(bx, by));
if (pphi)
pphi[gno] = atan2(by, -bx);
}
else {
if (ptheta)
ptheta[gno] = 0.0;
if (pphi)
pphi[gno] = 0.0;
}
}
}
if (quantity_data[GWY_GRAIN_VALUE_CURVATURE_CENTER_X]
|| quantity_data[GWY_GRAIN_VALUE_CURVATURE_CENTER_Y]
|| quantity_data[GWY_GRAIN_VALUE_CURVATURE_CENTER_Z]
|| quantity_data[GWY_GRAIN_VALUE_CURVATURE1]
|| quantity_data[GWY_GRAIN_VALUE_CURVATURE2]
|| quantity_data[GWY_GRAIN_VALUE_CURVATURE_ANGLE1]
|| quantity_data[GWY_GRAIN_VALUE_CURVATURE_ANGLE2]) {
gdouble *px = quantity_data[GWY_GRAIN_VALUE_CURVATURE_CENTER_X];
gdouble *py = quantity_data[GWY_GRAIN_VALUE_CURVATURE_CENTER_Y];
gdouble *pz = quantity_data[GWY_GRAIN_VALUE_CURVATURE_CENTER_Z];
gdouble *pk1 = quantity_data[GWY_GRAIN_VALUE_CURVATURE1];
gdouble *pk2 = quantity_data[GWY_GRAIN_VALUE_CURVATURE2];
gdouble *pa1 = quantity_data[GWY_GRAIN_VALUE_CURVATURE_ANGLE1];
gdouble *pa2 = quantity_data[GWY_GRAIN_VALUE_CURVATURE_ANGLE2];
gdouble mx = sqrt(qh/qv), my = sqrt(qv/qh);
for (gno = 1; gno <= ngrains; gno++) {
/* a:
* 0 [<1>
* 1 <x> <x²>
* 3 <y> <xy> <y²>
* 6 <x²> <x³> <x²y> <x⁴>
* 10 <xy> <x²y> <xy²> <x³y> <x²y²>
* 15 <y²> <xy²> <y³> <x²y²> <xy³> <y⁴>]
* b: [<z> <xz> <yz> <x²z> <xyz> <y²z>]
*/
gdouble a[21], b[6];
gdouble *lin = linear + 5*gno, *quad = quadratic + 12*gno;
guint n = sizes[gno];
if (n >= 6) {
a[0] = n;
a[1] = a[3] = 0.0;
a[2] = a[6] = lin[0];
a[4] = a[10] = lin[1];
a[5] = a[15] = lin[2];
a[7] = quad[0];
a[8] = a[11] = quad[1];
a[9] = quad[4];
a[12] = a[16] = quad[2];
a[13] = quad[5];
a[14] = a[18] = quad[6];
a[17] = quad[3];
a[19] = quad[7];
a[20] = quad[8];
if (gwy_math_choleski_decompose(6, a)) {
b[0] = n*zvalue[gno];
b[1] = lin[3];
b[2] = lin[4];
b[3] = quad[9];
b[4] = quad[10];
b[5] = quad[11];
gwy_math_choleski_solve(6, a, b);
/* Get pixel aspect ratio right while keeping pixel size around 1. */
b[1] /= mx;
b[2] /= my;
b[3] /= mx*mx;
b[5] /= my*my;
}
else
n = 0;
}
/* Recycle a[] for the curvature parameters. */
if (n >= 6)
gwy_math_curvature(b, a+0, a+1, a+2, a+3, a+4, a+5, a+6);
else {
a[0] = a[1] = a[2] = a[4] = a[5] = 0.0;
a[3] = G_PI/2.0;
a[6] = zvalue[gno];
}
if (pk1)
pk1[gno] = a[0]/(qgeom*qgeom);
if (pk2)
pk2[gno] = a[1]/(qgeom*qgeom);
if (pa1)
pa1[gno] = a[2];
if (pa2)
pa2[gno] = a[3];
if (px)
px[gno] = qgeom*a[4] + xvalue[gno];
if (py)
py[gno] = qgeom*a[5] + yvalue[gno];
if (pz)
pz[gno] = a[6];
}
}
/* Copy quantity values to all other instances of the same quantity in @values. */
gwy_clear(seen, NQ);
for (i = 0; i < nquantities; i++) {
GwyGrainQuantity quantity = quantities[i];
if ((guint)quantity >= NQ || need_aux[quantity] == INVALID)
continue;
if (seen[quantity])
gwy_assign(values[i], quantity_data[quantity], ngrains + 1);
seen[quantity] = TRUE;
}
/* Finalize */
for (l = buffers; l; l = g_list_next(l))
g_free(l->data);
g_list_free(buffers);
return values;
}
/**
* gwy_grain_quantity_needs_same_units:
* @quantity: A grain quantity.
*
* Tests whether a grain quantity is defined only when lateral and value units match.
*
* Returns: %TRUE if @quantity is meaningless when lateral and value units differ, %FALSE if it is always defined.
*
* Since: 2.7
**/
gboolean
gwy_grain_quantity_needs_same_units(GwyGrainQuantity quantity)
{
enum {
no_same_units = ((ONE << GWY_GRAIN_VALUE_PROJECTED_AREA)
| (ONE << GWY_GRAIN_VALUE_EQUIV_SQUARE_SIDE)
| (ONE << GWY_GRAIN_VALUE_EQUIV_DISC_RADIUS)
| (ONE << GWY_GRAIN_VALUE_MAXIMUM)
| (ONE << GWY_GRAIN_VALUE_MINIMUM)
| (ONE << GWY_GRAIN_VALUE_MEAN)
| (ONE << GWY_GRAIN_VALUE_MEDIAN)
| (ONE << GWY_GRAIN_VALUE_HALF_HEIGHT_AREA)
| (ONE << GWY_GRAIN_VALUE_RMS)
| (ONE << GWY_GRAIN_VALUE_FLAT_BOUNDARY_LENGTH)
| (ONE << GWY_GRAIN_VALUE_MINIMUM_BOUND_SIZE)
| (ONE << GWY_GRAIN_VALUE_MINIMUM_BOUND_ANGLE)
| (ONE << GWY_GRAIN_VALUE_MAXIMUM_BOUND_SIZE)
| (ONE << GWY_GRAIN_VALUE_MAXIMUM_BOUND_ANGLE)
| (ONE << GWY_GRAIN_VALUE_CENTER_X)
| (ONE << GWY_GRAIN_VALUE_CENTER_Y)
| (ONE << GWY_GRAIN_VALUE_VOLUME_0)
| (ONE << GWY_GRAIN_VALUE_VOLUME_MIN)
| (ONE << GWY_GRAIN_VALUE_VOLUME_LAPLACE)
| (ONE << GWY_GRAIN_VALUE_SLOPE_PHI)
| (ONE << GWY_GRAIN_VALUE_CURVATURE_CENTER_X)
| (ONE << GWY_GRAIN_VALUE_CURVATURE_CENTER_Y)
| (ONE << GWY_GRAIN_VALUE_CURVATURE_CENTER_Z)
| (ONE << GWY_GRAIN_VALUE_CURVATURE_ANGLE1)
| (ONE << GWY_GRAIN_VALUE_CURVATURE_ANGLE2)
| (ONE << GWY_GRAIN_VALUE_INSCRIBED_DISC_R)
| (ONE << GWY_GRAIN_VALUE_INSCRIBED_DISC_X)
| (ONE << GWY_GRAIN_VALUE_INSCRIBED_DISC_Y)
| (ONE << GWY_GRAIN_VALUE_CONVEX_HULL_AREA)
| (ONE << GWY_GRAIN_VALUE_CIRCUMCIRCLE_R)
| (ONE << GWY_GRAIN_VALUE_CIRCUMCIRCLE_X)
| (ONE << GWY_GRAIN_VALUE_CIRCUMCIRCLE_Y)
| (ONE << GWY_GRAIN_VALUE_MEAN_RADIUS)
| (ONE << GWY_GRAIN_VALUE_EQUIV_ELLIPSE_MAJOR)
| (ONE << GWY_GRAIN_VALUE_EQUIV_ELLIPSE_MINOR)
| (ONE << GWY_GRAIN_VALUE_EQUIV_ELLIPSE_ANGLE)
| (ONE << GWY_GRAIN_VALUE_MINIMUM_MARTIN_DIAMETER)
| (ONE << GWY_GRAIN_VALUE_MINIMUM_MARTIN_ANGLE)
| (ONE << GWY_GRAIN_VALUE_MAXIMUM_MARTIN_DIAMETER)
| (ONE << GWY_GRAIN_VALUE_MAXIMUM_MARTIN_ANGLE)),
same_units = ((ONE << GWY_GRAIN_VALUE_SLOPE_THETA)
| (ONE << GWY_GRAIN_VALUE_SURFACE_AREA)
| (ONE << GWY_GRAIN_VALUE_CURVATURE1)
| (ONE << GWY_GRAIN_VALUE_CURVATURE2))
};
if ((ONE << quantity) & no_same_units)
return FALSE;
if ((ONE << quantity) & same_units)
return TRUE;
g_return_val_if_reached(FALSE);
}
/**
* gwy_grain_quantity_get_units:
* @quantity: A grain quantity.
* @siunitxy: Lateral SI unit of data.
* @siunitz: Value SI unit of data.
* @result: An SI unit to set to the units of @quantity. It can be %NULL, a new SI unit is created then and returned.
*
* Calculates the units of a grain quantity.
*
* Returns: When @result is %NULL, a newly creates SI unit that has to be dereferenced when no longer used later.
* Otherwise @result itself is simply returned, its reference count is NOT increased.
*
* Since: 2.7
**/
GwySIUnit*
gwy_grain_quantity_get_units(GwyGrainQuantity quantity,
GwySIUnit *siunitxy,
GwySIUnit *siunitz,
GwySIUnit *result)
{
enum {
coord_units = ((ONE << GWY_GRAIN_VALUE_EQUIV_SQUARE_SIDE)
| (ONE << GWY_GRAIN_VALUE_EQUIV_DISC_RADIUS)
| (ONE << GWY_GRAIN_VALUE_FLAT_BOUNDARY_LENGTH)
| (ONE << GWY_GRAIN_VALUE_MINIMUM_BOUND_SIZE)
| (ONE << GWY_GRAIN_VALUE_MAXIMUM_BOUND_SIZE)
| (ONE << GWY_GRAIN_VALUE_CENTER_X)
| (ONE << GWY_GRAIN_VALUE_CENTER_Y)
| (ONE << GWY_GRAIN_VALUE_CURVATURE_CENTER_X)
| (ONE << GWY_GRAIN_VALUE_CURVATURE_CENTER_Y)
| (ONE << GWY_GRAIN_VALUE_INSCRIBED_DISC_R)
| (ONE << GWY_GRAIN_VALUE_INSCRIBED_DISC_X)
| (ONE << GWY_GRAIN_VALUE_INSCRIBED_DISC_Y)
| (ONE << GWY_GRAIN_VALUE_CIRCUMCIRCLE_R)
| (ONE << GWY_GRAIN_VALUE_CIRCUMCIRCLE_X)
| (ONE << GWY_GRAIN_VALUE_CIRCUMCIRCLE_Y)
| (ONE << GWY_GRAIN_VALUE_MEAN_RADIUS)
| (ONE << GWY_GRAIN_VALUE_EQUIV_ELLIPSE_MAJOR)
| (ONE << GWY_GRAIN_VALUE_EQUIV_ELLIPSE_MINOR)
| (ONE << GWY_GRAIN_VALUE_MINIMUM_MARTIN_DIAMETER)
| (ONE << GWY_GRAIN_VALUE_MAXIMUM_MARTIN_DIAMETER)),
icoord_units = ((ONE << GWY_GRAIN_VALUE_CURVATURE1)
| (ONE << GWY_GRAIN_VALUE_CURVATURE2)),
value_units = ((ONE << GWY_GRAIN_VALUE_MAXIMUM)
| (ONE << GWY_GRAIN_VALUE_MINIMUM)
| (ONE << GWY_GRAIN_VALUE_MEAN)
| (ONE << GWY_GRAIN_VALUE_MEDIAN)
| (ONE << GWY_GRAIN_VALUE_RMS)
| (ONE << GWY_GRAIN_VALUE_CURVATURE_CENTER_Z)),
area_units = ((ONE << GWY_GRAIN_VALUE_PROJECTED_AREA)
| (ONE << GWY_GRAIN_VALUE_HALF_HEIGHT_AREA)
| (ONE << GWY_GRAIN_VALUE_SURFACE_AREA)
| (ONE << GWY_GRAIN_VALUE_CONVEX_HULL_AREA)),
volume_units = ((ONE << GWY_GRAIN_VALUE_VOLUME_0)
| (ONE << GWY_GRAIN_VALUE_VOLUME_MIN)
| (ONE << GWY_GRAIN_VALUE_VOLUME_LAPLACE)),
angle_units = ((ONE << GWY_GRAIN_VALUE_MINIMUM_BOUND_ANGLE)
| (ONE << GWY_GRAIN_VALUE_MAXIMUM_BOUND_ANGLE)
| (ONE << GWY_GRAIN_VALUE_SLOPE_PHI)
| (ONE << GWY_GRAIN_VALUE_SLOPE_THETA)
| (ONE << GWY_GRAIN_VALUE_CURVATURE_ANGLE1)
| (ONE << GWY_GRAIN_VALUE_CURVATURE_ANGLE2)
| (ONE << GWY_GRAIN_VALUE_EQUIV_ELLIPSE_ANGLE)
| (ONE << GWY_GRAIN_VALUE_MINIMUM_MARTIN_ANGLE)
| (ONE << GWY_GRAIN_VALUE_MAXIMUM_MARTIN_ANGLE))
};
g_return_val_if_fail(GWY_IS_SI_UNIT(siunitxy), result);
g_return_val_if_fail(GWY_IS_SI_UNIT(siunitz), result);
if ((ONE << quantity) & coord_units)
return gwy_si_unit_power(siunitxy, 1, result);
if ((ONE << quantity) & icoord_units)
return gwy_si_unit_power(siunitxy, -1, result);
if ((ONE << quantity) & value_units)
return gwy_si_unit_power(siunitz, 1, result);
if ((ONE << quantity) & area_units)
return gwy_si_unit_power(siunitxy, 2, result);
if ((ONE << quantity) & volume_units)
return gwy_si_unit_power_multiply(siunitxy, 2, siunitz, 1, result);
if ((ONE << quantity) & angle_units) {
if (!result)
return gwy_si_unit_new(NULL);
gwy_si_unit_set_from_string(result, NULL);
return result;
}
g_return_val_if_reached(result);
}
/* vim: set cin columns=120 tw=118 et ts=4 sw=4 cino=>1s,e0,n0,f0,{0,}0,^0,\:1s,=0,g1s,h0,t0,+1s,c3,(0,u0 : */
|