1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
|
/*
* $Id: natural.c 26514 2024-08-15 17:52:06Z yeti-dn $
* Copyright (C) 2009 Ross Hemsley, David Necas (Yeti), Petr Klapetek.
* E-mail: rh7223@bris.ac.uk, yeti@gwyddion.net, klapetek@gwyddion.net.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/*******************************************************************************
* utils.h
*
* Written by Ross Hemsley for McStas. (September 2009)
*
* These are general purpose routines to be used anywhere they are needed.
* For specifics on use, and more implementation details, see utils.c
*******************************************************************************/
#include <glib.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#ifdef _MSC_VER
#include <time.h>
#else
#include <sys/time.h>
#endif
#include "natural.h"
#define SQR(x) (x)*(x)
typedef struct _stack stack;
typedef struct _arrayList arrayList;
typedef struct _listNode listNode;
typedef struct _linkedList linkedList;
typedef struct _simplex simplex;
typedef struct _neighbourUpdate neighbourUpdate;
struct _stack
{
gint top;
gint slots;
void** arr;
};
struct _arrayList
{
gint num_slots;
gint num_elements;
void** arr;
};
struct _listNode
{
void *data;
struct _listNode *next;
struct _listNode *prev;
};
struct _linkedList
{
listNode *head;
listNode *last;
gint nelem;
stack *deadNodes;
};
struct _simplex
{
GwyDelaunayVertex *p[4];
struct _simplex *s[4];
listNode *node;
};
struct _neighbourUpdate
{
stack *ptrs;
stack *old;
};
struct _GwyDelaunayVertex
{
gdouble v[3];
gint index;
gdouble data[3];
gdouble voronoiVolume;
};
struct _GwyDelaunayMesh
{
linkedList *tets;
simplex *super;
GwyDelaunayVertex superVerticies[4];
stack *deadSimplicies;
stack *deadVoronoiCells;
arrayList *conflicts;
arrayList *updates;
neighbourUpdate *neighbourUpdates;
gint coplanar_degenerecies;
gint cospherical_degenerecies;
};
/*******************************************************************************
* Array list functions.
* *******************************************************************************/
static gint addToArrayList(arrayList *l, void* element);
static void* getFromArrayList (arrayList *l, gint index);
static gint arrayListSize(arrayList *l);
static arrayList* newArrayList(void);
static void freeArrayList(arrayList *l, void (*destructor)(void *e));
static gint arrayListContains(arrayList * l , void * element);
static void emptyArrayList(arrayList *l);
/*******************************************************************************
* * Doubly linked list functions.
* *******************************************************************************/
static linkedList* newLinkedList(void);
static listNode* addToLinkedList(linkedList *l, void *e);
static void* nextElement(linkedList *l, listNode **last);
static listNode* topOfLinkedList(linkedList *l);
static void removeFromLinkedList(linkedList *l, listNode *ln);
static void freeLinkedList(linkedList *l, void (*destructor)(void *e));
/*******************************************************************************
* * Stack functions.
* *******************************************************************************/
static stack* newStack(void);
static void push(stack *s, void*e);
static void* pop(stack *s);
static void freeStack(stack *s, void (*destructor)(void *e));
static gint isEmpty(stack *s);
static void emptyStack(stack *s);
/******************************************************************************
* utils.c
*
* Written by Ross Hemsley for McStas, September 2009.
* All code below is required for the gintperolation functions, though many of
* of the routines may be considered general enough for use anywhere they are
* required. Current utils include an array based list implementation, a doubly
* linked list implementation and an array based stack implementation.
*
*******************************************************************************/
/*******************************************************************************
* Array List implementation. We use this whenever we want arrays which can be
* resized dynamically. We expect O(1) amortised insert and extraction from this
* implementation. Other opertations are O(n).
*******************************************************************************/
static gint addToArrayList(arrayList *l, void* element)
{
if (l->num_elements >= l->num_slots)
{
// we have to allocate more space
l->num_slots *= 2;
l->arr = realloc(l->arr, (l->num_slots*sizeof(void*)));
// check that we haven't run out of memory
if (l->arr == NULL)
{
//gwy_fprintf(stderr, "Error: Out of Memory.\n");
return -1;
}
}
// add the element
l->arr[l->num_elements] = element;
l->num_elements++;
// return the index where this element can be found.
return (l->num_elements -1);
}
/******************************************************************************/
static arrayList *newArrayList(void)
{
arrayList *l;
l = malloc(sizeof(arrayList));
l->num_elements = 0;
l->num_slots = 16;
l->arr = malloc(16*sizeof(void*));
return l;
}
/******************************************************************************/
// a special function, which only works when the arrayList contains only gint*
static gint arrayListContains(arrayList * l , void * e)
{
gint i;
for (i=0; i< l->num_elements; i++)
if (e == l->arr[i]) return 1;
return 0;
}
/******************************************************************************/
static gint arrayListSize(arrayList *l)
{
return l->num_elements;
}
/******************************************************************************/
static void * getFromArrayList (arrayList *l, gint iindex)
{
if(iindex >= 0 && iindex < l->num_elements)
return l->arr[iindex];
return NULL;
}
/******************************************************************************/
// We keep the memory associated with this list, but set it's number of elements
// to zero. This is effectively the same function as a memory heap.
static void emptyArrayList(arrayList *l)
{
l->num_elements=0;
}
/******************************************************************************/
static void freeArrayList(arrayList *l, void (*destructor)(void *e))
{
gint i;
if (destructor)
for (i=0;i<arrayListSize(l); i++)
destructor(getFromArrayList(l,i));
free(l->arr);
free(l);
}
/******************************************************************************
* Doubly-linked list implementation. We use this implementation of a list when
* we want to have faster extractions from very large lists. Using this
* implementation we expect O(1) from all operations, except accessing an element
* by index, which is O(n). In most cases this will be much slower than using
* the array list implementation. (Except fast pogint removal in large sets)
* because this implementation will not take advantage of the cache like the
* array list does.
*******************************************************************************/
static linkedList *newLinkedList(void)
{
linkedList *l = malloc(sizeof(linkedList));
l->deadNodes = newStack();
l->head = NULL;
l->last = NULL;
l->nelem = 0;
return l;
}
/******************************************************************************/
static listNode* addToLinkedList(linkedList *l, void *e)
{
listNode *ln;
if (!isEmpty(l->deadNodes))
ln = pop(l->deadNodes);
else
ln = malloc(sizeof(listNode));
ln->data = e;
ln->next = NULL;
ln->prev = l->last;
// Put this element on the end. If this is the first element
// then set the head.
if (l->head)
l->last->next = ln;
else
l->head = ln;
l->last = ln;
l->nelem ++;
return ln;
}
/******************************************************************************/
static void *nextElement(G_GNUC_UNUSED linkedList *l, listNode **last)
{
void *e;
// If this is the end, return null.
if (!*last) return NULL;
// Move the iterator along to the next element,
// and then return the data item
e = (*last)->data;
*last = (*last)->next;
return e;
}
/******************************************************************************/
static listNode *topOfLinkedList(linkedList *l)
{
return l->head;
}
/******************************************************************************/
// Note: this does not free the memory associated with the removed element.
static void removeFromLinkedList(linkedList *l, listNode *ln)
{
if (!ln){
// gwy_fprintf(stderr, "Error: Tried to remove null element from linkedList.\n");
return;
}
// This could be the top of the linkedList: if it is: make sure we change the
// head poginter to the new value.
if (ln->prev)
ln->prev->next = ln->next;
else
l->head = ln->next;
// This could be the bottom of the linkedList: make sure we change the last poginter.
// if it is.
if (ln->next)
ln->next->prev = ln->prev;
else
l->last = ln->prev;
// Free the node, and update the element count.
push(l->deadNodes, ln);
l->nelem --;
}
/******************************************************************************/
// This will free the elements the linkedList, along with the elemnts
// using the given destructor.
static void freeLinkedList(linkedList *l, void (*destructor)(void *e))
{
listNode *thisNode = l->head;
while (thisNode)
{
listNode *tmp = thisNode->next;
if (destructor) destructor(thisNode->data);
free(thisNode);
thisNode = tmp;
}
freeStack(l->deadNodes, free);
free(l);
}
/*******************************************************************************
* This is a simple array-based implementation of a stack, implementing
* pop, push, isEmpty, size and empty.
* We use isEmpty to tell whether we can keep popping poginters (because we could
* pop a NULL poginter to the stack). We use the empty function to reset the
* stack to zero without popping any elements. This magintains the memory
* associated with the stack.
*******************************************************************************/
static stack *newStack(void)
{
stack *s = malloc(sizeof(stack));
s->top = 0;
s->slots = 2;
s->arr = malloc(2*sizeof(void*));
return s;
}
/******************************************************************************/
// When we are storing poginters which could be null, we need to have a check
// to see if the stack is empty.
static gint isEmpty(stack *s)
{
return (s->top == 0);
}
/******************************************************************************/
// This will cause the stack to be empty: note, we have NOT freed any memory
// associated with the elements.
static void emptyStack(stack *s)
{
s->top = 0;
}
/******************************************************************************/
static void push(stack *s, void*e)
{
if (s->top >= s->slots)
{
// we have to allocate more space
s->slots *= 2;
s->arr = realloc(s->arr, (s->slots*sizeof(void*)));
// check that we haven't run out of memory
if (s->arr == NULL)
{
// gwy_fprintf(stderr, "Error: Out of Memory.\n");
return;
}
}
// add the element
s->arr[s->top] = e;
s->top ++;
}
/******************************************************************************/
static void *pop(stack *s)
{
// If the stack is empty
if (s->top == 0) return NULL;
s->top--;
return s->arr[s->top];
}
/******************************************************************************/
static void freeStack(stack *s, void (*destructor)(void *e))
{
void *e;
if (destructor)
while ((e = pop(s)))
destructor(e);
free(s->arr);
free(s);
}
///////////////////end of utils.c ///////////////////////////////////////////////////
/******************************************************************************/
/*
delaunay.h - By Ross Hemsley Aug. 2009 - rh7223@bris.ac.uk.
This module will compute the delaunay triangulation of a set of uniformly
distributed points in R^3. We will use the iterative edge flipping
algorithm to add points one at a time.
To store the triangulation, we start by just storing simplicies with pointers
to their respective coordinates.
To simplify insertion, we first create a super-simplex with contains our
entire dataset, this means that we don't have to specify any special
conditions for the creation of our original simplicies.
To make our algorithm robust we use Jonathan Shewchuk's Arbitrary Precision
Floating-poing Arithmetic predicates[1]
[1] Routines for Arbitrary Precision Floating-point Arithmetic
and Fast Robust Geometric Predicates. May 18, 1996.
Jonathan Rigchard Shewchuk.
*/
/******************************************************************************/
/* These macros make code more readable. They allow us to access
the indexed elements of verticies directly. */
#define X v[0]
#define Y v[1]
#define Z v[2]
#define U data[0]
#define V data[1]
#define W data[2]
/******************************************************************************/
/*******************************************************************************
* This is how we represent a Voronoi Cell in memory.
*******************************************************************************/
typedef struct
{
// The number of points on this cell, and the amount
// of memory allocated for points on this cell.
gint n, nallocated;
// The array of points on this cell.
gdouble **points;
// This defines the cell, it contains a list of faces, each one is
// consistantly oriented relative to itself (so traversing the pionts gives
// the convex hull of the face). Each face is seperated by a NULL pointer.
// No gaurentee is made about the consistancy of orientations between
// different faces.
arrayList *verticies;
} voronoiCell;
/******************************************************************************/
/* This is how we store an individual simplex: 4 pointers to the coordinates. */
/* We should try storing this without pointers probably. */
/******************************************************************************/
/******************************************************************************/
static void gwy_delaunay_remove_point(GwyDelaunayMesh *m);
static void gwy_delaunay_add_point(GwyDelaunayVertex *p, GwyDelaunayMesh *m);
static gint gwy_delaunay_point_on_simplex(GwyDelaunayVertex *p, simplex *s);
static voronoiCell* gwy_delaunay_get_voronoi_cell(GwyDelaunayVertex *point, simplex *s0, GwyDelaunayMesh *m);
static void gwy_delaunay_vertex_by_scalar(gdouble *a, gdouble b, gdouble *out);
static gdouble gwy_delaunay_voronoi_cell_volume(voronoiCell *vc, GwyDelaunayVertex *p);
static void gwy_delaunay_free_voronoi_cell(voronoiCell *vc, GwyDelaunayMesh *m);
static simplex* gwy_delaunay_find_any_neighbour(GwyDelaunayVertex *v, arrayList *tets);
/////////////////////////////////// end of delaunay.h //////////////////////////////////
//////////////////////////// predicates. c /////////////////////////////////////////
/*****************************************************************************/
/* */
/* Routines for Arbitrary Precision Floating-point Arithmetic */
/* and Fast Robust Geometric Predicates */
/* (predicates.c) */
/* */
/* May 18, 1996 */
/* */
/* Placed in the public domain by */
/* Jonathan Richard Shewchuk */
/* School of Computer Science */
/* Carnegie Mellon University */
/* 5000 Forbes Avenue */
/* Pittsburgh, Pennsylvania 15213-3891 */
/* jrs@cs.cmu.edu */
/* */
/* This file contains C implementation of algorithms for exact addition */
/* and multiplication of floating-point numbers, and predicates for */
/* robustly performing the orientation and incircle tests used in */
/* computational geometry. The algorithms and underlying theory are */
/* described in Jonathan Richard Shewchuk. "Adaptive Precision Floating- */
/* Point Arithmetic and Fast Robust Geometric Predicates." Technical */
/* Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon */
/* University, Pittsburgh, Pennsylvania, May 1996. (Submitted to */
/* Discrete & Computational Geometry.) */
/* */
/* This file, the paper listed above, and other information are available */
/* from the Web page http://www.cs.cmu.edu/~quake/robust.html . */
/* */
/*****************************************************************************/
/*****************************************************************************/
/* */
/* Using this code: */
/* */
/* First, read the short or long version of the paper (from the Web page */
/* above). */
/* */
/* Be sure to call exactinit() once, before calling any of the arithmetic */
/* functions or geometric predicates. Also be sure to turn on the */
/* optimizer when compiling this file. */
/* */
/* */
/* Several geometric predicates are defined. Their parameters are all */
/* points. Each point is an array of two or three floating-point */
/* numbers. The geometric predicates, described in the papers, are */
/* */
/* orient2d(pa, pb, pc) */
/* orient2dfast(pa, pb, pc) */
/* orient3d(pa, pb, pc, pd) */
/* orient3dfast(pa, pb, pc, pd) */
/* incircle(pa, pb, pc, pd) */
/* incirclefast(pa, pb, pc, pd) */
/* insphere(pa, pb, pc, pd, pe) */
/* inspherefast(pa, pb, pc, pd, pe) */
/* */
/* Those with suffix "fast" are approximate, non-robust versions. Those */
/* without the suffix are adaptive precision, robust versions. There */
/* are also versions with the suffices "exact" and "slow", which are */
/* non-adaptive, exact arithmetic versions, which I use only for timings */
/* in my arithmetic papers. */
/* */
/* */
/* An expansion is represented by an array of floating-point numbers, */
/* sorted from smallest to largest magnitude (possibly with interspersed */
/* zeros). The length of each expansion is stored as a separate integer, */
/* and each arithmetic function returns an integer which is the length */
/* of the expansion it created. */
/* */
/* Several arithmetic functions are defined. Their parameters are */
/* */
/* e, f Input expansions */
/* elen, flen Lengths of input expansions (must be >= 1) */
/* h Output expansion */
/* b Input scalar */
/* */
/* The arithmetic functions are */
/* */
/* grow_expansion(elen, e, b, h) */
/* grow_expansion_zeroelim(elen, e, b, h) */
/* expansion_sum(elen, e, flen, f, h) */
/* expansion_sum_zeroelim1(elen, e, flen, f, h) */
/* expansion_sum_zeroelim2(elen, e, flen, f, h) */
/* fast_expansion_sum(elen, e, flen, f, h) */
/* fast_expansion_sum_zeroelim(elen, e, flen, f, h) */
/* linear_expansion_sum(elen, e, flen, f, h) */
/* linear_expansion_sum_zeroelim(elen, e, flen, f, h) */
/* scale_expansion(elen, e, b, h) */
/* scale_expansion_zeroelim(elen, e, b, h) */
/* compress(elen, e, h) */
/* */
/* All of these are described in the long version of the paper; some are */
/* described in the short version. All return an integer that is the */
/* length of h. Those with suffix _zeroelim perform zero elimination, */
/* and are recommended over their counterparts. The procedure */
/* fast_expansion_sum_zeroelim() (or linear_expansion_sum_zeroelim() on */
/* processors that do not use the round-to-even tiebreaking rule) is */
/* recommended over expansion_sum_zeroelim(). Each procedure has a */
/* little note next to it (in the code below) that tells you whether or */
/* not the output expansion may be the same array as one of the input */
/* expansions. */
/* */
/* */
/* If you look around below, you'll also find macros for a bunch of */
/* simple unrolled arithmetic operations, and procedures for printing */
/* expansions (commented out because they don't work with all C */
/* compilers) and for generating random floating-point numbers whose */
/* significand bits are all random. Most of the macros have undocumented */
/* requirements that certain of their parameters should not be the same */
/* variable; for safety, better to make sure all the parameters are */
/* distinct variables. Feel free to send email to jrs@cs.cmu.edu if you */
/* have questions. */
/* */
/*****************************************************************************/
/* On some machines, the exact arithmetic routines might be defeated by the */
/* use of internal extended precision floating-point registers. Sometimes */
/* this problem can be fixed by defining certain values to be volatile, */
/* thus forcing them to be stored to memory and rounded off. This isn't */
/* a great solution, though, as it slows the arithmetic down. */
/* */
/* To try this out, write "#define INEXACT volatile" below. Normally, */
/* however, INEXACT should be defined to be nothing. ("#define INEXACT".) */
#define INEXACT /* Nothing */
/* #define INEXACT volatile */
#define REAL double /* float or double */
#define REALPRINT doubleprint
#define REALRAND doublerand
#define NARROWRAND narrowdoublerand
#define UNIFORMRAND uniformdoublerand
/* Which of the following two methods of finding the absolute values is */
/* fastest is compiler-dependent. A few compilers can inline and optimize */
/* the fabs() call; but most will incur the overhead of a function call, */
/* which is disastrously slow. A faster way on IEEE machines might be to */
/* mask the appropriate bit, but that's difficult to do in C. */
#define Absolute(a) ((a) >= 0.0 ? (a) : -(a))
/* #define Absolute(a) fabs(a) */
/* Many of the operations are broken up into two pieces, a main part that */
/* performs an approximate operation, and a "tail" that computes the */
/* roundoff error of that operation. */
/* */
/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(), */
/* Split(), and Two_Product() are all implemented as described in the */
/* reference. Each of these macros requires certain variables to be */
/* defined in the calling routine. The variables `bvirt', `c', `abig', */
/* `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because */
/* they store the result of an operation that may incur roundoff error. */
/* The input parameter `x' (or the highest numbered `x_' parameter) must */
/* also be declared `INEXACT'. */
#define Fast_Two_Sum_Tail(a, b, x, y) \
bvirt = x - a; \
y = b - bvirt
#define Fast_Two_Sum(a, b, x, y) \
x = (REAL) (a + b); \
Fast_Two_Sum_Tail(a, b, x, y)
#define Fast_Two_Diff_Tail(a, b, x, y) \
bvirt = a - x; \
y = bvirt - b
#define Fast_Two_Diff(a, b, x, y) \
x = (REAL) (a - b); \
Fast_Two_Diff_Tail(a, b, x, y)
#define Two_Sum_Tail(a, b, x, y) \
bvirt = (REAL) (x - a); \
avirt = x - bvirt; \
bround = b - bvirt; \
around = a - avirt; \
y = around + bround
#define Two_Sum(a, b, x, y) \
x = (REAL) (a + b); \
Two_Sum_Tail(a, b, x, y)
#define Two_Diff_Tail(a, b, x, y) \
bvirt = (REAL) (a - x); \
avirt = x + bvirt; \
bround = bvirt - b; \
around = a - avirt; \
y = around + bround
#define Two_Diff(a, b, x, y) \
x = (REAL) (a - b); \
Two_Diff_Tail(a, b, x, y)
#define Split(a, ahi, alo) \
c = (REAL) (splitter * a); \
abig = (REAL) (c - a); \
ahi = c - abig; \
alo = a - ahi
#define Two_Product_Tail(a, b, x, y) \
Split(a, ahi, alo); \
Split(b, bhi, blo); \
err1 = x - (ahi * bhi); \
err2 = err1 - (alo * bhi); \
err3 = err2 - (ahi * blo); \
y = (alo * blo) - err3
#define Two_Product(a, b, x, y) \
x = (REAL) (a * b); \
Two_Product_Tail(a, b, x, y)
/* Two_Product_Presplit() is Two_Product() where one of the inputs has */
/* already been split. Avoids redundant splitting. */
#define Two_Product_Presplit(a, b, bhi, blo, x, y) \
x = (REAL) (a * b); \
Split(a, ahi, alo); \
err1 = x - (ahi * bhi); \
err2 = err1 - (alo * bhi); \
err3 = err2 - (ahi * blo); \
y = (alo * blo) - err3
/* Two_Product_2Presplit() is Two_Product() where both of the inputs have */
/* already been split. Avoids redundant splitting. */
#define Two_Product_2Presplit(a, ahi, alo, b, bhi, blo, x, y) \
x = (REAL) (a * b); \
err1 = x - (ahi * bhi); \
err2 = err1 - (alo * bhi); \
err3 = err2 - (ahi * blo); \
y = (alo * blo) - err3
/* Square() can be done more quickly than Two_Product(). */
#define Square_Tail(a, x, y) \
Split(a, ahi, alo); \
err1 = x - (ahi * ahi); \
err3 = err1 - ((ahi + ahi) * alo); \
y = (alo * alo) - err3
#define Square(a, x, y) \
x = (REAL) (a * a); \
Square_Tail(a, x, y)
/* Macros for summing expansions of various fixed lengths. These are all */
/* unrolled versions of Expansion_Sum(). */
#define Two_One_Sum(a1, a0, b, x2, x1, x0) \
Two_Sum(a0, b , _i, x0); \
Two_Sum(a1, _i, x2, x1)
#define Two_One_Diff(a1, a0, b, x2, x1, x0) \
Two_Diff(a0, b , _i, x0); \
Two_Sum( a1, _i, x2, x1)
#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
Two_One_Sum(a1, a0, b0, _j, _0, x0); \
Two_One_Sum(_j, _0, b1, x3, x2, x1)
#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
Two_One_Diff(a1, a0, b0, _j, _0, x0); \
Two_One_Diff(_j, _0, b1, x3, x2, x1)
#define Four_One_Sum(a3, a2, a1, a0, b, x4, x3, x2, x1, x0) \
Two_One_Sum(a1, a0, b , _j, x1, x0); \
Two_One_Sum(a3, a2, _j, x4, x3, x2)
#define Four_Two_Sum(a3, a2, a1, a0, b1, b0, x5, x4, x3, x2, x1, x0) \
Four_One_Sum(a3, a2, a1, a0, b0, _k, _2, _1, _0, x0); \
Four_One_Sum(_k, _2, _1, _0, b1, x5, x4, x3, x2, x1)
#define Four_Four_Sum(a3, a2, a1, a0, b4, b3, b1, b0, x7, x6, x5, x4, x3, x2, \
x1, x0) \
Four_Two_Sum(a3, a2, a1, a0, b1, b0, _l, _2, _1, _0, x1, x0); \
Four_Two_Sum(_l, _2, _1, _0, b4, b3, x7, x6, x5, x4, x3, x2)
#define Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b, x8, x7, x6, x5, x4, \
x3, x2, x1, x0) \
Four_One_Sum(a3, a2, a1, a0, b , _j, x3, x2, x1, x0); \
Four_One_Sum(a7, a6, a5, a4, _j, x8, x7, x6, x5, x4)
#define Eight_Two_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, x9, x8, x7, \
x6, x5, x4, x3, x2, x1, x0) \
Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b0, _k, _6, _5, _4, _3, _2, \
_1, _0, x0); \
Eight_One_Sum(_k, _6, _5, _4, _3, _2, _1, _0, b1, x9, x8, x7, x6, x5, x4, \
x3, x2, x1)
#define Eight_Four_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b4, b3, b1, b0, x11, \
x10, x9, x8, x7, x6, x5, x4, x3, x2, x1, x0) \
Eight_Two_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, _l, _6, _5, _4, _3, \
_2, _1, _0, x1, x0); \
Eight_Two_Sum(_l, _6, _5, _4, _3, _2, _1, _0, b4, b3, x11, x10, x9, x8, \
x7, x6, x5, x4, x3, x2)
/* Macros for multiplying expansions of various fixed lengths. */
#define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \
Split(b, bhi, blo); \
Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
Two_Sum(_i, _0, _k, x1); \
Fast_Two_Sum(_j, _k, x3, x2)
#define Four_One_Product(a3, a2, a1, a0, b, x7, x6, x5, x4, x3, x2, x1, x0) \
Split(b, bhi, blo); \
Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
Two_Sum(_i, _0, _k, x1); \
Fast_Two_Sum(_j, _k, _i, x2); \
Two_Product_Presplit(a2, b, bhi, blo, _j, _0); \
Two_Sum(_i, _0, _k, x3); \
Fast_Two_Sum(_j, _k, _i, x4); \
Two_Product_Presplit(a3, b, bhi, blo, _j, _0); \
Two_Sum(_i, _0, _k, x5); \
Fast_Two_Sum(_j, _k, x7, x6)
#define Two_Two_Product(a1, a0, b1, b0, x7, x6, x5, x4, x3, x2, x1, x0) \
Split(a0, a0hi, a0lo); \
Split(b0, bhi, blo); \
Two_Product_2Presplit(a0, a0hi, a0lo, b0, bhi, blo, _i, x0); \
Split(a1, a1hi, a1lo); \
Two_Product_2Presplit(a1, a1hi, a1lo, b0, bhi, blo, _j, _0); \
Two_Sum(_i, _0, _k, _1); \
Fast_Two_Sum(_j, _k, _l, _2); \
Split(b1, bhi, blo); \
Two_Product_2Presplit(a0, a0hi, a0lo, b1, bhi, blo, _i, _0); \
Two_Sum(_1, _0, _k, x1); \
Two_Sum(_2, _k, _j, _1); \
Two_Sum(_l, _j, _m, _2); \
Two_Product_2Presplit(a1, a1hi, a1lo, b1, bhi, blo, _j, _0); \
Two_Sum(_i, _0, _n, _0); \
Two_Sum(_1, _0, _i, x2); \
Two_Sum(_2, _i, _k, _1); \
Two_Sum(_m, _k, _l, _2); \
Two_Sum(_j, _n, _k, _0); \
Two_Sum(_1, _0, _j, x3); \
Two_Sum(_2, _j, _i, _1); \
Two_Sum(_l, _i, _m, _2); \
Two_Sum(_1, _k, _i, x4); \
Two_Sum(_2, _i, _k, x5); \
Two_Sum(_m, _k, x7, x6)
/* An expansion of length two can be squared more quickly than finding the */
/* product of two different expansions of length two, and the result is */
/* guaranteed to have no more than six (rather than eight) components. */
#define Two_Square(a1, a0, x5, x4, x3, x2, x1, x0) \
Square(a0, _j, x0); \
_0 = a0 + a0; \
Two_Product(a1, _0, _k, _1); \
Two_One_Sum(_k, _1, _j, _l, _2, x1); \
Square(a1, _j, _1); \
Two_Two_Sum(_j, _1, _l, _2, x5, x4, x3, x2)
REAL splitter; /* = 2^ceiling(p / 2) + 1. Used to split floats in half. */
REAL epsilon; /* = 2^(-p). Used to estimate roundoff errors. */
/* A set of coefficients used to calculate maximum roundoff errors. */
REAL resulterrbound;
REAL ccwerrboundA, ccwerrboundB, ccwerrboundC;
REAL o3derrboundA, o3derrboundB, o3derrboundC;
REAL iccerrboundA, iccerrboundB, iccerrboundC;
REAL isperrboundA, isperrboundB, isperrboundC;
/*****************************************************************************/
/* */
/* fast_expansion_sum_zeroelim() Sum two expansions, eliminating zero */
/* components from the output expansion. */
/* */
/* Sets h = e + f. See the long version of my paper for details. */
/* */
/* If round-to-even is used (as with IEEE 754), maintains the strongly */
/* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */
/* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */
/* properties. */
/* */
/*****************************************************************************/
#if 0
static int fast_expansion_sum_zeroelim(elen, e, flen, f, h) /* h cannot be e or f. */
int elen;
REAL *e;
int flen;
REAL *f;
REAL *h;
{
REAL Q;
INEXACT REAL Qnew;
INEXACT REAL hh;
INEXACT REAL bvirt;
REAL avirt, bround, around;
int eindex, findex, hindex;
REAL enow, fnow;
enow = e[0];
fnow = f[0];
eindex = findex = 0;
if ((fnow > enow) == (fnow > -enow)) {
Q = enow;
enow = e[++eindex];
} else {
Q = fnow;
fnow = f[++findex];
}
hindex = 0;
if ((eindex < elen) && (findex < flen)) {
if ((fnow > enow) == (fnow > -enow)) {
Fast_Two_Sum(enow, Q, Qnew, hh);
enow = e[++eindex];
} else {
Fast_Two_Sum(fnow, Q, Qnew, hh);
fnow = f[++findex];
}
Q = Qnew;
if (hh != 0.0) {
h[hindex++] = hh;
}
while ((eindex < elen) && (findex < flen)) {
if ((fnow > enow) == (fnow > -enow)) {
Two_Sum(Q, enow, Qnew, hh);
enow = e[++eindex];
} else {
Two_Sum(Q, fnow, Qnew, hh);
fnow = f[++findex];
}
Q = Qnew;
if (hh != 0.0) {
h[hindex++] = hh;
}
}
}
while (eindex < elen) {
Two_Sum(Q, enow, Qnew, hh);
enow = e[++eindex];
Q = Qnew;
if (hh != 0.0) {
h[hindex++] = hh;
}
}
while (findex < flen) {
Two_Sum(Q, fnow, Qnew, hh);
fnow = f[++findex];
Q = Qnew;
if (hh != 0.0) {
h[hindex++] = hh;
}
}
if ((Q != 0.0) || (hindex == 0)) {
h[hindex++] = Q;
}
return hindex;
}
#endif
/*****************************************************************************/
/* */
/* orient2dfast() Approximate 2D orientation test. Nonrobust. */
/* orient2dexact() Exact 2D orientation test. Robust. */
/* orient2dslow() Another exact 2D orientation test. Robust. */
/* orient2d() Adaptive exact 2D orientation test. Robust. */
/* */
/* Return a positive value if the points pa, pb, and pc occur */
/* in counterclockwise order; a negative value if they occur */
/* in clockwise order; and zero if they are collinear. The */
/* result is also a rough approximation of twice the signed */
/* area of the triangle defined by the three points. */
/* */
/* Only the first and last routine should be used; the middle two are for */
/* timings. */
/* */
/* The last three use exact arithmetic to ensure a correct answer. The */
/* result returned is the determinant of a matrix. In orient2d() only, */
/* this determinant is computed adaptively, in the sense that exact */
/* arithmetic is used only to the degree it is needed to ensure that the */
/* returned value has the correct sign. Hence, orient2d() is usually quite */
/* fast, but will run more slowly when the input points are collinear or */
/* nearly so. */
/* */
/*****************************************************************************/
/*****************************************************************************/
/* */
/* orient3dfast() Approximate 3D orientation test. Nonrobust. */
/* orient3dexact() Exact 3D orientation test. Robust. */
/* orient3dslow() Another exact 3D orientation test. Robust. */
/* orient3d() Adaptive exact 3D orientation test. Robust. */
/* */
/* Return a positive value if the point pd lies below the */
/* plane passing through pa, pb, and pc; "below" is defined so */
/* that pa, pb, and pc appear in counterclockwise order when */
/* viewed from above the plane. Returns a negative value if */
/* pd lies above the plane. Returns zero if the points are */
/* coplanar. The result is also a rough approximation of six */
/* times the signed volume of the tetrahedron defined by the */
/* four points. */
/* */
/* Only the first and last routine should be used; the middle two are for */
/* timings. */
/* */
/* The last three use exact arithmetic to ensure a correct answer. The */
/* result returned is the determinant of a matrix. In orient3d() only, */
/* this determinant is computed adaptively, in the sense that exact */
/* arithmetic is used only to the degree it is needed to ensure that the */
/* returned value has the correct sign. Hence, orient3d() is usually quite */
/* fast, but will run more slowly when the input points are coplanar or */
/* nearly so. */
/* */
/*****************************************************************************/
static REAL orient3dfast(REAL *pa, REAL *pb, REAL *pc, REAL *pd)
{
REAL adx, bdx, cdx;
REAL ady, bdy, cdy;
REAL adz, bdz, cdz;
adx = pa[0] - pd[0];
bdx = pb[0] - pd[0];
cdx = pc[0] - pd[0];
ady = pa[1] - pd[1];
bdy = pb[1] - pd[1];
cdy = pc[1] - pd[1];
adz = pa[2] - pd[2];
bdz = pb[2] - pd[2];
cdz = pc[2] - pd[2];
return adx * (bdy * cdz - bdz * cdy)
+ bdx * (cdy * adz - cdz * ady)
+ cdx * (ady * bdz - adz * bdy);
}
/*****************************************************************************/
/* */
/* inspherefast() Approximate 3D insphere test. Nonrobust. */
/* insphereexact() Exact 3D insphere test. Robust. */
/* insphereslow() Another exact 3D insphere test. Robust. */
/* insphere() Adaptive exact 3D insphere test. Robust. */
/* */
/* Return a positive value if the point pe lies inside the */
/* sphere passing through pa, pb, pc, and pd; a negative value */
/* if it lies outside; and zero if the five points are */
/* cospherical. The points pa, pb, pc, and pd must be ordered */
/* so that they have a positive orientation (as defined by */
/* orient3d()), or the sign of the result will be reversed. */
/* */
/* Only the first and last routine should be used; the middle two are for */
/* timings. */
/* */
/* The last three use exact arithmetic to ensure a correct answer. The */
/* result returned is the determinant of a matrix. In insphere() only, */
/* this determinant is computed adaptively, in the sense that exact */
/* arithmetic is used only to the degree it is needed to ensure that the */
/* returned value has the correct sign. Hence, insphere() is usually quite */
/* fast, but will run more slowly when the input points are cospherical or */
/* nearly so. */
/* */
/*****************************************************************************/
static REAL inspherefast(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL *pe)
{
REAL aex, bex, cex, dex;
REAL aey, bey, cey, dey;
REAL aez, bez, cez, dez;
REAL alift, blift, clift, dlift;
REAL ab, bc, cd, da, ac, bd;
REAL abc, bcd, cda, dab;
aex = pa[0] - pe[0];
bex = pb[0] - pe[0];
cex = pc[0] - pe[0];
dex = pd[0] - pe[0];
aey = pa[1] - pe[1];
bey = pb[1] - pe[1];
cey = pc[1] - pe[1];
dey = pd[1] - pe[1];
aez = pa[2] - pe[2];
bez = pb[2] - pe[2];
cez = pc[2] - pe[2];
dez = pd[2] - pe[2];
ab = aex * bey - bex * aey;
bc = bex * cey - cex * bey;
cd = cex * dey - dex * cey;
da = dex * aey - aex * dey;
ac = aex * cey - cex * aey;
bd = bex * dey - dex * bey;
abc = aez * bc - bez * ac + cez * ab;
bcd = bez * cd - cez * bd + dez * bc;
cda = cez * da + dez * ac + aez * cd;
dab = dez * ab + aez * bd + bez * da;
alift = aex * aex + aey * aey + aez * aez;
blift = bex * bex + bey * bey + bez * bez;
clift = cex * cex + cey * cey + cez * cez;
dlift = dex * dex + dey * dey + dez * dez;
return (dlift * abc - clift * dab) + (blift * cda - alift * bcd);
}
////////////////////////////////// end of predicates.c /////////////////////////////////
/*******************************************************************************
*
* delaunay.c - By Ross Hemsley Aug. 2009 - rh7223@bris.ac.uk.
*
* This file implements Delaunay meshing in 3D, using the edge flipping
* algorithm. To stop degenerecies arising from floating point errors, we use
* the geometical predicates provided in predicates.c - giving adaptive
* floating point arithmetic. We also remove degenerecies present in data
* caused by points which are coplanar, or cospherical. These points are removed
* by gradually adding random peterbations until the degenerecies are removed.
*
* This file has unit testing, which can be done by defining _TEST_ as shown
* seen below. The file can then be compiled by running:
*
* >gcc -O3 delaunay.c utils.c
*
* The executible created can be run to create a set of random points, which are
* then meshed and checked for Delaunayness.
*
*******************************************************************************/
#include <glib.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "assert.h"
#include <time.h>
/* These macros make code more readable. They allow us to access
the indexed elements of verticies directly. */
static void getRange(GwyDelaunayVertex *ps, gint n, GwyDelaunayVertex *min,
GwyDelaunayVertex *max, GwyDelaunayVertex *range, gint r);
static void initSuperSimplex(GwyDelaunayVertex *ps, gint n, GwyDelaunayMesh *m);
static void getFaceVerticies(simplex *s, gint i, GwyDelaunayVertex **p1, GwyDelaunayVertex **p2,
GwyDelaunayVertex **p3, GwyDelaunayVertex **p4 );
static void addSimplexToMesh(GwyDelaunayMesh *m, simplex *s);
static void removeSimplexFromMesh(GwyDelaunayMesh *m, simplex *s);
static simplex* findContainingSimplex(GwyDelaunayMesh *m, GwyDelaunayVertex *p);
static gint isDelaunay(simplex *s, GwyDelaunayVertex *p);
static simplex** swapSimplexNeighbour(simplex *s, simplex *old, simplex *new);
static arrayList* findNeighbours(GwyDelaunayVertex *v, simplex *s);
static simplex* newSimplex(GwyDelaunayMesh *m);
static void circumCenter(simplex *s, gdouble *out);
static void setNeighbours(arrayList *newTets);
static void vertexAdd(gdouble *a, gdouble *b, gdouble *out);
static void vertexSub(gdouble *a, gdouble *b, gdouble *out);
static void crossProduct(gdouble *b, gdouble *c, gdouble *out);
static gdouble squaredDistance(gdouble *a);
static gdouble scalarProduct(gdouble *a, gdouble *b);
static gdouble volumeOfTetrahedron(gdouble *a,gdouble *b, gdouble *c, gdouble *d);
static neighbourUpdate* initNeighbourUpdates(void);
static void resetNeighbourUpdates(neighbourUpdate *nu);
static void undoNeighbourUpdates(neighbourUpdate *nu);
static void pushNeighbourUpdate(neighbourUpdate *nu, simplex **ptr,
simplex *old);
static void freeNeighbourUpdates(neighbourUpdate *nu);
static void randomPerturbation(GwyDelaunayVertex *v, gint attempt);
/******************************************************************************/
/* Set this to be lower than the average distance between points. It is the
amount that we will shift points by when we detect degenerecies. We
gradually increase the value until the degenercy is removed */
#define PERTURBATION_VALUE 1e-9
#define SWAP(x,y) \
{ \
gdouble tmp; \
tmp = x; \
x = y; \
y = tmp; \
}
static simplex *newSimplex(GwyDelaunayMesh *m)
{
simplex *s = pop(m->deadSimplicies);
// Obviously, we aren't going to re-use the super simplex..
if (s==m->super) s=0;
if (!s)
{
s = g_new(simplex, 1);
}
s->s[0] = 0;
s->s[1] = 0;
s->s[2] = 0;
s->s[3] = 0;
return s;
}
/******************************************************************************/
// This will take a list of points, and a mesh struct, and create a
// Delaunay Tetrahedralisation.
void _gwy_delaunay_mesh_build(GwyDelaunayMesh *m, GwyDelaunayVertex* ps, gint n)
{
gint i,j;
// Seed the random function, we will use the random function to remove
// any degenerecies as we find them.
srand ( time(NULL) );
// We have no degenerecies to start with.
m->coplanar_degenerecies = 0;
m->cospherical_degenerecies = 0;
// This simplex will contain our entire point-set.
initSuperSimplex(ps, n, m);
addSimplexToMesh(m, m->super);
// Add each point to the mesh 1-by-1 using the Edge Flipping technique.
for (i=0; i<n; i++)
{
gwy_delaunay_add_point(&ps[i], m);
// Push conflicts to the memory pool.
for (j=0; j<arrayListSize(m->conflicts); j++)
push(m->deadSimplicies, getFromArrayList(m->conflicts, j));
// Reset the conflict and update lists.
emptyArrayList(m->conflicts);
emptyArrayList(m->updates);
// Clear out the old neighobur update structs. (We don't use them here).
resetNeighbourUpdates(m->neighbourUpdates);
//printf("Meshing: %d%%.\n%c[1A", (gint)((i+1)/(gdouble)n *100),27);
}
}
/******************************************************************************/
// return the value that we modified.
static simplex** swapSimplexNeighbour(simplex *s, simplex *old, simplex *new)
{
gint i,found=0;
// If this neighbour is on the exterior, we don't need to do anything.
if (!s) return NULL;
// We are going to go through each of the elements children to see which one
// points to the old simplex. When we find that value, we are going to swap
// it for the new simplex value.
for (i=0;i<4;i++)
{
if (s->s[i] == old)
{
found=1;
break;
}
}
if (found) //FIXME this was not here in original file
s->s[i] = new;
assert(found);
return &s->s[i];
}
/******************************************************************************/
// This is a slightly optimised method to find the containing simplex
// of a point. We go through each simplex, check to see which faces, if any
// face the point we are looking for. The first one we find that does, we
// follow that neighbour. If all the faces are oriented so that the point is
// not in front of them, then we know that we have found the containing simplex.
// It is likely to be provably O(n^1/2).
static simplex* findContainingSimplex(GwyDelaunayMesh *m, GwyDelaunayVertex *p)
{
// This will arbitrarily get the first simplex to consider.
// ideally we want to start from the middle, but chosing a random
// simplex will give us good performance in general.
listNode *iter = topOfLinkedList(m->tets);
simplex *s = nextElement(m->tets,&iter);
GwyDelaunayVertex *v1, *v2, *v3, *v4;
gint i;
for (i=0; i<4; i++)
{
// get the orientation of this face.
getFaceVerticies(s, i, &v1, &v2, &v3, &v4);
if ((orient3dfast(v1->v, v2->v, v3->v, p->v) < 0) && s->s[i])
{
// Go to the next simplex, and start the loop again.
s = s->s[i];
i = -1;
}
}
// All the orientation tests passed: the point lies within/on the simplex.
return s;
}
/******************************************************************************/
// Return, as 3 arrays of gdouble, the verticies of the face i of this simplex.
// This function aims to help us ensure consistant orientation.
// The last value is that of the remaining vertex which is left over.
static void getFaceVerticies(simplex *s, gint i, GwyDelaunayVertex **p1, GwyDelaunayVertex **p2,
GwyDelaunayVertex **p3, GwyDelaunayVertex **p4 )
{
switch (i)
{
case 0:
*p1 = s->p[0];
*p2 = s->p[1];
*p3 = s->p[2];
*p4 = s->p[3];
break;
case 1:
*p1 = s->p[3];
*p2 = s->p[1];
*p3 = s->p[0];
*p4 = s->p[2];
break;
case 2:
*p1 = s->p[0];
*p2 = s->p[2];
*p3 = s->p[3];
*p4 = s->p[1];
break;
case 3:
*p1 = s->p[3];
*p2 = s->p[2];
*p3 = s->p[1];
*p4 = s->p[0];
break;
}
}
/******************************************************************************/
// Add gradually larger random perturbations to this point, until we can
// get a sphere which is not degenerate.
static void randomPerturbation(GwyDelaunayVertex *v, gint attempt)
{
gint i;
for (i=0;i<3;i++)
{
// Get a [0,1] distributed random variable.
gdouble rand01 = (gdouble)rand()/((gdouble)RAND_MAX + 1);
// add a random perturbation to each component of this vertex.
gdouble p = (rand01-0.5) * PERTURBATION_VALUE * (attempt+1);
v->v[i] += p;
}
}
/******************************************************************************/
// This routine will return 0 if the simplex is no longer Delaunay with
// the addition of this new point, 1 if this simplex is still Delaunay
// with the addition of this new point, and -1 if this simplex is
// degenerate with the addition of this new point (i.e. if the simplex is
// co-spherical.)
static gint isDelaunay(simplex *s, GwyDelaunayVertex *p)
{
gdouble inSph;
// If the orientation is incorrect, then the output will be indeterministic.
// #if DEBUG >= 0
gdouble orientation = orient3dfast(s->p[0]->v,
s->p[1]->v,
s->p[2]->v,
s->p[3]->v);
if (orientation <= 0)
{
// printf("orientation error: %p, %lf\n",s,orientation);
// exit(1);
return -1;
}
// assert(orientation != 0);
// assert(orientation > 0);
//#endif
inSph = inspherefast(s->p[0]->v, s->p[1]->v, s->p[2]->v, s->p[3]->v, p->v);
// We have a degenerecy.
if (inSph == 0) return -1;
return inSph < 0;
}
/******************************************************************************/
// We assume that the list is correct on starting (i.e. contains no
// non-conflicting simplicies).
static void updateConflictingSimplicies(GwyDelaunayVertex *p, GwyDelaunayMesh *m)
{
gint i, isDel;
// Get at least one simplex which contains this point.
simplex *s0 = findContainingSimplex(m, p);
simplex *current;
// Go through each simplex, if it contains neighbours which are
// not already present, which are not in the list already,
// and which are not delaunay, we add them to the list of conflicts
stack *toCheck = newStack();
push(toCheck, s0);
while (!isEmpty(toCheck))
{
// pop the next one to check from the stack.
current = pop(toCheck);
isDel = isDelaunay(current,p);
// Check to see whether or not we have a degenerecy
if (isDel == -1)
{
m->cospherical_degenerecies ++;
i=0;
while( isDel == -1 )
{
randomPerturbation(p,i);
isDel = isDelaunay(current,p);
//printf("Degenerecy removing for %p, attempt: %d\n",current,i);
i++;
}
// Start this function again now that we have moved the point.
freeStack(toCheck,NULL);
emptyArrayList(m->conflicts);
updateConflictingSimplicies(p,m);
return;
}
if ((!isDel) && (!arrayListContains(m->conflicts, current)))
{
// add this simplex, and check its neighbours.
addToArrayList(m->conflicts, current);
for (i=0; i<4;i++)
if (current->s[i])
push(toCheck, current->s[i]);
}
}
freeStack(toCheck,NULL);
}
/******************************************************************************/
// Add a point by using the edge flipping algorithm.
static void gwy_delaunay_add_point(GwyDelaunayVertex *p, GwyDelaunayMesh *m)
{
gint i, j, k, attempt;
gdouble o;
simplex *new, *s, **update;
// If the list arguments are NULL, then we create local lists.
// Otherwise, we return the list of updates we did.
// This is so that we can easily perform point removal.
// This will set a list of conflicting non-Delaunay simplicies in the mesh
// structure.
updateConflictingSimplicies(p,m);
// We now have a list of simplicies which contain the point p within
// their circum-sphere.
// We now want to create a new tetrahedralisation in the polytope formed
// by removing the old simplicies.
// We know which faces we should connect to our point, by deleting every
// face which is shared by another conflicting simplex.
for (j=0; j< arrayListSize(m->conflicts); j++)
{
s = getFromArrayList(m->conflicts,j);
// Now go through each face, if it is not shared by any other face
// on the stack, we will create a new simplex which is joined to
// our point.
for (i=0; i<4; i++)
{
GwyDelaunayVertex *v1, *v2, *v3, *v4;
getFaceVerticies(s, i, &v1, &v2, &v3, &v4);
// Now, check to see whether or not this face is shared with any
// other simplicies in the list.
if (! arrayListContains(m->conflicts, s->s[i]))
{
// We will create a new simplex connecting this face to our point.
new = newSimplex(m);
new->p[0] = v1;
new->p[1] = v2;
new->p[2] = v3;
new->p[3] = p;
attempt = 0;
// Detect degenerecies resulting from coplanar points.
o = orient3dfast(v1->v, v2->v, v3->v, p->v);
if (o<=0)
{
m->coplanar_degenerecies ++;
while (o<=0)
{
randomPerturbation(p, attempt);
o = orient3dfast(v1->v, v2->v, v3->v, p->v);
attempt ++;
}
// We are going to have to start adding this point again.
// That means removing all changes we have done so far.
undoNeighbourUpdates(m->neighbourUpdates);
for (k=0; k<arrayListSize(m->updates); k++)
{
removeSimplexFromMesh(m, getFromArrayList(m->updates,k));
push(m->deadSimplicies, getFromArrayList(m->updates, k));
}
emptyArrayList(m->updates);
emptyArrayList(m->conflicts);
// Start adding this point again, now that we have
// (hopefully) removed the coplanar dependencies.
gwy_delaunay_add_point(p,m);
return;
}
// We know that every successful face will be pointing
// outwards from the point. We can therefore directly set the neighbour
// to be the same as the one that was with this face before.
new->s[0] = s->s[i];
// update, storing each neighbour pointer change we make.
update = swapSimplexNeighbour(s->s[i], s, new);
pushNeighbourUpdate(m->neighbourUpdates, update, s);
// This is a list of all the new tets created whilst adding
// this point.
addToArrayList(m->updates, new);
addSimplexToMesh(m, new);
}
}
}
// Connect up the ginternal neighbours of all our new simplicies.
setNeighbours(m->updates);
// Remove the conflicting simplicies.
for (i=0; i<arrayListSize(m->conflicts); i++)
{
s = getFromArrayList(m->conflicts, i);
removeSimplexFromMesh(m,s);
}
}
/******************************************************************************/
// Slightly quick and dirty way to connect up all the neighbours of the
// new simplicies.
static void setNeighbours(arrayList *newTets)
{
simplex *s, *s2;
GwyDelaunayVertex *v1, *v2, *v3, *t1, *t2, *t3, *tmp;
// Go through each new simplex.
gint i, j, k;
for (j=0; j<arrayListSize(newTets); j++)
{
s = getFromArrayList(newTets,j);
// These are the verticies on the 2-simplex pointing outwards from
// the current point.
v1 = s->p[0];
v2 = s->p[1];
v3 = s->p[2];
// We need to find neighbours for the edges (v1,v2) (v2,v3) (v3,v1)
// We will do this by going through every other simplex in the list,
// and checking to see if its outward pointing face shares any of these
// pairs. If it does, then we connect up the neighbours.
for (k=0; k<arrayListSize(newTets); k++)
{
s2 = getFromArrayList(newTets,k);
if (s == s2) continue;
// NOTE: we don't consider the outside face.
// We want to know which side the neighbours are on.
for (i=1; i<4; i++)
{
getFaceVerticies(s2, i, &t1, &t2, &t3, &tmp);
// We now want to see if any of the edges (v1,v2) (v2,v3) (v3,v1) are
// on this triangle:
if ( (v1 == t1 || v1 == t2 || v1 == t3) &&
(v2 == t1 || v2 == t2 || v2 == t3) )
s->s[1] = s2;
else if ( (v2 == t1 || v2 == t2 || v2 == t3) &&
(v3 == t1 || v3 == t2 || v3 == t3) )
s->s[3] = s2;
else if ( (v3 == t1 || v3 == t2 || v3 == t3) &&
(v1 == t1 || v1 == t2 || v1 == t3) )
s->s[2] = s2;
}
}
}
}
/******************************************************************************/
// Does this simplex have the point p? - notice that we are comparing pointersa
// and not coordinates: so that duplicate coordinates will evaluate to not
// equal.
static gint gwy_delaunay_point_on_simplex(GwyDelaunayVertex *p, simplex *s)
{
if (!s) return 0;
if (p == s->p[0] || p == s->p[1] || p == s->p[2] || p == s->p[3])
return 1;
return 0;
}
/******************************************************************************/
// Given a point and a list of simplicies, we want to find any valid
// neighbour of this point.
static simplex *gwy_delaunay_find_any_neighbour(GwyDelaunayVertex *v, arrayList *tets)
{
gint i;
for (i=0; i<arrayListSize(tets); i++)
{
simplex *s = getFromArrayList(tets,i);
if (gwy_delaunay_point_on_simplex(v, s)) return s;
}
return NULL;
}
/******************************************************************************/
// This function will find the neighbours of a given point.
// given a simplex and at least one neighbour.
// This is much more efficient than the previous Natural Neighobour method,
// because we take a local simplex and then check the neighbourhood for
// matching simplicies.
static arrayList *findNeighbours(GwyDelaunayVertex *v, simplex *s)
{
gint i;
arrayList *l = newArrayList();
stack *toCheck = newStack();
simplex *current;
push(toCheck, s);
while (!isEmpty(toCheck))
{
// pop the next one to check from the stack.
current = pop(toCheck);
// We try to chose the things most likely to fail first, to take
// advantage of lazy evaluation.
if ( gwy_delaunay_point_on_simplex(v, current) && (! arrayListContains(l, current)) )
{
// add this simplex, and check its neighbours.
addToArrayList(l, current);
for (i=0; i<4;i++)
if (current->s[i])
push(toCheck, current->s[i]);
}
}
freeStack(toCheck,NULL);
return l;
}
/******************************************************************************/
// Given a simplex, we want to find the correctly oriented verticies which are
// not connected
static void getRemainingFace(simplex *s, GwyDelaunayVertex *p, GwyDelaunayVertex **v1,
GwyDelaunayVertex **v2,
GwyDelaunayVertex **v3 )
{
gint i,found=0;
GwyDelaunayVertex *tmp;
for (i=0; i<4; i++)
{
getFaceVerticies(s, i, v1, v2, v3, &tmp);
if (tmp == p)
{
found = 1;
break;
}
}
// Make sure that we found the point.
assert(found);
}
/******************************************************************************/
static gint isNeighbour(simplex *s0, simplex *s1)
{
gint i;
for (i=0;i<4;i++)
if (s0->s[i] == s1) return 1;
return 0;
}
/******************************************************************************/
static voronoiCell *newVoronoiCell(GwyDelaunayMesh *m, gint n)
{
gint i;
voronoiCell *vc ;
vc = pop(m->deadVoronoiCells);
if (!vc)
{
vc = malloc(sizeof(voronoiCell));
vc->verticies = newArrayList();
vc->nallocated = 0;
vc->points = 0;
#ifdef DEBUG
VORONOI_MALLOC ++;
#endif
} else {
emptyArrayList(vc->verticies);
}
// Allocate memory for the point list.
// We do a realloc, because we want to expand the array to the required size,
// and then not have to do any more alloc's later. - This is basically
// a memory pooling technique.
if (n > vc->nallocated)
{
vc->points = realloc(vc->points, sizeof(gdouble)*n);
for (i=vc->nallocated; i<n; i++)
{
#ifdef DEBUG
VERTEX_MALLOC++;
#endif
vc->points[i] = malloc(sizeof(gdouble)*3);
}
vc->nallocated = n;
}
vc->n = n;
return vc;
}
/******************************************************************************/
static void addVertexToVoronoiCell(voronoiCell *vc, gdouble *v)
{
addToArrayList(vc->verticies, v);
}
/******************************************************************************/
// We use a NULL pointer as a seperator between different faces.
static void startNewVoronoiFace(voronoiCell *vc)
{
addToArrayList(vc->verticies, NULL);
}
/******************************************************************************/
// Given a list of conflicts from the last insert, a list of updates
// from the last insert, and the mesh. We can 'roll-back' the mesh to its
// previous state.
static void gwy_delaunay_remove_point(GwyDelaunayMesh *m)
{
gint i;
simplex *s;
for (i=0; i< arrayListSize(m->conflicts); i++)
{
s = getFromArrayList(m->conflicts,i);
addSimplexToMesh(m,s);
}
undoNeighbourUpdates(m->neighbourUpdates);
for (i=0; i<arrayListSize(m->updates); i++)
{
s = getFromArrayList(m->updates, i);
removeSimplexFromMesh(m,s);
}
}
/******************************************************************************/
// This will take a voronoi cell and calculate the volume.
// the point p is the point which the voronoi cell is defined about.
static gdouble gwy_delaunay_voronoi_cell_volume(voronoiCell *vc, GwyDelaunayVertex *p)
{
gint i,j;
gdouble volume = 0;
for (i=0; i<arrayListSize(vc->verticies); i++)
{
gdouble *thisV;
gdouble *firstV;
gdouble *lastV = NULL;
// Calculate the center point of this face.
gdouble center[3] = {0,0,0};
// Find the center point of this vertex.
for (j=i; j<arrayListSize(vc->verticies); j++)
{
thisV = getFromArrayList(vc->verticies, j);
// We have reached the next face.
if (!thisV) break;
vertexAdd(thisV, center, center);
}
// This will give us the center point of the face.
gwy_delaunay_vertex_by_scalar(center, 1/(gdouble)(j-i), center);
// First vertex on the face.
firstV = getFromArrayList(vc->verticies, i);
lastV = NULL;
for (j=i; j<arrayListSize(vc->verticies); j++)
{
// Get the current vertex from the face.
thisV = getFromArrayList(vc->verticies,j);
// We've reached the end of this face.
if (thisV == NULL)
{
i=j;
break;
}
// If we have two points to join up, add the volume.
if (lastV)
volume += volumeOfTetrahedron(thisV, lastV, p->v, center);
else
firstV = thisV;
lastV = thisV;
}
// Add the first segment.
volume += volumeOfTetrahedron(lastV, firstV, p->v, center);
}
assert(volume>0);
return volume;
}
/******************************************************************************/
// This will give us the volume of the voronoi cell about the point p.
// We pass a point, at least one simplex containing that point, and the mesh.
static voronoiCell* gwy_delaunay_get_voronoi_cell(GwyDelaunayVertex *point, simplex *s0, GwyDelaunayMesh *m)
{
simplex *s;
// Find the Natural Neighbour verticies of this point.
arrayList *neighbours = findNeighbours(point, s0);
gint n = arrayListSize(neighbours);
simplex **simps = (simplex**)g_alloca(sizeof(simplex*)*n);
voronoiCell *vc;
gint i, j = 0;
gint* done = (gint*)g_alloca(sizeof(gint)*3*n);
GwyDelaunayVertex **edges = (GwyDelaunayVertex**)g_alloca(sizeof(GwyDelaunayVertex*)*3*n);
GwyDelaunayVertex *v1, *v2, *v3;
gint first, current, lastConsidered;
gint match;
// If no neighbours were found, it could be because we are trying to
// get a cell outside of the points
if (n==0)
{
// if (!simplexContainsPoint(m->super, point))
// gwy_fprintf(stderr,"Error: point outside of delaunay triangulation. - "
// "try extending the super-simplex and re-starting.\n");
// else
// gwy_fprintf(stderr, "Error: No neighbours found for point! - mesh appears "
// "to be degenerate.\n");
// exit(1);
return NULL;
}
// Create a new voronoi cell.
vc = newVoronoiCell(m,n);
for (i=0; i<arrayListSize(neighbours); i++)
{
s = getFromArrayList(neighbours, i);
getRemainingFace(s, point, &v1, &v2, &v3);
// Add this simplex to the list note we add three points for each.
simps[i] = s;
edges[3*i] = v1;
edges[3*i+1] = v2;
edges[3*i+2] = v3;
done[3*i] = 0;
done[3*i+1] = 0;
done[3*i+2] = 0;
// Calculate the circumcenter of this simplex.
circumCenter(s, vc->points[i]);
}
// For every edge that is in the list, we are going to get the first simplex
// which is incident to it, and then draw a line from it to the next
// neighbour that it is incident to it. This next neighbour will be chosen
// because it is NOT the last one we considered.
// We are effectively rotating around each edge which spans from the point
// to one of its natural neighbours, and storing the circum-centers of
// the simplicies that we found.
for (i=0; i<3*n; i++)
{
// We don't want to recompute edges.
if (done[i]) continue;
// This is the current simplex.
// We are going to find a neighbour for it, which shares an edge,
// and is NOT equal to lastConsidered.
first = i;
current = i;
lastConsidered = -1;
// Create this voronoi face.
do {
match=0;
for (j=0; j < 3*n; j++)
{
if (done[j]) continue;
// if (done[j]) continue;
// Is this edge shared?
// Is this simplex a neighbour of the current simplex?
// Are we making progress: is this a new neighbour?
if ((edges[i] == edges[j]) && j != lastConsidered
&& isNeighbour(simps[current/3], simps[j/3]))
{
done[j] = 1;
match = 1;
// Add this vertex to this face of this cell.
addVertexToVoronoiCell(vc, vc->points[j/3]);
lastConsidered = current;
current = j;
break;
}
}
} while (match && (current != first));
startNewVoronoiFace(vc);
}
freeArrayList(neighbours, NULL);
return vc;
}
/******************************************************************************/
static void gwy_delaunay_free_voronoi_cell(voronoiCell *vc, GwyDelaunayMesh *m)
{
// We just push the cell to the memory pool.
// We can free the memory pools manually, or let the program do it
// automatically at the end.
push(m->deadVoronoiCells, vc);
}
/******************************************************************************/
// We should make sure that we only use these two functions for ginteracting
// with the global simplex list, otherwise the program will behave
// indeterministically.
static void addSimplexToMesh(GwyDelaunayMesh *m, simplex *s)
{
s->node = addToLinkedList(m->tets, s);
}
/******************************************************************************/
static void removeSimplexFromMesh(GwyDelaunayMesh *m, simplex *s)
{
// The simplex has a special pointer which gives its location in the mesh
// linked list. This allows us to easily remove it from the list.
removeFromLinkedList(m->tets, s->node);
}
/******************************************************************************/
// This will create a 'super simplex' that contains all of our data to form a
// starting point for our triangulation.
static void initSuperSimplex(GwyDelaunayVertex *ps, gint n, GwyDelaunayMesh *m)
{
gint i;
// Get the range of our data set.
GwyDelaunayVertex min,max,range;
getRange(ps, n, &min, &max, &range,1);
m->super = newSimplex(m);
// Make the super simplex bigger! TODO check this !
// vertexByScalar(range.v, 4, range.v);
//printf("range is %g %g %g %g %g %g\n", min.X, min.Y, min.Z, max.X, max.Y, max.Z);
// We will go clockwise around the base, and then do the top.
m->superVerticies[0].X = min.X + range.X/2;
m->superVerticies[0].Y = max.Y + 3*range.Y;
m->superVerticies[0].Z = min.Z - range.Z;
m->superVerticies[1].X = max.X + 2*range.X;
m->superVerticies[1].Y = min.Y - 2*range.Y;
m->superVerticies[1].Z = min.Z - range.Z;
m->superVerticies[2].X = min.X - 2*range.X;
m->superVerticies[2].Y = min.Y - 2*range.Y;
m->superVerticies[2].Z = min.Z - range.Z;
m->superVerticies[3].X = min.X + range.X/2;
m->superVerticies[3].Y = min.Y + range.Y/2;
m->superVerticies[3].Z = max.Z + 2*range.Z;
// The super-simplex doesn't have any neighbours.
for (i=0;i<4;i++)
{
m->superVerticies[i].index = 0;
m->super->p[i] = &m->superVerticies[i];
m->super->s[i] = NULL;
}
}
/******************************************************************************/
// We are using two stacks, instead of a struct, because it gives us good
// memory advantages. - We will always want about the same number of
// neighbour updates: using two array-based stacks means that we can always have
// that memory allocated: we should not have to do any memory reallocation
// for the neighbour updating.
// We use a function, so that the process becomes atomic: we don't want
// to end up with the two stacks being incoherent!
static void pushNeighbourUpdate(neighbourUpdate *nu, simplex **ptr, simplex *old)
{
push(nu->ptrs, ptr);
push(nu->old, old);
}
/******************************************************************************/
static void freeNeighbourUpdates(neighbourUpdate *nu)
{
freeStack(nu->ptrs, free);
freeStack(nu->old, free);
free(nu);
}
/******************************************************************************/
// We will go through, and use our neighbour update list to change the
// neighbour values back to their originals.
static void undoNeighbourUpdates(neighbourUpdate *nu)
{
simplex **thisPtr;
simplex *thisSimplex;
// We use isEmpty, because the pointers might sometimes be NULL.
while (!isEmpty(nu->ptrs))
{
thisPtr = pop(nu->ptrs);
thisSimplex = pop(nu->old);
if (thisPtr)
*thisPtr = thisSimplex;
}
}
/******************************************************************************/
static void resetNeighbourUpdates(neighbourUpdate *nu)
{
// This will empty the stacks, without freeing any memory. This is the key
// to this 'memory-saving hack'.
emptyStack(nu->ptrs);
emptyStack(nu->old);
}
/******************************************************************************/
static neighbourUpdate *initNeighbourUpdates(void)
{
neighbourUpdate *nu = malloc(sizeof(neighbourUpdate));
nu->ptrs = newStack();
nu->old = newStack();
return nu;
}
/******************************************************************************/
// Allocate all the strucutres required to magintain a mesh in memory.
GwyDelaunayMesh *_gwy_delaunay_mesh_new()
{
// Create the struct to hold all of the data strucutres.
GwyDelaunayMesh *m = g_new(GwyDelaunayMesh, 1);
// Pointer to the super simplex.
m->super = NULL;
// A linked list of simplicies: We can actually remove this without losing
// any functionality (but it is useful for testing etc.).
m->tets = newLinkedList();
// Instead of freeing old simplicies/voronoi cells, we put them on a stack
// and reuse them as necesary.
m->deadSimplicies = newStack();
m->deadVoronoiCells = newStack();
// This is an array of currently conflicting simplicies.
m->conflicts = newArrayList();
// This is an array of the most recently added simplicies.
m->updates = newArrayList();
// This is an array describing the most recent neighbour updates performed.
m->neighbourUpdates = initNeighbourUpdates();
return m;
}
/******************************************************************************/
void _gwy_delaunay_mesh_free(GwyDelaunayMesh *m)
{
#ifdef DEBUG
printf("Mallocs for vertex: %d.\n", VERTEX_MALLOC);
printf("Mallocs for simplex: %d.\n", SIMPLEX_MALLOC);
printf("Mallocs for voronoi: %d.\n", VORONOI_MALLOC);
#endif
free(m->super);
freeStack(m->deadSimplicies, free);
while(!isEmpty(m->deadVoronoiCells))
{
voronoiCell *vc = pop(m->deadVoronoiCells);
gint i;
for (i=0;i<vc->nallocated; i++)
free(vc->points[i]);
free(vc->points);
freeArrayList(vc->verticies, NULL);
free(vc);
}
freeStack(m->deadVoronoiCells, NULL);
freeLinkedList(m->tets, free);
freeArrayList(m->conflicts, free);
freeArrayList(m->updates, NULL);
freeNeighbourUpdates(m->neighbourUpdates);
free(m);
}
/******************************************************************************/
// This will give us the volume of the arbitrary tetrahedron formed by
// v1, v2, v3, v4
// All arguments are arrays of length three of gdoubles.
static gdouble volumeOfTetrahedron(gdouble *a, gdouble *b, gdouble *c, gdouble *d)
{
gdouble a_d[3], b_d[3], c_d[3], cross[3], v;
vertexSub(a,d, a_d);
vertexSub(b,d, b_d);
vertexSub(c,d, c_d);
crossProduct(b_d, c_d, cross);
v = scalarProduct(a_d, cross)/(gdouble)6;
return (v >= 0) ? v : -v;
}
/******************************************************************************/
static gdouble squaredDistance(gdouble *a)
{
return scalarProduct(a,a);
}
/******************************************************************************/
// Take the cross product of two verticies and put it in the vertex 'out'.
static void crossProduct(gdouble *b, gdouble *c, gdouble *out)
{
out[0] = b[1] * c[2] - b[2] * c[1];
out[1] = b[2] * c[0] - b[0] * c[2];
out[2] = b[0] * c[1] - b[1] * c[0];
}
/******************************************************************************/
static gdouble scalarProduct(gdouble *a, gdouble *b)
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
/******************************************************************************/
static void vertexSub(gdouble *a, gdouble *b, gdouble *out)
{
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
}
/******************************************************************************/
static void vertexAdd(gdouble *a, gdouble *b, gdouble *out)
{
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
}
/******************************************************************************/
// Note that this modifies the actual value of the given vertex.
static void gwy_delaunay_vertex_by_scalar(gdouble *a, gdouble b, gdouble *out)
{
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
}
/******************************************************************************/
// This function will compute the circumcenter of a given simplex.
// -it returns the radius.-
static void circumCenter(simplex *s, gdouble *out)
{
GwyDelaunayVertex *a, *b, *c, *d;
gdouble b_a[3] , c_a[3] , d_a[3],
cross1[3], cross2[3], cross3[3],
mult1[3] , mult2[3] , mult3[3],
sum[3];
gdouble denominator;
getFaceVerticies(s, 0, &a, &b, &c, &d);
// Calculate diferences between points.
vertexSub(b->v, a->v, b_a);
vertexSub(c->v, a->v, c_a);
vertexSub(d->v, a->v, d_a);
// Calculate first cross product.
crossProduct(b_a, c_a, cross1);
// Calculate second cross product.
crossProduct(d_a, b_a, cross2);
// Calculate third cross product.
crossProduct(c_a, d_a, cross3);
gwy_delaunay_vertex_by_scalar(cross1, squaredDistance(d_a), mult1);
gwy_delaunay_vertex_by_scalar(cross2, squaredDistance(c_a), mult2);
gwy_delaunay_vertex_by_scalar(cross3, squaredDistance(b_a), mult3);
// Add up the sum of the numerator.
vertexAdd(mult1, mult2, sum);
vertexAdd(mult3, sum , sum);
// Calculate the denominator.
denominator = 2*scalarProduct(b_a, cross3);
// Do the division, and output to out.
gwy_delaunay_vertex_by_scalar(sum, 1/(gdouble)(denominator), out);
vertexAdd(out, a->v, out);
// Calculate the radius of this sphere. - We don't actually need this.
// But if we need it for debugging, we can add it back in.
// return sqrt((gdouble)squaredDistance(sum))/(gdouble)denominator;
}
/******************************************************************************/
static void getRange(GwyDelaunayVertex *ps, gint n, GwyDelaunayVertex *min, GwyDelaunayVertex *max, GwyDelaunayVertex *range, G_GNUC_UNUSED gint r)
{
gint i;
*min = ps[0];
*max = ps[0];
for (i=0; i<n; i++)
{
if (0)
{
ps[i].X += ((gdouble)rand() / ((gdouble)RAND_MAX + 1) -0.5);
ps[i].Y += ((gdouble)rand() / ((gdouble)RAND_MAX + 1) -0.5);
ps[i].Z += ((gdouble)rand() / ((gdouble)RAND_MAX + 1) -0.5);
}
max->X = MAX(max->X, ps[i].X);
max->Y = MAX(max->Y, ps[i].Y);
max->Z = MAX(max->Z, ps[i].Z);
min->X = MIN(min->X, ps[i].X);
min->Y = MIN(min->Y, ps[i].Y);
min->Z = MIN(min->Z, ps[i].Z);
}
for (i=0;i<3;i++)
range->v[i] = max->v[i] - min->v[i];
}
/******************************************************************************/
GwyDelaunayVertex *_gwy_delaunay_vertex_new(gdouble *x, gdouble *y, gdouble *z,
gdouble *u, gdouble *v, gdouble *w, gint n)
{
GwyDelaunayVertex* ps = g_new(GwyDelaunayVertex, n);
gint i;
for (i=0; i<n; i++)
{
ps[i].X = x[i];
ps[i].Y = y[i];
ps[i].Z = z[i];
ps[i].U = u[i];
ps[i].V = v[i];
ps[i].W = w[i];
ps[i].voronoiVolume = -1;
//printf("Loading: %d: %g %g %g %g %g %g\n", i, ps[i].X, ps[i].Y, ps[i].Z, ps[i].U, ps[i].V, ps[i].W);
}
return ps;
}
static void lastNaturalNeighbours(GwyDelaunayVertex *v, GwyDelaunayMesh *m, arrayList *neighbours,
arrayList *neighbourSimplicies)
{
gint i, j;
simplex *this;
for (i=0; i<arrayListSize(m->updates); i++)
{
this = getFromArrayList(m->updates,i);
for (j=0; j<4; j++)
{
if (this->p[j] != v && (! arrayListContains(neighbours, this->p[j])) )
{
if ((! gwy_delaunay_point_on_simplex(this->p[j], m->super)))
{
addToArrayList(neighbours, this->p[j]);
addToArrayList(neighbourSimplicies, this);
}
}
}
}
}
/******************************************************************************/
// This function will interpolate the value of a new vertex in a given
// vector field.
void _gwy_delaunay_mesh_interpolate3_3(GwyDelaunayMesh *m, gdouble x, gdouble y, gdouble z,
gdouble *u, gdouble *v, gdouble *w)
{
gint i;
arrayList *neighbours;
arrayList *neighbourSimplicies;
gdouble *neighbourVolumes;
gdouble pointVolume;
gdouble value[3] = {0,0,0};
gdouble sum, weight;
simplex *s;
voronoiCell *pointCell;
GwyDelaunayVertex *thisVertex;
simplex *thisSimplex;
voronoiCell *vc;
GwyDelaunayVertex p;
p.X = x;
p.Y = y;
p.Z = z;
p.index = -1;
p.voronoiVolume = -1;
// Add the point to the Delaunay Mesh - storing the original state.
gwy_delaunay_add_point(&p, m);
// Find the natural neighbours of the inserted point, and also keep
// a list of an arbitrary neighbouring simplex, this will give us faster
// neighbour lookup later.
neighbours = newArrayList();
neighbourSimplicies = newArrayList();
lastNaturalNeighbours(&p, m, neighbours, neighbourSimplicies);
// Calculate the volumes of the Voronoi Cells of the natural neighbours.
neighbourVolumes = g_new(gdouble, arrayListSize(neighbours));
// Calculate the 'before' volumes of each voronoi cell.
for (i=0; i<arrayListSize(neighbours); i++)
{
thisVertex = getFromArrayList(neighbours, i);
thisSimplex = getFromArrayList(neighbourSimplicies,i);
vc = gwy_delaunay_get_voronoi_cell(thisVertex, thisSimplex, m);
neighbourVolumes[i] = gwy_delaunay_voronoi_cell_volume(vc, thisVertex);
gwy_delaunay_free_voronoi_cell(vc,m);
}
// Calculate the volume of the new point's Voronoi Cell.
// We just need any neighbour simplex to use as an entry point into the
// mesh.
s = getFromArrayList(neighbourSimplicies,0);
pointCell = gwy_delaunay_get_voronoi_cell(&p, s, m);
pointVolume = gwy_delaunay_voronoi_cell_volume(pointCell, &p);
gwy_delaunay_free_voronoi_cell(pointCell,m);
// Remove the last point.
gwy_delaunay_remove_point(m);
// Calculate the 'stolen' volume of each neighbouring Voronoi Cell,
// by calculating the original volumes, and subtracting the volumes
// given when the point was added.
for (i=0; i<arrayListSize(neighbours); i++)
{
thisVertex = getFromArrayList(neighbours, i);
// All verticies have -1 here to start with, so we can tell if
// we have already calculated this value, and use it again here.
if (thisVertex->voronoiVolume < 0)
{
s = gwy_delaunay_find_any_neighbour(thisVertex, m->conflicts);
vc = gwy_delaunay_get_voronoi_cell(thisVertex, s, m);
thisVertex->voronoiVolume = gwy_delaunay_voronoi_cell_volume(vc, thisVertex);
gwy_delaunay_free_voronoi_cell(vc,m);
}
neighbourVolumes[i] = thisVertex->voronoiVolume-neighbourVolumes[i];
}
// Weight the data values of each natural neighbour using the volume
// ratios.
sum = 0;
for (i=0; i<arrayListSize(neighbours); i++)
{
thisVertex = getFromArrayList(neighbours, i);
assert (neighbourVolumes[i]>= -0.001);
// Get the weight of this vertex.
weight = neighbourVolumes[i]/pointVolume;
// Add this componenet to the result.
sum += weight;
value[0] += weight * thisVertex->U;
value[1] += weight * thisVertex->V;
value[2] += weight * thisVertex->W;
}
// Normalise the output.
gwy_delaunay_vertex_by_scalar(value, (double)1/(double)sum, value);
// If the sum is 0 or less, we will get meaningless output.
// If it is slightly greater than 1, this could be due to rounding errors.
// We tolerate up to 0.1 here.
if (sum <= 0 || sum > 1.1)
{
//gwy_fprintf(stderr, "Error: sum value: %lf, expected range (0,1].\n",sum);
//gwy_fprintf(stderr, "There could be a degenerecy in the mesh, either retry "
// "(since input is randomised this may resolve the problem), "
// "or try adding a random peterbation to every point.\n");
// exit(1);
}
// Put the dead simplicies in the memory pool.
for (i=0; i<arrayListSize(m->updates); i++)
push(m->deadSimplicies, getFromArrayList(m->updates, i));
// Free all the memory that we allocated whilst interpolating this point.
emptyArrayList(m->conflicts);
emptyArrayList(m->updates);
// Free memory associated with adding this point.
freeArrayList(neighbours, NULL);
freeArrayList(neighbourSimplicies, NULL);
free(neighbourVolumes);
// set the output.
*u = value[0];
*v = value[1];
*w = value[2];
}
|