1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
/*
* $Id: simplefft.c 24831 2022-05-19 13:33:34Z yeti-dn $
* Copyright (C) 2003-2022 David Necas (Yeti), Petr Klapetek.
* E-mail: yeti@gwyddion.net, klapetek@gwyddion.net.
*
* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with this program; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <fftw3.h>
#include <libgwyddion/gwymath.h>
#include <libprocess/simplefft.h>
#include <libprocess/inttrans.h>
#include "gwyfftw.h"
static guint smooth_upper_bound(guint n);
typedef gdouble (*GwyFFTWindowingFunc)(gint i, gint n);
static gdouble gwy_fft_window_hann (gint i, gint n);
static gdouble gwy_fft_window_hamming (gint i, gint n);
static gdouble gwy_fft_window_blackman (gint i, gint n);
static gdouble gwy_fft_window_lanczos (gint i, gint n);
static gdouble gwy_fft_window_welch (gint i, gint n);
static gdouble gwy_fft_window_rect (gint i, gint n);
static gdouble gwy_fft_window_nuttall (gint i, gint n);
static gdouble gwy_fft_window_flat_top (gint i, gint n);
static gdouble gwy_fft_window_kaiser25 (gint i, gint n);
static GRWLock gwy_fftw_lock;
/* The order must match GwyWindowingType enum */
static const GwyFFTWindowingFunc windowings[] = {
NULL, /* none */
&gwy_fft_window_hann,
&gwy_fft_window_hamming,
&gwy_fft_window_blackman,
&gwy_fft_window_lanczos,
&gwy_fft_window_welch,
&gwy_fft_window_rect,
&gwy_fft_window_nuttall,
&gwy_fft_window_flat_top,
&gwy_fft_window_kaiser25,
};
/**
* gwy_fft_find_nice_size:
* @size: Transform size.
*
* Finds a nice-for-FFT array size.
*
* Here ‘nice’ means three properties are guaranteed: it is greater than or equal to @size; it can be directly used
* with current FFT backend without scaling (since 2.8 this is true for any size); and the transform is fast, i.e. the
* number is highly factorable.
*
* To be compatible with Gwyddion <= 2.7 one has to pass only data fields and lines with sizes returned by this
* function to raw integral transforms. Otherwise this function is mainly useful if you extend and pad the input data
* for other reasons and thus have the freedom to choose a convenient transform size.
*
* Returns: A nice FFT array size.
**/
gint
gwy_fft_find_nice_size(gint size)
{
if (size <= 16)
return size;
size = smooth_upper_bound(size);
/* Ensure the result is even. This helps with a number of FFTW routines. When size is odd then size+1 is even,
* i.e. it has factor 2. Since smooth_upper_bound() preserves all the small factors, we know we will get an even
* number. */
if (size % 2)
size = smooth_upper_bound(size+1);
return size;
}
/**
* smooth_upper_bound:
* @n: A number.
*
* Finds a smooth (highly factorable) number larger or equal to @n.
*
* Returns: A smooth number larger or equal to @n.
**/
static guint
smooth_upper_bound(guint n)
{
static const guint primes[] = { 2, 3, 5, 7 };
guint j, p, r;
for (r = 1; ; ) {
/* the factorable part */
for (j = 0; j < G_N_ELEMENTS(primes); j++) {
p = primes[j];
while (n % p == 0) {
n /= p;
r *= p;
}
}
if (n == 1)
return r;
/* gosh... make it factorable again */
n++;
}
}
/**
* gwy_fft_simple:
* @dir: Transformation direction.
* @n: Number of data points. Note only certain transform sizes are implemented. If gwy_fft_simple() is the current
* FFT backend, then gwy_fft_find_nice_size() can provide accepted transform sizes. If gwy_fft_simple() is not the
* current FFT backend, you should not use it.
* @istride: Input data stride.
* @in_re: Real part of input data.
* @in_im: Imaginary part of input data.
* @ostride: Output data stride.
* @out_re: Real part of output data.
* @out_im: Imaginary part of output data.
*
* Performs a DFT algorithm.
*
* This is a low-level function that used to be employed by other FFT functions when no better backend was available.
* Since version 2.49 it just calls the corresponding FFTW routine.
*
* Strides are distances between samples in input and output arrays. Use 1 for normal `dense' arrays. To use
* gwy_fft_simple() with interleaved arrays, that is with alternating real and imaginary data, call it with
* @istride=2, @in_re=@complex_array, @in_im=@complex_array+1 (and similarly for output arrays).
*
* The output is symmetrically normalized by square root of @n for both transform directions. By performing forward
* and then backward transform, you will obtain the original array (up to rounding errors).
**/
void
gwy_fft_simple(GwyTransformDirection dir,
gint n,
gint istride,
const gdouble *in_re,
const gdouble *in_im,
gint ostride,
gdouble *out_re,
gdouble *out_im)
{
fftw_complex *cin, *cout;
fftw_plan plan;
gdouble q;
gint i, sign;
if (G_UNLIKELY(!n))
return;
g_return_if_fail(istride > 0);
g_return_if_fail(ostride > 0);
/* Planner can overwrite the input arrays, so we must allocate temporary buffers. Since we do that, we can
* compactify the data and use basic DFT routines. */
cin = gwy_fftw_new_complex(n);
cout = gwy_fftw_new_complex(n);
/* Yes, the directions are swapped. */
sign = (dir == GWY_TRANSFORM_DIRECTION_BACKWARD ? FFTW_FORWARD : FFTW_BACKWARD);
plan = gwy_fftw_plan_dft_1d(n, cin, cout, sign, FFTW_DESTROY_INPUT | FFTW_ESTIMATE);
for (i = 0; i < n; i++) {
gwycreal(cin[i]) = *in_re;
gwycimag(cin[i]) = *in_im;
in_re += istride;
in_im += istride;
}
gwy_fftw_execute(plan);
fftw_destroy_plan(plan);
fftw_free(cin);
q = 1.0/sqrt(n);
for (i = 0; i < n; i++) {
*out_re = q*gwycreal(cout[i]);
*out_im = q*gwycimag(cout[i]);
in_re += ostride;
in_im += ostride;
}
fftw_free(cout);
}
static gdouble
gwy_fft_window_hann(gint i, gint n)
{
gdouble x = 2*G_PI*(i + 0.5)/n;
return 0.5 - 0.5*cos(x);
}
static gdouble
gwy_fft_window_hamming(gint i, gint n)
{
gdouble x = 2*G_PI*(i + 0.5)/n;
return 0.54 - 0.46*cos(x);
}
static gdouble
gwy_fft_window_blackman(gint i, gint n)
{
gdouble x = 2*G_PI*(i + 0.5)/n;
return 0.42 - 0.5*cos(x) + 0.08*cos(2*x);
}
static gdouble
gwy_fft_window_lanczos(gint i, gint n)
{
gdouble x = 2*G_PI*(i + 0.5)/n - G_PI;
return fabs(x) < 1e-8 ? 1.0 : sin(x)/x;
}
static gdouble
gwy_fft_window_welch(gint i, gint n)
{
gdouble x = 2.0*(i + 0.5)/n - 1.0;
return 1 - x*x;
}
static gdouble
gwy_fft_window_rect(gint i, gint n)
{
gdouble par;
if (i == 0 || i == (n-1))
par = 0.5;
else
par = 1.0;
return par;
}
static gdouble
gwy_fft_window_nuttall(gint i, gint n)
{
gdouble x = 2*G_PI*(i + 0.5)/n;
return 0.355768 - 0.487396*cos(x) + 0.144232*cos(2*x) - 0.012604*cos(3*x);
}
static gdouble
gwy_fft_window_flat_top(gint i, gint n)
{
gdouble x = 2*G_PI*(i + 0.5)/n;
return (1.0 - 1.93*cos(x) + 1.29*cos(2*x) - 0.388*cos(3*x) + 0.032*cos(4*x))/4;
}
static inline gdouble
bessel_I0(gdouble x)
{
gdouble t, s;
gint i = 1;
t = x = x*x/4;
s = 1.0;
do {
s += t;
i++;
t *= x/i/i;
} while (t > 1e-7*s);
return s + t;
}
/* General function */
static gdouble
gwy_fft_window_kaiser(gint i, gint n, gdouble alpha)
{
gdouble x = 2.0*(i + 0.5)/n - 1.0;
x = 1.0 - x*x;
x = MAX(x, 0.0);
return bessel_I0(G_PI*alpha*sqrt(x));
}
static gdouble
gwy_fft_window_kaiser25(gint i, gint n)
{
return gwy_fft_window_kaiser(i, n, 2.5)/373.0206312536293446480;
}
/**
* gwy_fft_window:
* @n: Number of data values.
* @data: Data values.
* @windowing: Method used for windowing.
*
* Multiplies data by given window.
**/
void
gwy_fft_window(gint n,
gdouble *data,
GwyWindowingType windowing)
{
GwyFFTWindowingFunc window;
gint i;
g_return_if_fail(data);
g_return_if_fail(windowing <= GWY_WINDOWING_KAISER25);
window = windowings[windowing];
if (window) {
for (i = 0; i < n; i++)
data[i] *= window(i, n);
}
}
/**
* gwy_fft_window_data_field:
* @dfield: A data field.
* @orientation: Windowing orientation (the same as corresponding FFT orientation).
* @windowing: The windowing type to use.
*
* Performs windowing of a data field in given direction.
*
* This is an old alias for gwy_data_field_fft_window_1d().
**/
void
gwy_fft_window_data_field(GwyDataField *dfield,
GwyOrientation orientation,
GwyWindowingType windowing)
{
gwy_data_field_fft_window_1d(dfield, orientation, windowing);
}
/* We assume when there is no multithreading there is no lock contention and the RW lock operations are cheap. */
static inline void
gwy_fftw_lock_execute(void)
{
g_rw_lock_reader_lock(&gwy_fftw_lock);
}
static inline void
gwy_fftw_unlock_execute(void)
{
g_rw_lock_reader_unlock(&gwy_fftw_lock);
}
static inline void
gwy_fftw_lock_planner(void)
{
g_rw_lock_writer_lock(&gwy_fftw_lock);
}
static inline void
gwy_fftw_unlock_planner(void)
{
g_rw_lock_writer_unlock(&gwy_fftw_lock);
}
void
gwy_fftw_execute(fftw_plan plan)
{
gwy_fftw_lock_execute();
fftw_execute(plan);
gwy_fftw_unlock_execute();
}
/* This must be called with the planner lock already held. */
void
gwy_fftw_plan_maybe_with_threads(void)
{
#if (defined(_OPENMP) && defined(HAVE_FFTW_WITH_OPENMP))
guint nthreads = 1;
if (!omp_get_active_level() && gwy_threads_are_enabled())
nthreads = gwy_omp_max_threads();
fftw_plan_with_nthreads(nthreads);
#endif
}
void
gwy_fftw_plan_without_threads(void)
{
#if (defined(_OPENMP) && defined(HAVE_FFTW_WITH_OPENMP))
fftw_plan_with_nthreads(1);
#endif
}
fftw_plan
gwy_fftw_plan_dft_1d(int n,
fftw_complex *in, fftw_complex *out,
int sign, unsigned int flags)
{
fftw_plan plan;
gwy_fftw_lock_planner();
gwy_fftw_plan_without_threads();
plan = fftw_plan_dft_1d(n, in, out, sign, flags);
gwy_fftw_unlock_planner();
g_assert(plan);
return plan;
}
fftw_plan
gwy_fftw_plan_dft_r2c_1d(int n,
double *in, fftw_complex *out,
unsigned int flags)
{
fftw_plan plan;
gwy_fftw_lock_planner();
gwy_fftw_plan_without_threads();
plan = fftw_plan_dft_r2c_1d(n, in, out, flags);
gwy_fftw_unlock_planner();
g_assert(plan);
return plan;
}
fftw_plan
gwy_fftw_plan_dft_c2r_1d(int n,
fftw_complex *in, double *out,
unsigned int flags)
{
fftw_plan plan;
gwy_fftw_lock_planner();
gwy_fftw_plan_without_threads();
plan = fftw_plan_dft_c2r_1d(n, in, out, flags);
gwy_fftw_unlock_planner();
g_assert(plan);
return plan;
}
fftw_plan
gwy_fftw_plan_r2r_1d(int n,
double *in, double *out,
fftw_r2r_kind kind, unsigned int flags)
{
fftw_plan plan;
gwy_fftw_lock_planner();
gwy_fftw_plan_without_threads();
plan = fftw_plan_r2r_1d(n, in, out, kind, flags);
gwy_fftw_unlock_planner();
g_assert(plan);
return plan;
}
fftw_plan
gwy_fftw_plan_dft_2d(int n0, int n1,
fftw_complex *in, fftw_complex *out,
int sign, unsigned int flags)
{
fftw_plan plan;
gwy_fftw_lock_planner();
gwy_fftw_plan_maybe_with_threads();
plan = fftw_plan_dft_2d(n0, n1, in, out, sign, flags);
gwy_fftw_unlock_planner();
g_assert(plan);
return plan;
}
fftw_plan
gwy_fftw_plan_dft_r2c_2d(int n0, int n1,
double *in, fftw_complex *out,
unsigned int flags)
{
fftw_plan plan;
gwy_fftw_lock_planner();
gwy_fftw_plan_maybe_with_threads();
plan = fftw_plan_dft_r2c_2d(n0, n1, in, out, flags);
gwy_fftw_unlock_planner();
g_assert(plan);
return plan;
}
fftw_plan
gwy_fftw_plan_dft_c2r_2d(int n0, int n1,
fftw_complex *in, double *out,
unsigned int flags)
{
fftw_plan plan;
gwy_fftw_lock_planner();
gwy_fftw_plan_maybe_with_threads();
plan = fftw_plan_dft_c2r_2d(n0, n1, in, out, flags);
gwy_fftw_unlock_planner();
g_assert(plan);
return plan;
}
fftw_plan
gwy_fftw_plan_guru_split_dft(int rank, const fftw_iodim *dims,
int howmany_rank,
const fftw_iodim *howmany_dims,
double *ri, double *ii, double *ro, double *io,
unsigned int flags)
{
fftw_plan plan;
gwy_fftw_lock_planner();
if (rank > 1 || howmany_rank > 1 || (dims[0].n > 1 && howmany_dims[0].n > 1))
gwy_fftw_plan_maybe_with_threads();
else
gwy_fftw_plan_without_threads();
plan = fftw_plan_guru_split_dft(rank, dims, howmany_rank, howmany_dims, ri, ii, ro, io, flags);
gwy_fftw_unlock_planner();
g_assert(plan);
return plan;
}
fftw_plan
gwy_fftw_plan_guru_split_dft_r2c(int rank, const fftw_iodim *dims,
int howmany_rank,
const fftw_iodim *howmany_dims,
double *ri, double *ro, double *io,
unsigned int flags)
{
fftw_plan plan;
gwy_fftw_lock_planner();
if (rank > 1 || howmany_rank > 1 || (dims[0].n > 1 && howmany_dims[0].n > 1))
gwy_fftw_plan_maybe_with_threads();
else
gwy_fftw_plan_without_threads();
plan = fftw_plan_guru_split_dft_r2c(rank, dims, howmany_rank, howmany_dims, ri, ro, io, flags);
gwy_fftw_unlock_planner();
g_assert(plan);
return plan;
}
/************************** Documentation ****************************/
/**
* SECTION:simplefft
* @title: simpleFFT
* @short_description: Simple FFT algorithm
* @see_also: <link linkend="libgwyprocess-inttrans">inttrans</link> -- high-level integral transform functions
*
* The simple one-dimensional FFT algorithm gwy_fft_simple() used to be employed as a fallback by other functions when
* a better implementation (FFTW3) was not available. Since version 2.49 it just calls the corresponding FFTW
* routine.
*
* Generally, you should either use high-level Gwyddion functions such as gwy_data_field_2dfft_raw() or, if they are
* insufficient, FFTW routines directly.
*
* Up to version 2.7 simpleFFT required certain tranform sizes, mostly powers of 2. Since 2.8 it can handle arbitrary
* tranform sizes, although sizes with large prime factors can be quite slow (still O(n*log(n)) though).
**/
/* vim: set cin columns=120 tw=118 et ts=4 sw=4 cino=>1s,e0,n0,f0,{0,}0,^0,\:1s,=0,g1s,h0,t0,+1s,c3,(0,u0 : */
|