1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
|
/*
* $Id: spline.c 25589 2023-08-01 11:01:32Z yeti-dn $
* Copyright (C) 2016-2017 David Necas (Yeti).
* E-mail: yeti@gwyddion.net.
*
* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with this program; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <string.h>
#include <libgwyddion/gwymacros.h>
#include <libprocess/spline.h>
#define MAX_RECURSION_DEPTH 20
#define point_index(a,i) g_array_index(a, GwyXY, i)
#define cpoint_index(a,i) g_array_index(a, ControlPoint, i)
typedef enum {
CURVE_RECURSE_OUTPUT_X_Y,
CURVE_RECURSE_OUTPUT_T_L,
} GwySplineRecurseOutputType;
typedef struct {
gdouble ux;
gdouble uy;
gdouble vx;
gdouble vy;
} ControlPoint;
typedef struct {
const GwyXY *pt0;
const GwyXY *pt1;
const ControlPoint *uv;
gdouble max_dev;
gdouble max_vrdev;
/* These either (x,y) pairs or (t,l) pairs, depending on the output type. */
GArray *points;
GwySplineRecurseOutputType otype;
gint depth;
} GwySplineSampleParams;
typedef struct {
GwyXY z;
GwyXY v;
gdouble t;
gdouble vl;
} GwySplineSampleItem;
struct _GwySpline {
/* Properties set from outside. */
GArray *points;
gdouble slackness;
gboolean closed;
/* Cached data. These change whenever anything above changes. */
gboolean natural_sampling_valid;
GArray *control_points;
GArray *tl_points;
GArray *tangents;
gboolean drawing_sampling_valid;
GArray *drawing_points;
/* These cache the last result of gwy_spline_sample_uniformly() and become invalid whenever anything above changes
* or gwy_spline_sample_uniformly() is called for a different number of points. */
gboolean fixed_sampling_valid;
guint nfixed;
GArray *fixed_samples;
GArray *fixed_tangents;
};
static void gwy_spline_invalidate (GwySpline *spline);
static void sample_curve_naturally (GwySpline *spline,
GArray *natural_points,
gdouble max_dev,
gdouble max_vrdev,
GwySplineRecurseOutputType otype);
static void sample_segment_naturally(const GwyXY *pt,
const GwyXY *ptm,
const ControlPoint *uv,
GArray *natural_points,
GwySplineSampleParams *cparam,
guint i);
static void normalize_tangents (GArray *tangents);
static void sample_curve_uniformly (GwySpline *spline,
guint nsamples,
GwyXY *coords,
GwyXY *velocities);
static void calculate_point_tangents(GwySpline *spline);
GType
gwy_spline_get_type(void)
{
static GType spline_type = 0;
if (G_UNLIKELY(!spline_type)) {
spline_type = g_boxed_type_register_static("GwySpline",
(GBoxedCopyFunc)gwy_spline_copy,
(GBoxedFreeFunc)gwy_spline_free);
}
return spline_type;
}
/**
* gwy_spline_new:
*
* Creates a new empty spline curve.
*
* You need to set the curve points using gwy_spline_set_points() before any sampling along the curve. Alternatively,
* use gwy_spline_new_from_points() to construct the spline already with some points.
*
* Returns: A newly created spline curve.
*
* Since: 2.45
**/
GwySpline*
gwy_spline_new(void)
{
GwySpline *spline = g_slice_new0(GwySpline);
spline->points = g_array_new(FALSE, FALSE, sizeof(GwyXY));
spline->slackness = 1.0/G_SQRT2;
return spline;
}
/**
* gwy_spline_free:
* @spline: A spline curve.
*
* Frees a spline curve and all associated resources.
*
* Since: 2.45
**/
void
gwy_spline_free(GwySpline *spline)
{
g_return_if_fail(spline);
if (spline->fixed_tangents)
g_array_free(spline->fixed_tangents, TRUE);
if (spline->fixed_samples)
g_array_free(spline->fixed_samples, TRUE);
if (spline->drawing_points)
g_array_free(spline->drawing_points, TRUE);
if (spline->tl_points)
g_array_free(spline->tl_points, TRUE);
if (spline->tangents)
g_array_free(spline->tangents, TRUE);
if (spline->control_points)
g_array_free(spline->control_points, TRUE);
g_array_free(spline->points, TRUE);
g_slice_free(GwySpline, spline);
}
/**
* gwy_spline_copy:
* @spline: A spline curve.
*
* Creates a copy of a spline curve.
*
* Returns: A newly created spline curve.
*
* Since: 2.49
**/
GwySpline*
gwy_spline_copy(GwySpline *spline)
{
GwySpline *retval;
g_return_val_if_fail(spline, NULL);
retval = gwy_spline_new_from_points((const GwyXY*)spline->points->data,
spline->points->len);
retval->slackness = spline->slackness;
retval->closed = spline->closed;
return retval;
}
/**
* gwy_spline_new_from_points:
* @xy: Array of points in plane the curve will pass through.
* @n: Number of points in @xy.
*
* Creates a new spline curve passing through given points.
*
* See gwy_spline_set_points() for discussion.
*
* Returns: A newly created spline curve.
*
* Since: 2.45
**/
GwySpline*
gwy_spline_new_from_points(const GwyXY *xy,
guint n)
{
GwySpline *spline = gwy_spline_new();
gwy_spline_set_points(spline, xy, n);
return spline;
}
/**
* gwy_spline_get_npoints:
* @spline: A spline curve.
*
* Gets the number of points of a spline curve.
*
* Returns: The number of XY points defining the curve.
*
* Since: 2.45
**/
guint
gwy_spline_get_npoints(GwySpline *spline)
{
return spline->points->len;
}
/**
* gwy_spline_get_points:
* @spline: A spline curve.
*
* Gets the coordinates of spline curve points.
*
* If the spline is empty (there are no points) the function returns %NULL.
*
* Returns: Coordinates of the XY points defining the curve. The returned
* array is owned by @spline, must not be modified and is only
* guaranteed to exist so long as the spline is not modified nor
* destroyed.
*
* Since: 2.45
**/
const GwyXY*
gwy_spline_get_points(GwySpline *spline)
{
if (!spline->points->len)
return NULL;
return &point_index(spline->points, 0);
}
/**
* gwy_spline_get_tangents:
* @spline: A spline curve.
*
* Gets tangents to the curve in its defining points.
*
* See gwy_spline_sample_uniformly() for discussion.
*
* If the spline is empty (there are no points) the function returns %NULL.
*
* Returns: Tangents to the spline in the XY points defining the curve. The returned array is owned by @spline, must
* not be modified and is only guaranteed to exist so long as the spline is not modified nor destroyed.
*
* Since: 2.45
**/
const GwyXY*
gwy_spline_get_tangents(GwySpline *spline)
{
gwy_spline_length(spline);
if (!spline->points->len)
return NULL;
return &point_index(spline->tangents, 0);
}
/**
* gwy_spline_get_slackness:
* @spline: A spline curve.
*
* Gets the slackness parameter of a spline curve.
*
* See gwy_spline_set_slackness() for discussion.
*
* Returns: The slackness parameter value.
*
* Since: 2.45
**/
gdouble
gwy_spline_get_slackness(GwySpline *spline)
{
return spline->slackness;
}
/**
* gwy_spline_get_closed:
* @spline: A spline curve.
*
* Reports whether a spline curve is closed or not.
*
* See gwy_spline_set_closed() for discussion.
*
* Returns: %TRUE if @spline is closed, %FALSE if it is open-ended.
*
* Since: 2.45
**/
gboolean
gwy_spline_get_closed(GwySpline *spline)
{
return spline->closed;
}
/**
* gwy_spline_set_points:
* @spline: A spline curve.
* @xy: Array of points in plane the curve will pass through.
* @n: Number of points in @xy.
*
* Sets the coordinates of XY points a spline curve should pass through.
*
* It is possible to pass @n=0 to make the spline empty (@xy can be %NULL then) but such spline may not be sampled
* using gwy_spline_sample_uniformly().
*
* The coordinates should be device-scaled, i.e. they should data field rows and columns, or screen or image pixels.
* Generally, the unit length should be about the smallest distinguishable distance.
*
* This is important namely for gwy_spline_sample_naturally() that stops refining the curve when the details become
* too tiny, even though there may be sharp changes of direction. It is also important if the physical X and Y scales
* differ.
*
* Using unscaled physical coordinates may produce odd results.
*
* Since: 2.45
**/
void
gwy_spline_set_points(GwySpline *spline,
const GwyXY *xy,
guint n)
{
GArray *points = spline->points;
if (points->len == n
&& memcmp(xy, points->data, n*sizeof(GwyXY)) == 0)
return;
g_array_set_size(spline->points, 0);
g_array_append_vals(spline->points, xy, n);
gwy_spline_invalidate(spline);
}
/**
* gwy_spline_set_slackness:
* @spline: A spline curve.
* @slackness: New slackness parameter value from the range [0, %G_SQRT2].
*
* Sets the slackness parameter of a spline curve.
*
* The slackness parameter determines how taut or slack the curve is.
*
* The curve always passes through the given XY points. For zero slackness the curve is maximally taut, i.e. the
* shortest possible passing through the points. Such curve is formed by straight segments. For slackness of 1 the
* curve is a ‘free’ spline. Values smaller than 1 mean tensile stress while values larger than 1 compressive stres.
* The default value is 1/sqrt(2).
*
* Since: 2.45
**/
void
gwy_spline_set_slackness(GwySpline *spline,
gdouble slackness)
{
if (spline->slackness == slackness)
return;
/* XXX: We may permit slackness > 1 for some interesting and possibly still useful curves. Up to approximately
* sqrt(2) seems reasonable. */
if (!(slackness >= 0.0 && slackness <= G_SQRT2)) {
g_warning("Slackness parameter %g is out of bounds.", slackness);
return;
}
spline->slackness = slackness;
gwy_spline_invalidate(spline);
}
/**
* gwy_spline_set_closed:
* @spline: A spline curve.
* @closed: %TRUE to make @spline closed, %FALSE to make it open-ended.
*
* Sets whether a spline curve is closed or open.
*
* In closed curve the last point is connected smoothly with the first point, forming a cycle. Note you should not
* repeat the point in the @xy array. When a closed curve is sampled, the sampling starts from the first point and
* continues beyond the last point until it gets close to the first point again.
*
* An open curve begins with the first point and ends with the last point. It has zero curvature at these two points.
*
* Since: 2.45
**/
void
gwy_spline_set_closed(GwySpline *spline,
gboolean closed)
{
if (!spline->closed == !closed)
return;
spline->closed = !!closed;
gwy_spline_invalidate(spline);
}
/**
* gwy_spline_length:
* @spline: A spline curve.
*
* Calculates the length of a spline curve.
*
* This is useful when you want to sample the curve with a specific step (at least approximately).
*
* Note gwy_spline_sample_uniformly() also returns the length.
*
* Returns: The curve length.
*
* Since: 2.45
**/
gdouble
gwy_spline_length(GwySpline *spline)
{
GArray *tl_points = spline->tl_points;
if (G_UNLIKELY(!tl_points)) {
spline->tl_points = g_array_sized_new(FALSE, FALSE, sizeof(GwyXY), 2*(spline->points->len + 1));
tl_points = spline->tl_points;
}
if (!spline->natural_sampling_valid) {
sample_curve_naturally(spline, tl_points, G_MAXDOUBLE, 0.005, CURVE_RECURSE_OUTPUT_T_L);
spline->natural_sampling_valid = TRUE;
}
if (!tl_points->len)
return 0.0;
return point_index(tl_points, tl_points->len-1).y;
}
/**
* gwy_spline_sample_naturally:
* @spline: A spline curve.
* @n: Location where to store the number of returned points.
*
* Samples efficiently a spline curve.
*
* This function calculates coordinates of points that lie on the spline curve and are sufficient for a good
* approximation by straight lines. This is particularly useful for drawing the curve.
*
* See gwy_spline_sample_uniformly() for some discussion of closed versus open curves and corner case handling.
*
* Returns: Coordinates of the XY points defining the sampled curve. The returned array is owned by @spline, must not
* be modified and is only guaranteed to exist so long as the spline is not modified nor destroyed.
*
* Since: 2.45
**/
const GwyXY*
gwy_spline_sample_naturally(GwySpline *spline,
guint *n)
{
GArray *drawing_points = spline->drawing_points;
if (G_UNLIKELY(!drawing_points)) {
spline->drawing_points = g_array_new(FALSE, FALSE, sizeof(GwyXY));
drawing_points = spline->drawing_points;
}
if (!spline->drawing_sampling_valid) {
sample_curve_naturally(spline, drawing_points, 0.9, 0.2, CURVE_RECURSE_OUTPUT_X_Y);
spline->drawing_sampling_valid = TRUE;
}
*n = drawing_points->len;
return &point_index(drawing_points, 0);
}
/**
* gwy_spline_sample_uniformly:
* @spline: A spline curve.
* @xy: Array where the sampled point coordinates should be stored in. May be %NULL if you are only interested in the
* tangents.
* @t: Array where tangent vectors at the @xy coordinates should be stored in. May be %NULL if you are only interested
* in the coordinates.
* @n: The number of samples to take.
*
* Samples uniformly a spline curve.
*
* This function calculates coordinates of points that lie on the spline curve and are equidistant along it. For open
* curves the first sampled point coincides with the first given XY point and, similar, the last with the last. For
* closed curves the first point again coincides with the first given XY point but the last lies one sampling distance
* before the curve gets back again to the first point.
*
* If you want to specify the sampling step instead of the number of samples use gwy_spline_length() first to obtain
* the curve length and calculate @n accordingly.
*
* A single-point curve always consists of a single point. Hence all samples lie in this point. A two-point curve is
* always formed by straight segments, in the case of a closed curve one going forward and the other back.
* A meaningful sampling requires @n at least 2, nevertheless, the function permits also @n of one or zero.
*
* The tangents vectors stored in @t are normalised and oriented from the beginning of the curve towards the end. If
* two or more consecutive given XY points coincide or the curve has only a single point the vectors may be (0,0).
*
* Returns: The curve length.
*
* Since: 2.45
**/
gdouble
gwy_spline_sample_uniformly(GwySpline *spline,
GwyXY *xy,
GwyXY *t,
guint n)
{
GArray *fixed_samples = spline->fixed_samples;
GArray *fixed_tangents = spline->fixed_tangents;
gdouble length;
g_return_val_if_fail(spline->points->len > 0, 0.0);
/* This ensures valid natural sampling. */
length = gwy_spline_length(spline);
if (!xy && !t)
return length;
if (G_UNLIKELY(!fixed_samples)) {
spline->fixed_samples = g_array_sized_new(FALSE, FALSE, sizeof(GwyXY), n);
fixed_samples = spline->fixed_samples;
}
if (G_UNLIKELY(!fixed_tangents)) {
spline->fixed_tangents = g_array_sized_new(FALSE, FALSE, sizeof(GwyXY), n);
fixed_tangents = spline->fixed_tangents;
}
if (!spline->fixed_sampling_valid || spline->nfixed != n) {
g_array_set_size(fixed_samples, n);
g_array_set_size(fixed_tangents, n);
sample_curve_uniformly(spline, n, &point_index(fixed_samples, 0), &point_index(fixed_tangents, 0));
normalize_tangents(fixed_tangents);
spline->fixed_sampling_valid = TRUE;
spline->nfixed = n;
}
if (xy)
gwy_assign(xy, fixed_samples->data, n);
if (t)
gwy_assign(t, fixed_tangents->data, n);
return length;
}
static void
gwy_spline_invalidate(GwySpline *spline)
{
spline->natural_sampling_valid = FALSE;
spline->drawing_sampling_valid = FALSE;
spline->fixed_sampling_valid = FALSE;
}
/**
* division_time:
* @v0: The velocity of entering the line in its first endpoint.
* @v1: The velocity of leaving the line in its second endpoint.
* @x: Requested fraction of distance in the line (to total line length).
*
* Assuming a point moving with a constant acceleration along a straight line calculate fraction of time corresponding
* to given fraction of distance.
*
* Returns: Fraction of time (to total travel time) corresponding to fraction of distance @x.
**/
static inline gdouble
division_time(gdouble v0, gdouble v1, gdouble x)
{
gdouble eps, eps1;
/* This includes v0 == v1 == 0. */
if (v0 == v1)
return x;
eps = (v1 - v0)/(v1 + v0);
if (eps < 1e-6)
return x*(1.0 + eps*(1.0 - x));
eps1 = 1.0 - eps;
return (sqrt(4*x*eps + eps1*eps1) - eps1)/(2.0*eps);
}
/**
* interpolate_z:
* @pt0: Coordinates of previous point.
* @pt1: Coordinates of next point.
* @uv: Coordinates of control points.
* @t: Time to get position at, in range [0, 1].
* @z: Location to store x and y coordinates at time @t.
*
* Interpolate position in one spline segment.
**/
static inline void
interpolate_z(const GwyXY *pt0,
const GwyXY *pt1,
const ControlPoint *uv,
gdouble t,
GwyXY *z)
{
gdouble s = 1.0 - t;
gdouble s2 = s*s, s3 = s2*s;
gdouble t2 = t*t, t3 = t2*t;
z->x = (s3*pt0->x + 3.0*(s2*t*uv->ux + s*t2*uv->vx) + t3*pt1->x);
z->y = (s3*pt0->y + 3.0*(s2*t*uv->uy + s*t2*uv->vy) + t3*pt1->y);
}
/**
* interpolate_v:
* @pt0: Coordinates of previous point.
* @pt1: Coordinates of next point.
* @uv: Coordinates of control points.
* @t: Time to get velocity at, in range [0, 1].
* @z: Location to store x and y velocity components at time @t.
*
* Interpolate velocity in one spline segment.
**/
static inline void
interpolate_v(const GwyXY *pt0,
const GwyXY *pt1,
const ControlPoint *uv,
gdouble t,
GwyXY *v)
{
gdouble s = 1.0 - t;
gdouble s2 = s*s;
gdouble t2 = t*t;
gdouble std = 2.0*s*t;
v->x = 3.0*(-s2*pt0->x + (s2 - std)*uv->ux + (std - t2)*uv->vx + t2*pt1->x);
v->y = 3.0*(-s2*pt0->y + (s2 - std)*uv->uy + (std - t2)*uv->vy + t2*pt1->y);
}
static inline void
interpolate_straight_line(const GwyXY *xyp, const GwyXY *xyn,
ControlPoint *uv)
{
uv->ux = (2.0*xyp->x + xyn->x)/3.0;
uv->uy = (2.0*xyp->y + xyn->y)/3.0;
uv->vx = (xyp->x + 2.0*xyn->x)/3.0;
uv->vy = (xyp->y + 2.0*xyn->y)/3.0;
}
/* Interpolate the next control point u. */
static inline void
interpolate_cu_next(const GwyXY *xyp, const GwyXY *cp, const GwyXY *cn,
gdouble kq,
ControlPoint *uv)
{
uv->ux = xyp->x + kq*(cn->x - cp->x);
uv->uy = xyp->y + kq*(cn->y - cp->y);
}
/* Interpolate the previous control point v. */
static inline void
interpolate_cv_prev(const GwyXY *xyp, const GwyXY *cp, const GwyXY *cn,
gdouble kq,
ControlPoint *uv)
{
uv->vx = xyp->x + kq*(cp->x - cn->x);
uv->vy = xyp->y + kq*(cp->y - cn->y);
}
/* hypot() is safe but slow. */
static inline gdouble
myhypot(gdouble x, gdouble y)
{
return sqrt(x*x + y*y);
}
/**
* calculate_control_points:
* @n: The number of segments.
* @xy: Array of points coordinates stored as x0, y0, x1, y1, ..., xn, yn.
* @slackness: Curve slackness (tightening factor).
* @closed: %TRUE to closed curves, %FALSE for curves with open ends.
* @uv: Array to store control point coordinates from uv0 to uv{n-1} (for non-closed) or uv{n} (for closed).
*
* Calculates spline control points from points and tensions.
**/
static void
calculate_control_points(gint n,
const GwyXY *xy,
gdouble slackness,
gboolean closed,
ControlPoint *uv)
{
const GwyXY *xyp, *xyn;
GwyXY cp, cn;
gdouble lenp, lenn, q;
gint i, to;
g_return_if_fail(n >= 1);
g_return_if_fail(xy);
g_return_if_fail(slackness >= 0.0 && slackness <= G_SQRT2);
if (!uv)
return;
/* Straight lines. There are other cases when straight lines can occur, but the cost of detection probably
* overweights the savings. */
if (n == 1 || slackness == 0.0) {
xyn = xy;
to = (closed ? n+1 : n);
for (i = 0; i < to; i++) {
xyp = xyn;
xyn = (i == n) ? xy : xyn+1;
interpolate_straight_line(xyp, xyn, uv + i);
}
return;
}
to = (closed ? n+2 : n);
xyn = xy+1;
cn.x = (xy->x + xyn->x)/2.0;
cn.y = (xy->y + xyn->y)/2.0;
lenn = myhypot(xy->x - xyn->x, xy->y - xyn->y);
/* Inner u and v. For closed curves it means all u and v. */
for (i = 1; i < to; i++) {
xyp = xyn;
xyn = (i == n) ? xy : xyn+1;
cp = cn;
cn.x = (xyp->x + xyn->x)/2.0;
cn.y = (xyp->y + xyn->y)/2.0;
lenp = lenn;
lenn = myhypot(xyp->x - xyn->x, xyp->y - xyn->y);
if (lenp + lenn == 0.0)
q = 0.5;
else
q = lenn/(lenp + lenn);
interpolate_cv_prev(xyp, &cp, &cn, slackness*(1.0 - q), uv + (i-1));
interpolate_cu_next(xyp, &cp, &cn, slackness*q, uv + (i == n+1 ? 0 : i));
}
if (closed)
return;
/* First u */
uv[0].ux = ((2.0 - slackness)*xy->x + slackness*uv[0].vx)/2.0;
uv[0].uy = ((2.0 - slackness)*xy->y + slackness*uv[0].vy)/2.0;
/* Last v */
xyp = xy + n;
uv[n-1].vx = ((2.0 - slackness)*xyp->x + slackness*uv[n-1].ux)/2.0;
uv[n-1].vy = ((2.0 - slackness)*xyp->y + slackness*uv[n-1].uy)/2.0;
}
static void
sample_segment_recurse(GwySplineSampleParams *cparam,
const GwySplineSampleItem *c0,
const GwySplineSampleItem *c1)
{
gdouble q, t, eps;
GwyXY z, v;
GwySplineSampleItem cc;
z.x = (c0->z.x + c1->z.x)/2.0;
z.y = (c0->z.y + c1->z.y)/2.0;
q = division_time(c0->vl, c1->vl, 0.5);
t = cc.t = c0->t*(1.0 - q) + c1->t*q;
v.x = c0->v.x*(1.0 - q) + c1->v.x*q;
v.y = c0->v.y*(1.0 - q) + c1->v.y*q;
interpolate_z(cparam->pt0, cparam->pt1, cparam->uv, t, &cc.z);
interpolate_v(cparam->pt0, cparam->pt1, cparam->uv, t, &cc.v);
cc.vl = myhypot(cc.v.x, cc.v.y);
eps = myhypot(cc.v.x - v.x, cc.v.y - v.y);
if (eps)
eps /= (c0->vl + c1->vl)/2.0;
if (cparam->depth == MAX_RECURSION_DEPTH || (cparam->depth
&& myhypot(cc.z.x - z.x, cc.z.y - z.y) <= cparam->max_dev
&& eps <= cparam->max_vrdev)) {
switch (cparam->otype) {
case CURVE_RECURSE_OUTPUT_X_Y:
g_array_append_val(cparam->points, c1->z);
break;
case CURVE_RECURSE_OUTPUT_T_L:
{
GwyXY tl;
tl.x = c1->t;
tl.y = (myhypot(c0->z.x - cc.z.x, c0->z.y - cc.z.y) + myhypot(cc.z.x - c1->z.x, cc.z.y - c1->z.y));
g_array_append_val(cparam->points, tl);
}
break;
}
return;
}
cparam->depth++;
sample_segment_recurse(cparam, c0, &cc);
sample_segment_recurse(cparam, &cc, c1);
cparam->depth--;
}
static void
sample_curve_naturally(GwySpline *spline,
GArray *natural_points,
gdouble max_dev,
gdouble max_vrdev,
GwySplineRecurseOutputType otype)
{
GArray *control_points = spline->control_points;
GArray *points = spline->points;
GArray *tangents = spline->tangents;
GwySplineSampleParams cparam;
const GwyXY *pt, *ptm;
guint i, nseg;
g_array_set_size(natural_points, 0);
if (!points->len)
return;
if (G_UNLIKELY(!tangents)) {
spline->tangents = g_array_sized_new(FALSE, FALSE, sizeof(GwyXY), points->len);
tangents = spline->tangents;
}
g_array_set_size(tangents, points->len);
if (points->len == 1) {
GwyXY singlept = point_index(points, 0);
GwyXY zero = { 0.0, 0.0 };
g_array_append_val(natural_points, singlept);
point_index(tangents, 0) = zero;
return;
}
nseg = points->len - (spline->closed ? 0 : 1);
if (G_UNLIKELY(!control_points)) {
spline->control_points = g_array_sized_new(FALSE, FALSE, sizeof(ControlPoint), nseg);
control_points = spline->control_points;
}
g_array_set_size(control_points, nseg);
calculate_control_points(points->len - 1, &point_index(points, 0),
spline->slackness, spline->closed, &cpoint_index(control_points, 0));
pt = &point_index(points, 0);
cparam.max_dev = max_dev;
cparam.max_vrdev = max_vrdev;
cparam.otype = otype;
cparam.points = natural_points;
if (otype == CURVE_RECURSE_OUTPUT_X_Y)
g_array_append_vals(natural_points, pt, 1);
else if (otype == CURVE_RECURSE_OUTPUT_T_L) {
GwyXY zero = { 0.0, 0.0 };
g_array_append_val(natural_points, zero);
}
else {
g_assert_not_reached();
}
for (i = 1; i <= nseg; i++) {
const ControlPoint *uv = &cpoint_index(control_points, i - 1);
ptm = pt;
if (i == points->len)
pt = &point_index(points, 0);
else
pt = &point_index(points, i);
sample_segment_naturally(pt, ptm, uv, natural_points, &cparam, i);
}
calculate_point_tangents(spline);
}
static void
sample_segment_naturally(const GwyXY *pt, const GwyXY *ptm,
const ControlPoint *uv, GArray *natural_points,
GwySplineSampleParams *cparam,
guint i)
{
guint j, start = natural_points->len;
GwySplineSampleItem c0, c1;
c0.t = 0.0;
c0.z = *ptm;
c0.v.x = 3.0*(uv->ux - ptm->x);
c0.v.y = 3.0*(uv->uy - ptm->y);
c0.vl = myhypot(c0.v.x, c0.v.y);
c1.t = 1.0;
c1.z = *pt;
c1.v.x = 3.0*(pt->x - uv->vx);
c1.v.y = 3.0*(pt->y - uv->vy);
c1.vl = myhypot(c1.v.x, c1.v.y);
cparam->pt0 = ptm;
cparam->pt1 = pt;
cparam->uv = uv;
cparam->depth = 0;
sample_segment_recurse(cparam, &c0, &c1);
if (cparam->otype == CURVE_RECURSE_OUTPUT_T_L) {
for (j = start; j < natural_points->len; j++) {
GwyXY *natpt = &point_index(natural_points, j);
natpt->x += i - 1.0;
natpt->y += point_index(natural_points, j-1).y;
}
}
}
static void
calculate_point_tangents(GwySpline *spline)
{
GArray *points = spline->points;
GArray *control_points = spline->control_points;
GArray *tangents = spline->tangents;
guint i;
for (i = 0; i < points->len; i++) {
GwyXY prev, next;
if (i) {
prev.x = cpoint_index(control_points, i-1).vx;
prev.y = cpoint_index(control_points, i-1).vy;
}
else if (spline->closed) {
prev.x = cpoint_index(control_points, points->len-1).vx;
prev.y = cpoint_index(control_points, points->len-1).vy;
}
else
prev = point_index(points, 0);
if (i < points->len-1 || spline->closed) {
next.x = cpoint_index(control_points, i).ux;
next.y = cpoint_index(control_points, i).uy;
}
else
next = point_index(points, points->len-1);
point_index(tangents, i).x = next.x - prev.x;
point_index(tangents, i).y = next.y - prev.y;
}
normalize_tangents(tangents);
}
/* NB: The velocities have magnitude; the caller is responsible for normalisation if required. */
static void
sample_curve_uniformly(GwySpline *spline,
guint nsamples,
GwyXY *coords,
GwyXY *velocities)
{
GArray *tl_points = spline->tl_points;
GArray *control_points = spline->control_points;
GArray *points = spline->points;
guint i, j, k, kmax, npts;
gdouble pos, t, q, v0l, v1l, t0, t1, l0, l1, length;
const GwyXY *pt0, *pt1;
ControlPoint *uv;
GwyXY v0, v1;
/* Handle miscellaneous degenerate cases. We could also handle npts == 2 directly but this one should be fine for
* sample_curve() so let it deal with the straight line. */
npts = points->len;
if (!nsamples)
return;
g_return_if_fail(npts);
if (npts == 1) {
GwyXY singlept = point_index(points, 0);
GwyXY zero = { 0.0, 0.0 };
for (i = 0; i < nsamples; i++) {
if (coords)
coords[i] = singlept;
if (velocities)
velocities[i] = zero;
}
return;
}
length = point_index(tl_points, tl_points->len-1).y;
kmax = (spline->closed ? npts : npts-1);
j = 1;
for (i = 0; i < nsamples; i++) {
if (spline->closed)
pos = i*length/nsamples;
else if (G_LIKELY(nsamples > 1))
pos = i*length/(nsamples - 1.0);
else
pos = 0.5*length;
while (j < tl_points->len && point_index(tl_points, j).y < pos)
j++;
if (j == tl_points->len)
j = tl_points->len-1;
k = (guint)floor(point_index(tl_points, j).x);
if (k >= kmax)
k = kmax-1;
t0 = point_index(tl_points, j-1).x;
l0 = point_index(tl_points, j-1).y;
t1 = point_index(tl_points, j).x;
l1 = point_index(tl_points, j).y;
pt0 = &point_index(points, k);
/* We always use the next-to-last point for non-closed curves so this works for both. */
pt1 = &point_index(points, (k+1) % npts);
uv = &cpoint_index(control_points, k);
interpolate_v(pt0, pt1, uv, t0, &v0);
v0l = myhypot(v0.x, v0.y);
interpolate_v(pt0, pt1, uv, t1, &v1);
v1l = myhypot(v1.x, v1.y);
q = (l0 == l1) ? 0.5 : (pos - l0)/(l1 - l0);
q = division_time(v0l, v1l, q);
t = q*t1 + (1.0 - q)*t0;
if ((guint)floor(t) != k) {
k = (guint)floor(t);
if (k >= kmax)
k = kmax-1;
pt0 = &point_index(points, k);
pt1 = &point_index(points, (k+1) % npts);
uv = &cpoint_index(control_points, k);
}
if (coords)
interpolate_z(pt0, pt1, uv, t - k, coords + i);
if (velocities)
interpolate_v(pt0, pt1, uv, t - k, velocities + i);
}
}
static void
normalize_tangents(GArray *tangents)
{
guint i, n = tangents->len;
for (i = 0; i < n; i++) {
GwyXY *v = &point_index(tangents, i);
gdouble vl = myhypot(v->x, v->y);
if (vl > 0.0) {
v->x /= vl;
v->y /= vl;
}
}
}
/************************** Documentation ****************************/
/**
* SECTION:spline
* @title: GwySpline
* @short_description: Sampling curves in plane
**/
/* vim: set cin columns=120 tw=118 et ts=4 sw=4 cino=>1s,e0,n0,f0,{0,}0,^0,\:1s,=0,g1s,h0,t0,+1s,c3,(0,u0 : */
|