1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
|
/*
* $Id: stats-entropy.c 26068 2023-12-20 12:25:29Z yeti-dn $
* Copyright (C) 2003-2017 David Necas (Yeti), Petr Klapetek.
* E-mail: yeti@gwyddion.net, klapetek@gwyddion.net.
*
* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with this program; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <string.h>
#include <libgwyddion/gwymacros.h>
#include <libgwyddion/gwymath.h>
#include <libprocess/datafield.h>
#include <libprocess/stats.h>
#include "gwyprocessinternal.h"
typedef struct _BinTreeNode BinTreeNode;
typedef struct _QuadTreeNode QuadTreeNode;
struct _BinTreeNode {
/* This optimally uses memory on 64bit architectures where pt and children have the same size (16 bytes). */
union {
/* The at most two points inside for non-max-depth leaves. */
struct {
gdouble a;
gdouble b;
} pt;
/* Children for non-max-depth non-leaves. */
BinTreeNode *children[2];
} u;
/* Always set; for max-depth leaves it is the only meaningful field. */
guint count;
};
typedef struct {
gdouble min;
gdouble max;
BinTreeNode *root;
guint maxdepth;
gboolean degenerate;
gdouble degenerateS;
} BinTree;
struct _QuadTreeNode {
/* This optimally uses memory on 64bit architectures where pt and children have the same size (32 bytes). */
union {
/* The at most two points inside for non-max-depth leaves. */
struct {
GwyXY a;
GwyXY b;
} pt;
/* Children for non-max-depth non-leaves. */
QuadTreeNode *children[4];
} u;
/* Always set; for max-depth leaves it is the only meaningful field. */
guint count;
};
typedef struct {
GwyXY min;
GwyXY max;
QuadTreeNode *root;
guint maxdepth;
gboolean degenerate;
gdouble degenerateS;
} QuadTree;
/* Find the flattest part of the curve representing scaling histogram-based entropy on scale and use the value there
* as the entropy estimate. Handle the too-few-pixels cases gracefully.
*
* NB: We assume
* (1) ecurve beings from large scales. This is important only when it has lots of points because we may skip a few
* at the beginning then to avoid mistaking the flat part of the curve there for the inflexion point.
* (2) ecurve goes by powers of 2 scales, this is for the mindiff filtering.
*/
static gdouble
calculate_entropy_from_scaling(const gdouble *ecurve, guint maxdiv)
{
/* Initialise S to the δ-function entropy and mindiff to the half of the asymptotic value for distribution that is
* sum of δ-functions. This means only if the differences drops substantially from this asymptotic value we will
* consider is as potential inflexion point. If we get ecurve[] essentially corresponding to a set of δ-functions
* then we return -G_MAXDOUBLE. */
gdouble S = -G_MAXDOUBLE, mindiff = 0.6*G_LN2;
guint i, from = (maxdiv >= 12) + (maxdiv >= 36);
if (maxdiv < 1)
return ecurve[0];
if (maxdiv < 5) {
for (i = from; i <= maxdiv-2; i++) {
gdouble diff = 0.5*(fabs(ecurve[i+1] - ecurve[i]) + fabs(ecurve[i+2] - ecurve[i+1]))/G_LN2;
gdouble diff2 = 0.5*(fabs(ecurve[i] + ecurve[i+2] - 2.0*ecurve[i+1]))/(G_LN2*G_LN2);
if (diff + diff2 < mindiff) {
S = ecurve[i+1];
mindiff = diff + diff2;
}
}
}
else {
for (i = from; i <= maxdiv-4; i++) {
gdouble diff = 0.25*(fabs(ecurve[i+1] - ecurve[i]) + fabs(ecurve[i+2] - ecurve[i+1])
+ fabs(ecurve[i+3] - ecurve[i+2]) + fabs(ecurve[i+4] - ecurve[i+3]));
gdouble diff2 = 0.5*(fabs(ecurve[i+1] + ecurve[i+4] - 2.0*ecurve[i+2]))/(G_LN2*G_LN2);
if (diff + diff2 < mindiff) {
S = (ecurve[i+1] + ecurve[i+2] + ecurve[i+3])/3.0;
mindiff = diff + diff2;
}
}
}
return S;
}
/* This is what we get on average from all possible two-point configurations if they are randomly distributed.
* A fairly good estimate that in practice seems to result in some deviation on the 5th significant digit, which is
* hardly significant at all. The contribution is the same in 1D and 2D. */
static void
add_estimated_unsplit_node_entropy(gdouble *S, guint maxdepth, gdouble w)
{
gdouble q = 2.0*G_LN2*w;
guint i;
for (i = 0; i <= maxdepth; i++, S++) {
S[0] += q;
q *= 0.5;
}
}
static BinTreeNode*
bin_tree_node_new(const gdouble pt)
{
BinTreeNode *btnode = g_slice_new(BinTreeNode);
btnode->u.pt.a = pt;
btnode->count = 1;
return btnode;
}
static void
bin_tree_add_node(BinTreeNode *btnode, const gdouble pt,
gdouble min, gdouble max, guint maxdepth)
{
BinTreeNode *child;
gdouble centre;
guint i;
/* We reached maximum allowed subdivision. Just increase the count. */
if (!maxdepth) {
if (btnode->count <= 2)
gwy_clear(&btnode->u, 1);
btnode->count++;
return;
}
/* We will descend into subtrees. */
centre = 0.5*(min + max);
/* If this node has just one point add the other there and we are done. */
if (btnode->count == 1) {
btnode->u.pt.b = pt;
btnode->count++;
return;
}
/* We will be recursing. So if this node is a leaf start by making it non-leaf. */
if (btnode->count == 2) {
gdouble pta = btnode->u.pt.a;
gdouble ptb = btnode->u.pt.b;
guint ia = (pta > centre);
guint ib = (ptb > centre);
gwy_clear(&btnode->u, 1);
child = btnode->u.children[ia] = bin_tree_node_new(pta);
/* Must distinguish between creating two child nodes and creating one two-point child node. */
if (ia == ib) {
child->u.pt.b = ptb;
child->count = 2;
}
else
btnode->u.children[ib] = bin_tree_node_new(ptb);
}
/* Add the new point to the appropriate child. */
i = (pt > centre);
maxdepth--;
btnode->count++;
if ((child = btnode->u.children[i])) {
/* Recurse. This will end either by reaching maxdepth=0 or by successful separation in the other branch of
* this conditon. */
if (i == 0)
bin_tree_add_node(child, pt, min, centre, maxdepth);
else
bin_tree_add_node(child, pt, centre, max, maxdepth);
}
else {
/* There is nothing here yet. Add the point as a new leaf. */
btnode->u.children[i] = bin_tree_node_new(pt);
}
}
static void
bin_tree_add(BinTree *btree, const gdouble pt)
{
if (G_LIKELY(btree->root))
bin_tree_add_node(btree->root, pt, btree->min, btree->max, btree->maxdepth);
else
btree->root = bin_tree_node_new(pt);
}
static void
bin_tree_find_range(BinTree *btree, const gdouble *xdata, guint n)
{
gdouble min = G_MAXDOUBLE;
gdouble max = -G_MAXDOUBLE;
guint i;
for (i = 0; i < n; i++) {
gdouble x = xdata[i];
if (x < min)
min = x;
if (x > max)
max = x;
}
btree->min = min;
btree->max = max;
}
static void
bin_tree_node_free(BinTreeNode *btnode)
{
guint i;
if (btnode->count > 2) {
for (i = 0; i < G_N_ELEMENTS(btnode->u.children); i++) {
if (btnode->u.children[i])
bin_tree_node_free(btnode->u.children[i]);
}
}
g_slice_free(BinTreeNode, btnode);
}
static void
bin_tree_free(BinTree *btree)
{
if (!btree->degenerate)
bin_tree_node_free(btree->root);
g_free(btree);
}
static BinTree*
bin_tree_new(const gdouble *xdata, guint n, guint maxdepth)
{
BinTree *btree;
guint i;
btree = g_new0(BinTree, 1);
if (!maxdepth)
maxdepth = 24;
btree->maxdepth = maxdepth;
bin_tree_find_range(btree, xdata, n);
if (!(btree->min < btree->max)) {
btree->degenerate = TRUE;
btree->degenerateS = G_MAXDOUBLE;
return btree;
}
/* Return explicit estimates for n < 4, making maxdiv at least 1 (with half-scales included, ecurve will have at
* least 3 points then). */
if (n == 2) {
btree->degenerate = TRUE;
btree->degenerateS = log(btree->max - btree->min);
return btree;
}
if (n == 3) {
btree->degenerate = TRUE;
btree->degenerateS = (log(btree->max - btree->min) + 0.5*log(1.5) - G_LN2/3.0);
return btree;
}
for (i = 0; i < n; i++) {
gdouble pt = xdata[i];
bin_tree_add(btree, pt);
}
return btree;
}
static void
bin_tree_node_entropies_at_scales(BinTreeNode *btnode, guint maxdepth,
gdouble *S, guint *unsplit)
{
BinTreeNode *child;
guint i;
/* Singular points contribute to p*ln(p) always with zero. So we can stop recursion to finer subdivisions when
* count == 1. */
if (btnode->count <= 1)
return;
if (!maxdepth) {
S[0] += gwy_xlnx_int(btnode->count);
return;
}
if (btnode->count == 2) {
unsplit[0]++;
return;
}
S[0] += gwy_xlnx_int(btnode->count);
S++;
maxdepth--;
unsplit++;
for (i = 0; i < G_N_ELEMENTS(btnode->u.children); i++) {
if ((child = btnode->u.children[i]))
bin_tree_node_entropies_at_scales(child, maxdepth, S, unsplit);
}
}
static gdouble*
bin_tree_entropies_at_scales(BinTree *btree, guint maxdepth)
{
gdouble *S;
guint *unsplit;
guint i, n, npts;
gdouble Sscale;
if (!maxdepth)
maxdepth = btree->maxdepth;
n = maxdepth + 1;
S = g_new0(gdouble, n);
if (btree->degenerate) {
S[0] = btree->degenerateS;
for (i = 1; i < n; i++)
S[i] = S[i-1] - G_LN2;
return S;
}
unsplit = g_new0(guint, maxdepth);
bin_tree_node_entropies_at_scales(btree->root, MIN(maxdepth, btree->maxdepth), S, unsplit);
for (i = 0; i < maxdepth; i++) {
if (unsplit[i])
add_estimated_unsplit_node_entropy(S + i, maxdepth - i, unsplit[i]);
}
g_free(unsplit);
npts = btree->root->count;
Sscale = log(npts*(btree->max - btree->min));
for (i = 0; i < n; i++)
S[i] = Sscale - i*G_LN2 - S[i]/npts;
return S;
}
static gdouble*
calculate_entropy_at_scales(GwyDataField *dfield,
GwyDataField *mask,
GwyMaskingType mode,
gint col, gint row,
gint width, gint height,
guint *maxdiv,
gdouble *S)
{
gint xres;
guint i, j, n;
gdouble *xdata;
const gdouble *base;
gboolean must_free_xdata = TRUE;
gdouble *ecurve;
BinTree *btree;
if (mask) {
gwy_data_field_area_count_in_range(mask, NULL, col, row, width, height, G_MAXDOUBLE, 1.0, NULL, &n);
if (mode == GWY_MASK_EXCLUDE)
n = width*height - n;
}
else
n = width*height;
if (!*maxdiv) {
if (n >= 2)
*maxdiv = (guint)floor(3.0*log(n)/G_LN2 + 1e-12);
else
*maxdiv = 2;
/* We will run out of significant digits in coordinates after that. */
*maxdiv = MIN(*maxdiv, 50);
}
if (n < 2) {
ecurve = g_new(gdouble, *maxdiv+1);
for (i = 0; i <= *maxdiv; i++)
ecurve[i] = -G_MAXDOUBLE;
if (S)
*S = -G_MAXDOUBLE;
return ecurve;
}
xres = dfield->xres;
base = dfield->data + row*xres + col;
if (n == xres*dfield->yres) {
/* Handle the full-field case without allocating anything. */
xdata = dfield->data;
must_free_xdata = FALSE;
}
else {
xdata = g_new(gdouble, n);
if (mask) {
const gdouble *mbase = mask->data + row*xres + col;
const gboolean invert = (mode == GWY_MASK_EXCLUDE);
guint k = 0;
for (i = 0; i < height; i++) {
const gdouble *d = base + i*xres;
const gdouble *m = mbase + i*xres;
for (j = width; j; j--, d++, m++) {
if ((*m < 1.0) == invert)
xdata[k++] = *d;
}
}
g_assert(k == n);
}
else {
for (i = 0; i < height; i++)
gwy_assign(xdata + i*width, base + i*xres, width);
}
}
/* FIXME: How can we parallelise this mess?
* Trees covering overlapping (or the same) intervals are lots of work to merge. Processing them separately is
* possible, but then we hit different number of add_estimated_unsplit_node_entropy() depending on the number of
* threads.
*
* So one option is add a gwy_math_kth_ranks() preprocessing. It finds the values that split the data to equal
* chunks. And not only that, it also physically splits them, so each chunk becomes a continuous block in the
* array. Neat!
*
* So each thread can construct its own, independent tree. However, the result still depends on the number of
* threads because the bin boundaries are not the same as for serial processing.
*
* For deterministic results each thread must essentially construct exactly one branch of the tree. We must
* assign an interval of the input of length (max-min)/2^n for some n and also at position corresponding to
* a branch. Then we just merge the branches to form a common root.
*
* Splitting the work reasonably requires a fair amount of initial analysis. The result could be for instance
* that if we have 6 threads they should process 1/4, 1/4, 1/16, 1/16, 1/8 and 1/4 of the entire interval of
* values.
*
* For a key commonly used function it may be woth implementing this. Here, it is hardly a priority. */
btree = bin_tree_new(xdata, n, *maxdiv);
if (must_free_xdata)
g_free(xdata);
ecurve = bin_tree_entropies_at_scales(btree, *maxdiv);
if (S) {
if (btree->degenerate)
*S = btree->degenerateS;
else
*S = calculate_entropy_from_scaling(ecurve, *maxdiv);
}
bin_tree_free(btree);
return ecurve;
}
/**
* gwy_data_field_area_get_entropy_at_scales:
* @data_field: A data field.
* @target_line: A data line to store the result to. It will be resampled to @maxdiv+1 items.
* @mask: Mask specifying which values to take into account/exclude, or %NULL.
* @mode: Masking mode to use. See the introduction for description of masking modes.
* @col: Upper-left column coordinate.
* @row: Upper-left row coordinate.
* @width: Area width (number of columns).
* @height: Area height (number of rows).
* @maxdiv: Maximum number of divisions of the value range. Pass zero to choose it automatically.
*
* Calculates estimates of value distribution entropy at various scales.
*
* Returns: The best estimate, as gwy_data_field_area_get_entropy().
*
* Since: 2.44
**/
gdouble
gwy_data_field_area_get_entropy_at_scales(GwyDataField *data_field,
GwyDataLine *target_line,
GwyDataField *mask,
GwyMaskingType mode,
gint col, gint row,
gint width, gint height,
gint maxdiv)
{
GwySIUnit *lineunit;
guint umaxdiv = (maxdiv > 0 ? maxdiv : 0);
gdouble *ecurve;
gdouble min, max, S = -G_MAXDOUBLE;
gint i;
if (!_gwy_data_field_check_area(data_field, col, row, width, height, FALSE)
|| !_gwy_data_field_check_mask(data_field, &mask, &mode))
return S;
g_return_val_if_fail(GWY_IS_DATA_LINE(target_line), S);
ecurve = calculate_entropy_at_scales(data_field, mask, mode, col, row, width, height, &umaxdiv, &S);
maxdiv = maxdiv ? maxdiv : umaxdiv + 1;
gwy_data_line_resample(target_line, maxdiv, GWY_INTERPOLATION_NONE);
target_line->real = maxdiv*G_LN2;
for (i = 0; i < maxdiv; i++)
target_line->data[maxdiv-1 - i] = ecurve[i];
g_free(ecurve);
gwy_data_field_area_get_min_max_mask(data_field, mask, mode, col, row, width, height, &min, &max);
if (max > min)
target_line->off = log(max - min) - (maxdiv - 0.5)*G_LN2;
lineunit = gwy_data_line_get_si_unit_x(target_line);
gwy_si_unit_set_from_string(lineunit, NULL);
lineunit = gwy_data_line_get_si_unit_y(target_line);
gwy_si_unit_set_from_string(lineunit, NULL);
return S;
}
/**
* gwy_data_field_get_entropy:
* @data_field: A data field.
*
* Computes the entropy of a data field.
*
* See gwy_data_field_area_get_entropy() for the definition.
*
* This quantity is cached.
*
* Returns: The value distribution entropy.
*
* Since: 2.42
**/
gdouble
gwy_data_field_get_entropy(GwyDataField *data_field)
{
gdouble S = -G_MAXDOUBLE;
gdouble *ecurve;
guint maxdiv = 0;
g_return_val_if_fail(GWY_IS_DATA_FIELD(data_field), S);
gwy_debug("%s", CTEST(data_field, ENT) ? "cache" : "lame");
if (CTEST(data_field, ENT))
return CVAL(data_field, ENT);
ecurve = calculate_entropy_at_scales(data_field, NULL, GWY_MASK_IGNORE, 0, 0, data_field->xres, data_field->yres,
&maxdiv, &S);
g_free(ecurve);
CVAL(data_field, ENT) = S;
data_field->cached |= CBIT(ENT);
return S;
}
/**
* gwy_data_field_area_get_entropy:
* @data_field: A data field.
* @mask: Mask specifying which values to take into account/exclude, or %NULL.
* @mode: Masking mode to use. See the introduction for description of masking modes.
* @col: Upper-left column coordinate.
* @row: Upper-left row coordinate.
* @width: Area width (number of columns).
* @height: Area height (number of rows).
*
* Estimates the entropy of field data distribution.
*
* The estimate is calculated as @S = ln(@n Δ) − 1/@n ∑ @n_i ln(@n_i), where @n is the number of pixels considered,
* Δ the bin size and @n_i the count in the @i-th bin. If @S is plotted as a function of the bin size Δ, it is,
* generally, a growing function with a plateau for ‘reasonable’ bin sizes. The estimate is taken at the plateau. If
* no plateau is found, which means the distribution is effectively a sum of δ-functions, -%G_MAXDOUBLE is returned.
*
* It should be noted that this estimate may be biased.
*
* Returns: The estimated entropy of the data values. The entropy of no data or a single single is returned as
* -%G_MAXDOUBLE.
*
* Since: 2.42
**/
gdouble
gwy_data_field_area_get_entropy(GwyDataField *data_field,
GwyDataField *mask,
GwyMaskingType mode,
gint col, gint row,
gint width, gint height)
{
gdouble S = -G_MAXDOUBLE;
gdouble *ecurve;
guint maxdiv = 0;
if (!_gwy_data_field_check_area(data_field, col, row, width, height, FALSE)
|| !_gwy_data_field_check_mask(data_field, &mask, &mode))
return S;
/* The result is the same, but it can be cached. */
if (!mask && row == 0 && col == 0 && width == data_field->xres && height == data_field->yres)
return gwy_data_field_get_entropy(data_field);
ecurve = calculate_entropy_at_scales(data_field, mask, mode, col, row, width, height, &maxdiv, &S);
g_free(ecurve);
return S;
}
static QuadTreeNode*
quad_tree_node_new(const GwyXY *pt)
{
QuadTreeNode *qtnode = g_slice_new(QuadTreeNode);
qtnode->u.pt.a = *pt;
qtnode->count = 1;
return qtnode;
}
static void
quad_tree_add_node(QuadTreeNode *qtnode, const GwyXY *pt,
GwyXY min, GwyXY max, guint maxdepth)
{
QuadTreeNode *child;
GwyXY centre;
guint i;
/* We reached maximum allowed subdivision. Just increase the count. */
if (!maxdepth) {
if (qtnode->count <= 2)
gwy_clear(&qtnode->u, 1);
qtnode->count++;
return;
}
/* We will descend into subtrees. */
centre.x = 0.5*(min.x + max.x);
centre.y = 0.5*(min.y + max.y);
/* If this node has just one point add the other there and we are done. */
if (qtnode->count == 1) {
qtnode->u.pt.b = *pt;
qtnode->count++;
return;
}
/* We will be recursing. So if this node is a leaf start by making it
* non-leaf. */
if (qtnode->count == 2) {
GwyXY pta = qtnode->u.pt.a;
GwyXY ptb = qtnode->u.pt.b;
guint ia = (pta.x > centre.x) + 2*(pta.y > centre.y);
guint ib = (ptb.x > centre.x) + 2*(ptb.y > centre.y);
gwy_clear(&qtnode->u, 1);
child = qtnode->u.children[ia] = quad_tree_node_new(&pta);
/* Must distinguish between creating two child nodes and creating one
* two-point child node. */
if (ia == ib) {
child->u.pt.b = ptb;
child->count = 2;
}
else
qtnode->u.children[ib] = quad_tree_node_new(&ptb);
}
/* Add the new point to the appropriate child. */
i = (pt->x > centre.x) + 2*(pt->y > centre.y);
maxdepth--;
qtnode->count++;
if ((child = qtnode->u.children[i])) {
/* Recurse. This will end either by reaching maxdepth=0 or by successful separation in the other branch of
* this conditon. */
if (i == 0)
quad_tree_add_node(child, pt, min, centre, maxdepth);
else if (i == 1) {
min.x = centre.x;
max.y = centre.y;
quad_tree_add_node(child, pt, min, max, maxdepth);
}
else if (i == 2) {
max.x = centre.x;
min.y = centre.y;
quad_tree_add_node(child, pt, min, max, maxdepth);
}
else
quad_tree_add_node(child, pt, centre, max, maxdepth);
}
else {
/* There is nothing here yet. Add the point as a new leaf. */
qtnode->u.children[i] = quad_tree_node_new(pt);
}
}
static void
quad_tree_add(QuadTree *qtree, const GwyXY *pt)
{
if (G_LIKELY(qtree->root))
quad_tree_add_node(qtree->root, pt, qtree->min, qtree->max, qtree->maxdepth);
else
qtree->root = quad_tree_node_new(pt);
}
static void
quad_tree_find_range(QuadTree *qtree,
const gdouble *xdata, const gdouble *ydata, guint n)
{
GwyXY min = { G_MAXDOUBLE, G_MAXDOUBLE };
GwyXY max = { -G_MAXDOUBLE, -G_MAXDOUBLE };
guint i;
for (i = 0; i < n; i++) {
gdouble x = xdata[i];
gdouble y = ydata[i];
if (x < min.x)
min.x = x;
if (x > max.x)
max.x = x;
if (y < min.y)
min.y = y;
if (y > max.y)
max.y = y;
}
qtree->min = min;
qtree->max = max;
}
static void
quad_tree_node_free(QuadTreeNode *qtnode)
{
guint i;
if (qtnode->count > 2) {
for (i = 0; i < G_N_ELEMENTS(qtnode->u.children); i++) {
if (qtnode->u.children[i])
quad_tree_node_free(qtnode->u.children[i]);
}
}
g_slice_free(QuadTreeNode, qtnode);
}
static void
quad_tree_free(QuadTree *qtree)
{
quad_tree_node_free(qtree->root);
g_free(qtree);
}
static QuadTree*
quad_tree_new(const gdouble *xdata, const gdouble *ydata, guint n,
guint maxdepth)
{
QuadTree *qtree;
guint i;
qtree = g_new0(QuadTree, 1);
if (!maxdepth)
maxdepth = 16;
qtree->maxdepth = maxdepth;
quad_tree_find_range(qtree, xdata, ydata, n);
if (!(qtree->min.x < qtree->max.x) || !(qtree->min.y < qtree->max.y)) {
qtree->degenerate = TRUE;
qtree->degenerateS = G_MAXDOUBLE;
return qtree;
}
/* Return explicit estimates for n < 4, making maxdiv at least 1 (with half-scales included, ecurve will have at
* least 3 points then). */
if (n == 2) {
qtree->degenerate = TRUE;
qtree->degenerateS = (log(qtree->max.x - qtree->min.x) + log(qtree->max.y - qtree->min.y));
return qtree;
}
if (n == 3) {
qtree->degenerate = TRUE;
qtree->degenerateS = (log(qtree->max.x - qtree->min.x) + log(qtree->max.y - qtree->min.y)
+ 0.5*log(1.5) - 2.0*G_LN2/3.0);
return qtree;
}
for (i = 0; i < n; i++) {
GwyXY pt = { xdata[i], ydata[i] };
quad_tree_add(qtree, &pt);
}
return qtree;
}
static gdouble
quad_tree_node_half_scale_entropy(QuadTreeNode *qtnode)
{
QuadTreeNode *child;
guint cnt[G_N_ELEMENTS(qtnode->u.children)] = { 0, 0, 0, 0 };
guint i;
for (i = 0; i < G_N_ELEMENTS(qtnode->u.children); i++) {
if ((child = qtnode->u.children[i]))
cnt[i] = child->count;
}
return 0.5*(gwy_xlnx_int(cnt[0] + cnt[1]) + gwy_xlnx_int(cnt[2] + cnt[3])
+ gwy_xlnx_int(cnt[0] + cnt[2]) + gwy_xlnx_int(cnt[1] + cnt[3]));
}
static void
quad_tree_node_entropies_at_scales(QuadTreeNode *qtnode, guint maxdepth,
gdouble *S, guint *unsplit)
{
QuadTreeNode *child;
guint i;
/* Singular points contribute to p*ln(p) always with zero. So we can stop recursion to finer subdivisions when
* count == 1. */
if (qtnode->count <= 1)
return;
if (!maxdepth) {
S[0] += gwy_xlnx_int(qtnode->count);
return;
}
if (qtnode->count == 2) {
unsplit[0]++;
return;
}
S[0] += gwy_xlnx_int(qtnode->count);
S++;
/* Half-scale entropies we estimate as averages of horizontal and vertical binning. */
S[0] += quad_tree_node_half_scale_entropy(qtnode);
S++;
maxdepth--;
unsplit++;
for (i = 0; i < G_N_ELEMENTS(qtnode->u.children); i++) {
if ((child = qtnode->u.children[i]))
quad_tree_node_entropies_at_scales(child, maxdepth, S, unsplit);
}
}
static gdouble*
quad_tree_entropies_at_scales(QuadTree *qtree, guint maxdepth)
{
gdouble *S;
guint *unsplit;
guint i, n, npts;
gdouble Sscale;
if (!maxdepth)
maxdepth = qtree->maxdepth;
n = 2*maxdepth + 1;
S = g_new0(gdouble, n);
unsplit = g_new0(guint, maxdepth);
quad_tree_node_entropies_at_scales(qtree->root, MIN(maxdepth, qtree->maxdepth), S, unsplit);
for (i = 0; i < maxdepth; i++) {
if (unsplit[i])
add_estimated_unsplit_node_entropy(S + 2*i, 2*(maxdepth - i), unsplit[i]);
}
g_free(unsplit);
npts = qtree->root->count;
Sscale = log(npts*(qtree->max.x - qtree->min.x)*(qtree->max.y - qtree->min.y));
for (i = 0; i < n; i++)
S[i] = Sscale - i*G_LN2 - S[i]/npts;
return S;
}
static gdouble*
calculate_entropy_2d_at_scales(GwyDataField *xfield,
GwyDataField *yfield,
guint *maxdiv,
gdouble *S)
{
guint xres, yres, n, i;
gdouble *ecurve;
QuadTree *qtree;
xres = xfield->xres;
yres = xfield->yres;
n = xres*yres;
if (!*maxdiv) {
if (n >= 2)
*maxdiv = (guint)floor(1.5*log(n)/G_LN2 + 1e-12);
else
*maxdiv = 1;
/* We will run out of significant digits in coordinates after that. */
*maxdiv = MIN(*maxdiv, 50);
}
if (n < 2) {
ecurve = g_new(gdouble, *maxdiv+1);
for (i = 0; i <= *maxdiv; i++)
ecurve[i] = -G_MAXDOUBLE;
if (S)
*S = -G_MAXDOUBLE;
return ecurve;
}
qtree = quad_tree_new(xfield->data, yfield->data, n, *maxdiv);
ecurve = quad_tree_entropies_at_scales(qtree, *maxdiv);
if (S) {
if (qtree->degenerate)
*S = qtree->degenerateS;
else
*S = calculate_entropy_from_scaling(ecurve, 2*(*maxdiv));
}
quad_tree_free(qtree);
return ecurve;
}
/**
* gwy_data_field_get_entropy_2d_at_scales:
* @xfield: A data field containing the @x-coordinates.
* @yfield: A data field containing the @y-coordinates.
* @target_line: A data line to store the result to. It will be resampled to @maxdiv+1 items.
* @maxdiv: Maximum number of divisions of the value range. Pass zero to choose it automatically.
*
* Calculates estimates of entropy of two-dimensional point cloud at various scales.
*
* Returns: The best estimate, as gwy_data_field_get_entropy_2d().
*
* Since: 2.44
**/
gdouble
gwy_data_field_get_entropy_2d_at_scales(GwyDataField *xfield,
GwyDataField *yfield,
GwyDataLine *target_line,
gint maxdiv)
{
GwySIUnit *lineunit;
guint umaxdiv = (maxdiv > 0 ? maxdiv/2 : 0);
gdouble *ecurve;
gdouble xmin, xmax, ymin, ymax, S = -G_MAXDOUBLE;
gint i;
g_return_val_if_fail(GWY_IS_DATA_FIELD(xfield), S);
g_return_val_if_fail(GWY_IS_DATA_FIELD(yfield), S);
g_return_val_if_fail(GWY_IS_DATA_LINE(target_line), S);
g_return_val_if_fail(xfield->xres == yfield->xres, S);
g_return_val_if_fail(xfield->yres == yfield->yres, S);
ecurve = calculate_entropy_2d_at_scales(xfield, yfield, &umaxdiv, &S);
maxdiv = maxdiv ? maxdiv : 2*umaxdiv + 1;
gwy_data_line_resample(target_line, maxdiv, GWY_INTERPOLATION_NONE);
target_line->real = maxdiv*G_LN2;
for (i = 0; i < maxdiv; i++)
target_line->data[maxdiv-1 - i] = ecurve[i];
g_free(ecurve);
gwy_data_field_get_min_max(xfield, &xmin, &xmax);
gwy_data_field_get_min_max(xfield, &ymin, &ymax);
if ((xmax > xmin) && (ymax > ymin))
target_line->off = (log((xmax - xmin)*(ymax - ymin)) - (maxdiv - 0.5)*G_LN2);
lineunit = gwy_data_line_get_si_unit_x(target_line);
gwy_si_unit_set_from_string(lineunit, NULL);
lineunit = gwy_data_line_get_si_unit_y(target_line);
gwy_si_unit_set_from_string(lineunit, NULL);
return S;
}
/**
* gwy_data_field_get_entropy_2d:
* @xfield: A data field containing the @x-coordinates.
* @yfield: A data field containing the @y-coordinates.
*
* Computes the entropy of a two-dimensional point cloud.
*
* Each pair of corresponding @xfield and @yfield pixels is assumed to represent the coordinates (@x,@y) of a point in
* plane. Hence they must have the same dimensions.
*
* Returns: The two-dimensional distribution entropy.
*
* Since: 2.44
**/
gdouble
gwy_data_field_get_entropy_2d(GwyDataField *xfield,
GwyDataField *yfield)
{
gdouble *ecurve;
guint maxdiv = 0;
gdouble S = -G_MAXDOUBLE;
g_return_val_if_fail(GWY_IS_DATA_FIELD(xfield), S);
g_return_val_if_fail(GWY_IS_DATA_FIELD(yfield), S);
g_return_val_if_fail(xfield->xres == yfield->xres, S);
g_return_val_if_fail(xfield->yres == yfield->yres, S);
ecurve = calculate_entropy_2d_at_scales(xfield, yfield, &maxdiv, &S);
g_free(ecurve);
return S;
}
/* vim: set cin columns=120 tw=118 et ts=4 sw=4 cino=>1s,e0,n0,f0,{0,}0,^0,\:1s,=0,g1s,h0,t0,+1s,c3,(0,u0 : */
|