1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/*
* Copyright (C) 2011 Hermann Meyer, Andreas Degert
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* ---------------------------------------------------------------------------
*
* file: pitchtracker.cpp guitar tuner for jack
*
* ----------------------------------------------------------------------------
*/
#include "./pitchtracker.h"
// downsampling factor
const int DOWNSAMPLE = 16;
// Number of times that the FFT is zero-padded to increase frequency resolution.
const int ZERO_PADDING_FACTOR = 64;
// Time between frequency estimates (in seconds)
const float TRACKER_PERIOD = 0.1;
void *PitchTracker::static_run(void *p) {
(reinterpret_cast<PitchTracker *>(p))->run();
return NULL;
}
void PitchTracker::set_threshold(float t) {
// Value of the threshold above which the processing is activated.
SIGNAL_THRESHOLD_ON = t;
// Value of the threshold below which the input audio signal is deactivated.
SIGNAL_THRESHOLD_OFF = t-0.0001;
}
float PitchTracker::get_threshold() {
// Value of the threshold above which the processing is activated.
return SIGNAL_THRESHOLD_ON;
}
PitchTracker::PitchTracker()
: error(false),
busy(false),
tick(0),
m_pthr(0),
resamp(new Resampler),
m_buffer(new float[MAX_FFT_SIZE]),
m_bufferIndex(0),
m_audioLevel(false),
m_fftwPlanFFT(0),
m_fftwPlanIFFT(0) {
const int fftw_buffer_size = MAX_FFT_SIZE * ZERO_PADDING_FACTOR;
m_fftwBufferTime = reinterpret_cast<float*>
(fftwf_malloc(fftw_buffer_size * sizeof(float)));
m_fftwBufferFreq = reinterpret_cast<fftwf_complex*>
(fftwf_malloc(fftw_buffer_size * sizeof(fftwf_complex)));
memset(m_buffer, 0, MAX_FFT_SIZE * sizeof(float));
memset(m_fftwBufferTime, 0, fftw_buffer_size * sizeof(float));
memset(m_fftwBufferFreq, 0, fftw_buffer_size * sizeof(fftwf_complex));
sem_init(&m_trig, 0, 0);
if (!m_buffer || !m_fftwBufferTime || !m_fftwBufferFreq) {
error = true;
}
}
PitchTracker::~PitchTracker() {
fftwf_destroy_plan(m_fftwPlanFFT);
fftwf_destroy_plan(m_fftwPlanIFFT);
fftwf_free(m_fftwBufferTime);
fftwf_free(m_fftwBufferFreq);
delete[] m_buffer;
}
bool PitchTracker::setParameters(int sampleRate, int fftSize, pthread_t j_thread) {
assert(fftSize <= MAX_FFT_SIZE);
if (error) {
return false;
}
m_sampleRate = sampleRate / DOWNSAMPLE;
resamp->setup(sampleRate, m_sampleRate, 1, 16); // 16 == least quality
SIGNAL_THRESHOLD_ON = 0.001;
SIGNAL_THRESHOLD_OFF = 0.0009;
jack_thread = j_thread;
estimated_freq = 0.0;
if (m_fftSize != fftSize) {
m_fftSize = fftSize;
fftwf_destroy_plan(m_fftwPlanFFT);
fftwf_destroy_plan(m_fftwPlanIFFT);
m_fftwPlanFFT = fftwf_plan_dft_r2c_1d(
m_fftSize, m_fftwBufferTime, m_fftwBufferFreq, FFTW_ESTIMATE); // FFT
m_fftwPlanIFFT = fftwf_plan_dft_c2r_1d(
ZERO_PADDING_FACTOR * m_fftSize, m_fftwBufferFreq,
m_fftwBufferTime, FFTW_ESTIMATE); // IFFT zero-padded
}
if (!m_fftwPlanFFT || !m_fftwPlanIFFT) {
error = true;
return false;
}
if (!m_pthr) {
start_thread();
}
pt_initialized = true;
return !error;
}
void PitchTracker::stop_thread() {
pthread_cancel (m_pthr);
pthread_join (m_pthr, NULL);
sem_post(&m_trig);
delete resamp;
resamp = 0;
}
void PitchTracker::start_thread() {
int min = 0, max = 0;
pthread_attr_t attr;
struct sched_param spar;
int priority, policy;
pthread_getschedparam(jack_thread, &policy, &spar);
priority = spar.sched_priority;
min = sched_get_priority_min(policy);
max = sched_get_priority_max(policy);
priority -= 6; // zita-convoler uses 5 levels
if (priority > max) priority = max;
if (priority < min) priority = min;
spar.sched_priority = priority;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_JOINABLE );
pthread_setcancelstate (PTHREAD_CANCEL_ENABLE, NULL);
pthread_attr_setschedpolicy(&attr, policy);
pthread_attr_setschedparam(&attr, &spar);
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
// pthread_attr_setstacksize(&attr, 0x10000);
if (pthread_create(&m_pthr, &attr, static_run, reinterpret_cast<void*>(this))) {
error = true;
}
pthread_attr_destroy(&attr);
}
int PitchTracker::find_minimum() {
const int peakwidth = 3;
float *p = &m_fftwBufferTime[peakwidth];
for ( ; p < &m_fftwBufferTime[ZERO_PADDING_FACTOR * m_fftSize / 2 + 1 - peakwidth]; p++) {
int i;
for (i = -peakwidth; i <= peakwidth; i++) {
if (*p > p[i]) {
break;
}
}
if (i > peakwidth) {
break;
}
}
return static_cast<int>((p - m_fftwBufferTime));
}
int PitchTracker::find_maximum(int l) {
float maxAutocorr = 0.0;
int maxAutocorrIndex = 0;
while (l < ZERO_PADDING_FACTOR * m_fftSize / 2 + 1) {
if (m_fftwBufferTime[l] > maxAutocorr) {
maxAutocorr = m_fftwBufferTime[l];
maxAutocorrIndex = l;
}
++l;
}
if (maxAutocorr == 0.0) {
return -1;
}
return maxAutocorrIndex;
}
float show_level(int n, float *buf) {
float sum = 0.0;
for (int k = 0; k < n; ++k) {
sum += fabs(buf[k]);
}
return sum;
}
void PitchTracker::add(int count, float* input) {
if (error) {
return;
}
resamp->inp_count = count;
resamp->inp_data = input;
for (;;) {
resamp->out_data = &m_buffer[m_bufferIndex];
int n = MAX_FFT_SIZE - m_bufferIndex;
resamp->out_count = n;
resamp->process();
n -= resamp->out_count; // n := number of output samples
if (!n) { // all soaked up by filter
return;
}
m_bufferIndex = (m_bufferIndex + n) % MAX_FFT_SIZE;
if (resamp->inp_count == 0) {
break;
}
}
if (++tick * count >= m_sampleRate * DOWNSAMPLE * TRACKER_PERIOD) {
if (busy) {
return;
}
tick = 0;
copy();
sem_post(&m_trig);
}
}
void PitchTracker::copy() {
int start = (MAX_FFT_SIZE + m_bufferIndex - m_fftSize) % MAX_FFT_SIZE;
int end = (MAX_FFT_SIZE + m_bufferIndex) % MAX_FFT_SIZE;
int cnt = 0;
if (start >= end) {
cnt = MAX_FFT_SIZE - start;
memcpy(m_fftwBufferTime, &m_buffer[start], cnt * sizeof(float));
start = 0;
}
memcpy(&m_fftwBufferTime[cnt], &m_buffer[start], (end - start) * sizeof(float));
}
void PitchTracker::run() {
for (;;) {
busy = false;
sem_wait(&m_trig);
pthread_testcancel();
busy = true;
if (error) {
continue;
}
float sum = 0.0;
for (int k = 0; k < m_fftSize; ++k) {
sum += fabs(m_fftwBufferTime[k]);
}
float threshold = (m_audioLevel ? SIGNAL_THRESHOLD_OFF : SIGNAL_THRESHOLD_ON);
m_audioLevel = (sum / m_fftSize >= threshold);
if ( m_audioLevel == false ) {
setEstimatedFrequency(0.0);
continue;
}
/* Compute the transform of the autocorrelation given in time domain by
* k=-N
* r[t] = sum( x[k] * x[t-k] )
* N
* or in the frequency domain (for a real signal) by
* R[f] = X[f] * X[f]' = |X[f]|^2 = Re(X[f])^2 + Im(X[f])^2
* When computing the FFT with fftwf_plan_dft_r2c_1d there are only N/2+1
* significant samples, so |.|^2 is computed for m_fftSize/2+1 samples only
*/
int fftRSize = m_fftSize/2 + 1;
fftwf_execute(m_fftwPlanFFT);
for (int k = 0; k < fftRSize; ++k) {
fftwf_complex& v = m_fftwBufferFreq[k];
v[0] = v[0]*v[0] + v[1]*v[1];
v[1] = 0.0;
}
// pad the FFT with zeros to increase resolution in time domain after IFFT
int size_with_padding = ZERO_PADDING_FACTOR * m_fftSize - fftRSize;
memset(&m_fftwBufferFreq[fftRSize][0], 0, size_with_padding * sizeof(fftwf_complex));
fftwf_execute(m_fftwPlanIFFT);
// search for a minimum and then for the next maximum to get the estimated frequency
int maxAutocorrIndex = find_maximum(find_minimum());
// compute the frequency of the maximum considering the padding factor
if (maxAutocorrIndex >= 0) {
setEstimatedFrequency(ZERO_PADDING_FACTOR * m_sampleRate
/ static_cast<float>(maxAutocorrIndex));
} else {
setEstimatedFrequency(0.0);
}
busy = false;
}
}
void PitchTracker::setEstimatedFrequency(float freq) {
estimated_freq = freq;
}
PitchTracker pitch_tracker;
|