File: RayTracing.i

package info (click to toggle)
gyoto 1.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 8,588 kB
  • sloc: cpp: 33,490; sh: 18,775; xml: 2,633; python: 1,424; makefile: 681; ansic: 314
file content (244 lines) | stat: -rw-r--r-- 7,983 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
    Copyright 2011 Thibaut Paumard

    This file is part of Gyoto.

    Gyoto is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Gyoto is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Gyoto.  If not, see <http://www.gnu.org/licenses/>.
 */

// Yorick port of ../tools/RayTracing.C rev. 66
#include "gyoto.i"

/*
  This program aims at computing the null geodesics of photons from an
  observation screen to an astrophysical object (star orbit, fixed
  star or disk).  The final result is a list of illuminated pixels.
  
*/

//****CHOOSE COORDINATES***
ChooseCoord="BL"; //"BL", "KS" or "Kerr"
//*************************

//********************************************
// Definition of Metric and Observer position*
//********************************************

//Metric definition :
mm=1;  //BH mass
aa=0.7;  //BH spin 
write, "\n";
write, format="BH spin= %g\n", aa;

//Kerr metric construction
if (ChooseCoord=="BL") gg=gyoto_KerrBL(spin=aa,mass=mm) ; \
 else if (ChooseCoord=="KS") gg=gyoto_KerrKS(spin=aa,mass=mm) ;
  
//Observer position :

// Observer Boyer Lindquist (BL) coord :
r0=100.;//100;
/* 100 = star orbit ; 45 = disk*/
theta0=1.22;//0.785;//1.22;  //0.05;//1.309;//75 deg //pi/4.;//pi/2.;//x axis
//75 deg = 1.309 rad ; 70 deg = 1.22 rad
//45 deg = 0.785 rad
/* 0.05 = star orbit ; 1.309 = 75 deg = disk */
phi0=0;//0.;
/* 0. = star orbit ; pi/4. = disk */
tobs0=1000.;
delta_t=0.;//31.;//change delta_t if you wan't to make a movie...
write, format="Observing time delta_t= %g\n", delta_t;
tobs=tobs0+delta_t;//observation time
t0=tobs;//for time-reversed integration,  initial time for photon (not for star if ray-tracing a star...)

prec=8;width=15;fmts="%"+pr1(width)+"."+pr1(prec)+"g"; //format string

pos=array(double,8);
  
// Corresponding observer Kerr-Schild space and time coord (cf Hameury, Marck, Pelat 93):
psi0=phi0-0.5*aa/sqrt(mm*mm-aa*aa)*log(abs((1+(r0-mm)/(sqrt(mm*mm-aa*aa)))/(1-(r0-mm)/(sqrt(mm*mm-aa*aa)))));
x0=(r0*cos(psi0)-aa*sin(psi0))*sin(theta0);
y0=(r0*sin(psi0)+aa*cos(psi0))*sin(theta0);
z0=r0*cos(theta0);
T0=1000.;
  
if (ChooseCoord=="BL" || ChooseCoord=="Kerr") pos(1:4)=[t0, r0, theta0, phi0];\
else if (ChooseCoord=="KS") pos(1:4)=[T0, x0, y0, z0];

write, format="%s\n", "setting pos: "+pr1(pos);
screen=gyoto_Screen(metric=gg, observerpos=pos);

//******************
// Object creation *
//******************


{ // variables defined below are local in the C++ code,
  // THIS DOES NOT WORK IN YORICK !!!
  // everything is global
        
  //OBJECT == STAR ORBIT    
  //CI = ISCO in equatorial plane

  Z1=1.+(1.-aa*aa/(mm*mm))^(1./3.)*((1.+aa/mm)^(1./3.)+(1.-aa/mm)^(1./3.));
  Z2=sqrt(3.*aa*aa/(mm*mm)+Z1*Z1);//cf Bardeen 1972 2.21
  risco=mm*(3.+Z2-sqrt((3.-Z1)*(3.+Z1+2.*Z2)));//ISCO
  thetai=1.5708;
  phii=0.;
  rhor=mm+sqrt(mm*mm-aa*aa);//event horizon

  radius=0.5;//0.5;//0.4;//1.2;//NB : cf Trippe et al 2007 ("IR polarized flare") , R_hotspot < 0.3 * R_S = 0.6
  ri=risco+radius;// so that the point of the star closest to the BH is on the ISCO : the entire star must not be closer than ISCO to be able to orbit.
    //pay attention to the fact that changing the radius of the star thus changes its trajectory

  write, format="risco= "+fmts+"\n", risco;
  write, format="rhor= "+fmts+"\n", rhor;
  write, format="star radius= "+fmts+"\n", radius;
  write, format="ri +/- rstar= "+fmts+"  "+fmts+"\n", ri-radius, ri+radius;

  ttravel=r0;//approximate photon travel time (r0=c*tobs=tobs)
  ti=tobs0-4.*ttravel;

  pri=0.;//BL canonical momentum p_r
  pthetai=0.;//BL canonical momentum p_theta
  
  yinit=[ti,ri,thetai,phii,ti,pri,pthetai];
    
  //cf Bardeen 1972 2.12-2.15:
  //these equations assume that the particule mass is 1.
  if (aa==1.) {
    E=(ri+sqrt(mm*ri)-mm)/(ri^(3./4.)*sqrt(ri^(1./2.)+2.*sqrt(mm)));
    L=(mm*(ri^(3./2.)+sqrt(mm)*ri+mm*sqrt(ri)-mm^(3./2.)))/(ri^(3./4.)*sqrt(ri^(1./2.)+2.*sqrt(mm)));
  }else{
    E=(ri^(3./2.)-2*mm*sqrt(ri)+aa*sqrt(mm))/(ri^(3./4.)*sqrt(ri^(3./2.)-3.*mm*sqrt(ri)+2.*aa*sqrt(mm)));
    L=(sqrt(mm)*(ri*ri-2.*aa*sqrt(mm)*sqrt(ri)+aa*aa))/(ri^(3./4.)*sqrt(ri^(3./2.)-3.*mm*sqrt(ri)+2.*aa*sqrt(mm)));
  }
  Q=0.;
  cst=[1.,E,L,Q];//1. = star mass, not used in MakeCoord
    
    
  write,format="dans main E,L= "+fmts+"  "+fmts+"\n", cst(2), cst(3);
    
    
  //Proper time step, number of proper time steps
  //double delta=0.1;
  niter=230;//chosen so that the orbit is computed for [ti;tobs]
    
  init=gg(get_coord = yinit, cst);  
  t0=init(1);
  r0=init(2);
  theta0=init(3);
  //cout << "theta0 dans rt.C : " << theta0 << endl;
  phi0=init(4);
  tdot0=init(5);
  rdot0=init(6);
  thetadot0=init(7);
  phidot0=init(8);
  //cout << "coord init dans rt.C " << t0 << " " << r0 << " " << theta0 << " " << phi0 << " " << tdot0 << " " << rdot0 << " " << thetadot0 << " " << phidot0 << endl;

  //Kerr coordinates : (cf article null hypersurface Eric)
  tdot0_Kerr=tdot0+rdot0/((r0*r0+aa*aa)/(2.*mm*r0)-1.);
  phidot0_Kerr=phidot0+aa*rdot0/(r0*r0-2.*mm*r0+aa*aa);

  v= [rdot0/tdot0, thetadot0/tdot0, phidot0/tdot0];
  pos=[t0, r0,theta0,phi0];

  "gg:";
  gyoto_Metric_g(gg, pos, ChooseCoord);
  "radius: "+pr1(radius);
  "pos: "+pr1(pos);
  "v: "+ pr1(v);
  "ChooseCoord: "+ ChooseCoord;
  
  if (ChooseCoord=="BL")
    orbit = gyoto_Star(metric=gg, radius=radius, initcoord=pos, v) ; \
  else {
    v_Kerr= [rdot0/tdot0_Kerr, thetadot0/tdot0_Kerr, phidot0_Kerr/tdot0_Kerr];
    pos_Kerr=[t0,r0,theta0,phi0];
    //cout << endl;
    //cout << "pos init star= " << t0 << " " << r0 << " " << theta0 << " " << phi0 << endl;
    //cout << endl;

    orbit = gyoto_Star(metric=gg, radius=radius,
                       initcoord=pos_Kerr, v_Kerr) ;
  }
  
  //OBJECT == FIXED STAR
  //NB : theta_ein=sqrt(4.*M*dLS/(dL*dS))
  //   if (ChooseCoord=="BL") {
  //     StarPos=[10.,pi/2.,pi];  //BL star (fixed) space coord
  //   } else if (ChooseCoord=="KS") {
  //     StarPos=[-10.,0.,0.];//KS star (fixed) space coord
  //   }
  //FixedS = gyoto_FixedStar(position=StarPos,radius=radius,metric=gyotoKerrBL());
    
  //OBJECT == DISK
  // ThinDisk = gyoto_ThinInfiniteDisk_new(gg,ChooseCoord);
    
}

//***************************
// Null geodesic integration*
//***************************

//Proper time step, number of proper time steps
deltatau=.01;//1.;

pixels = open("pix.dat", "w");//illuminated pixels on screen

N=1001;//501;//1023;//501;//3001;//number of pixels in each direction
//angular pixel step :
//double delta=pi/(double(N));//all sky view : fov = pi
//warning : vel[3] in Metric::getRayCoord is not defined everywhere.
//double delta=pi/(4.*double(N));//limited view : fov = pi/4. for DISK
delta=pi/(10.*double(N));//limited view : fov = pi/10. for ORBIT
 
ph=gyoto_Photon_new();
coordout=ChooseCoord;

for (i=368;i<=368;i++) {
  //i=251 with a=0.9 integration doesn't progress
    
  write, "\n";
  write, "******************\n";
  write, format= "i = %d\n", i;
  write, "******************\n";
  write, "\n";

  xscr=delta*(i-(N+1)/2.);
  
  for (j=474;j<=474;j++) {
    //j=315 with a=0.9 integration doesn't progress

    yscr=delta*(j-(N+1)/2.);

    coord=screen(raycoord=[-xscr, yscr]);

    //1. Init cond :
    gyoto_Photon_setInitialCondition,ph, gg, orbit, coord;

    //2. delta :
    gyoto_Photon_setDelta,ph,deltatau;

    //3. hit :
    if (gyoto_Photon_hit(ph, 0.))
      write, pixels, format="%15i   %15d   %15.12g\n",
        i, j, gyoto_Star_get_redshift(orbit)^3;

    //4. save :
    //gyoto_Photon_save_xyz(ph,"xyz.dat");
  }
 }

close, pixels;