1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
|
#!/usr/bin/env python3
'''Create movies using Gyoto
This module provides facilities to animate Gyoto Sceneries and render
them as movie files. The module can also be called as a script on the
command line.
rayTrace() takes as argument a user-defined callable func and a
sceneray (among other parameters). func is responsible for mutating
the scenery for each frame. raTrace then ray-traces the scenery. Two
callables suitable as the func argument are provided.
mk_movie() is the top-level function. It opens a video file, calls
rayTrace() in a loop and closes the video.
Classes:
VideoWriter -- abstract interface with video library
OpenCVVideoWriter -- implements VideoWriter using OpenCV-Python
PyAVVideoWriter -- implements VideoWriter using PyAV
NullVideoWriter -- a VideoWriter that does not write anything
orbiting_screen -- a callable that can be used by rayTrace
orbiting_screen_forward -- idem
accelerating_tangential_screen -- idem
growing_mass -- idem
Function:
rayTraceFrame -- mutates Gyoto scenery and raytrace it
defaultScenery -- returns a default Gyoto scenery
defaultTrajectory -- returns a default screen trajectory
mk_video -- make a video
'''
try:
from . import core, std
except ImportError:
from gyoto import core, std
import numpy
import os
import matplotlib.pyplot as plt
import matplotlib
import argparse
import warnings
### Helper functions
## An API for video-writing facilities
class VideoWriter:
'''Generic interface to write videos
'''
norm=None
vmin=0.
vmax=0.
cmap=plt.cm.get_cmap('hot')
def __init__(self, filename, fps, width, height):
'''Initialize video
Derived classes should open the video in there initializer and
call the base class __init__.
'''
self.fps=fps
self.width=width
self.height=height
def colorize(self, im_float):
'''Colorize image
Given a Gyoto frame (numpy array of doubles), returns and RGB
image (3 planes of uint8 type).
'''
if self.norm is None:
if self.vmax==0:
self.vmax = numpy.nanmax(im_float)
if self.vmax != 0.:
self.norm=matplotlib.colors.Normalize(vmin=0., vmax=self.vmax, clip=True)
im_float = self.norm(im_float)
else:
im_float=self.norm(im_float)
return numpy.uint8(self.cmap(im_float)*255.)[:, :, :3]
def write(self, frame):
'''Write frame to video
Frame is a numpy RGB image.
'''
raise NotImplementedError
def close(self):
'''Close video
'''
raise NotImplementedError
def __del__(self):
self.close()
class NullVideoWriter(VideoWriter):
'''A VideoWriter that does not write anything
Mostly useful during preparatory work in cunjunction with
plot=True.
'''
def write(self, frame):
'''Write frame to video
Frame is a numpy RGB image.
'''
pass
def close(self):
'''Close video
'''
pass
class OpenCVVideoWriter(VideoWriter):
'''An implementation of VideoWriter that uses OpenCV-python
'''
video=None
fourcc=0
def __init__(self, filename, fps, width, height):
import cv2
VideoWriter.__init__(self, filename, fps, width, height)
self.video=cv2.VideoWriter(filename, self.fourcc, fps, (width, height), True)
def write(self, frame):
self.video.write(frame[::-1, :, ::-1])
def close(self):
if self.video is not None:
self.video.release()
self.video=None
class PyAVVideoWriter(VideoWriter):
'''An implementation of VideoWriter that uses PyAV
'''
container=None
stream=None
fourcc=0
def __init__(self, filename, fps, width, height,
codec_name='mpeg4', pix_fmt='yuv420p'):
import av
self.av=av
VideoWriter.__init__(self, filename, fps, width, height)
self.container = av.open(filename, mode='w')
self.stream = self.container.add_stream(codec_name, rate=fps)
self.stream.width = width
self.stream.height = height
self.stream.pix_fmt = pix_fmt
def write(self, frame):
avframe=self.av.VideoFrame.from_ndarray(frame[::-1,:,:], format='rgb24')
for packet in self.stream.encode(avframe):
self.container.mux(packet)
def close(self):
if self.container is not None:
for packet in self.stream.encode():
self.container.mux(packet)
self.container.close()
self.stream=None
self.container=None
## Two types of changes for the screen
#
# The rayTrace function below takes a callable as argument to mutate
# the screen between exposures. We define two such callables (as
# classes) for two kinds of videos below.
#
class accelerating_tangential_screen:
'''The screen does not move but has increasing velocity
Members:
maxvel -- norm of velocity for last frame. Should never reach 1!
'''
maxvel=0.99
def __init__(self, **args):
for key in args:
setattr(self, key, args[key])
def __call__(self, sc, k, nframes):
scr=sc.screen()
metric=sc.metric()
pos=scr.getObserverPos()
ucirc=metric.circularVelocity(pos)
uzamo=metric.zamoVelocity(pos)
Gamma=-metric.ScalarProd(pos, ucirc, uzamo)
Vzamo=ucirc/Gamma-uzamo # ucirc as seen by zamo
norm_circ=metric.ScalarProd(pos, Vzamo, Vzamo)
norm_wanted=self.maxvel*k/(nframes-1)
Vzamo *= norm_wanted/numpy.sqrt(norm_circ) # rescale velocity
Gamma2 = 1./(1.-metric.ScalarProd(pos, Vzamo, Vzamo))
assert Gamma2 >= 0, 'Gamma2 < 0! VzamoxVzamo='+str(metric.ScalarProd(pos, Vzamo, Vzamo))+', norm_wanted='+str(norm_wanted)+', norm_circ='+str(norm_circ)
Gamma=numpy.sqrt(Gamma2)
fourvel=Gamma*(uzamo+Vzamo)
scr.fourVel(fourvel)
class static_screen:
'''The screen does not move
This is meaningful when the astrobj itself is changing. The camera
will typically be far away, with ObserverKind set to
ObserverAtInfinity.
members:
tref -- reference time, read from sc.screen() the first time
__call__ is called
t0 -- coordinate time at movie start
t1 -- coordinate time at movie end
unit -- unit in which t0 and t1 are expressed
'''
tref=None
t0=0.
t1=1000.
unit='geometric'
def __init__(self, **args):
for key in args:
setattr(self, key, args[key])
def __call__(self, sc, k, nframes):
'''update time in screen
'''
if self.tref is None:
self.tref=sc.screen().time(self.unit)
t = self.t0+k*(self.t1-self.t0)/(nframes-1)
sc.screen().time(self.tref+t, self.unit)
class orbiting_screen:
'''The screen follows an orbit, camera looks along -er
members:
t0 -- proper time at movie start
t1 -- proper time at movie end
trajectory -- a gyoto.std.Star (or anything else that provides
getCoord(t, coord, proper).
'''
t0=0.
t1=1000.
trajectory=None
def __init__(self, **args):
for key in args:
setattr(self, key, args[key])
def __call__(self, sc, k, nframes):
t = self.t0+k*(self.t1-self.t0)/(nframes-1)
coord=core.vector_double(8)
self.trajectory.getCoord(t, coord, True)
pos=[coord[i] for i in range(4)]
vel=[coord[i] for i in range(4, 8)]
screen=sc.screen()
screen.setObserverPos(pos)
screen.fourVel(vel)
class orbiting_screen_forward:
'''The screen follows an orbit, camera looks forward
members:
t0 -- proper time at movie start
t1 -- proper time at movie end
roll -- roll angle: left is rotated roll degrees towards up
trajectory -- a gyoto.std.Star (or anything else that provides
getCoord(t, coord, proper).
'''
t0=0.
t1=1000.
roll=0.
trajectory=None
def __init__(self, **args):
for key in args:
setattr(self, key, args[key])
self.metric=self.trajectory.metric()
def __call__(self, sc, k, nframes):
metric=sc.metric()
tau = self.t0+k*(self.t1-self.t0)/(nframes-1)
coord=core.vector_double(8)
self.trajectory.getCoord(tau, coord, True)
pos=numpy.asarray([coord[i] for i in range(4)])
vel=numpy.asarray([coord[i] for i in range(4, 8)])
screen=sc.screen()
screen.setObserverPos(pos)
screen.fourVel(vel)
# The 3 other elements of the tetrad are initialized as
# follows: front is along the 3-velocity; up is er projected
# on the plane orthogonal to front; left is the external
# product up x front, thus (left, up, front) is direct. Then
# we orthonormalise this tetrad. Obviously, this will fail if
# vel3c is along er.
#
# We convert everything to cartesian to compute the external
# product.
front=numpy.zeros(4)
metric.cartesianVelocity(coord, front[1:])
front /= numpy.sqrt((front*front).sum())
if metric.coordKind()==core.GYOTO_COORDKIND_SPHERICAL:
t=pos[0]
r=pos[1]
theta=pos[2]
phi=pos[3]
st=numpy.sin(theta)
ct=numpy.cos(theta)
sp=numpy.sin(phi)
cp=numpy.cos(phi)
posr=[pos[0], r*st*cp, r*st*sp, r*ct]
else:
posr=pos
r=numpy.sqrt(pos[1:]**2).sum()
up0=numpy.concatenate(([0.], posr[1:]/r))
up0 -= (front*up0).sum()*front
up0 /= numpy.sqrt((up0*up0).sum())
left0=numpy.zeros(4)
left0[1]=up0[2]*front[3]-up0[3]*front[2]
left0[2]=up0[3]*front[1]-up0[1]*front[3]
left0[3]=up0[1]*front[2]-up0[2]*front[1]
rollr=self.roll*numpy.pi/180
cr=numpy.cos(rollr)
sr=numpy.sin(rollr)
up=cr*up0-sr*left0
left=cr*left0+sr*up0
if metric.coordKind()==core.GYOTO_COORDKIND_SPHERICAL:
er=posr/r
ephi=numpy.asarray([0., -sp, cp, 0.])
etheta=numpy.asarray([0., ct*cp, ct*sp, -st])
front=numpy.asarray([
0.,
(er*front).sum(),
(etheta*front).sum(),
(ephi*front).sum()
])
up=numpy.asarray([
0.,
(er*up).sum(),
(etheta*up).sum(),
(ephi*up).sum()
])
left=numpy.asarray([
0.,
(er*left).sum(),
(etheta*left).sum(),
(ephi*left).sum()
])
metric.GramSchmidt(pos, vel, up, front, left);
screen.screenVector1(left)
screen.screenVector2(up)
screen.screenVector3(front)
class growing_mass:
'''The mass of the central object changes
The Astrobj needs to be PatternDisk-like (it needs to have the
properties InnerRadius and OuterRadius).
'''
delta0=0.01
deltaMax0=1.
rin0=0.
rout0=28.
rmax0=50.
d0=28.
factor_first=100.
factor_last=2.01/28.
def __init__(self, scenery=None, **args):
if scenery is not None:
self.delta0=scenery.delta()
scr=scenery.screen()
self.d0=scr.distance('geometrical')
ao=scenery.astrobj()
self.deltaMax0=ao.deltaMaxInsideRMax()
self.rin0=ao.get('InnerRadius', 'geometrical')
self.rout0=ao.get('OuterRadius', 'geometrical')
self.rmax0=ao.rMax()
self.factor_last=2.01/self.d0
scenery.screen().observerKind('ZAMO')
for key in args:
setattr(self, key, args[key])
def __call__(self, sc, k, nframes):
# factor=(((self.factor_last*k)
# +(self.factor_first*(self.nframes-1-k)))
# /(self.nframes-1))
# print(factor)
log2_first=numpy.log2(self.factor_first)
log2_last=numpy.log2(self.factor_last)
log2_k=(((log2_last*k)
+(log2_first*(nframes-1-k)))
/(nframes-1))
factor=2.**log2_k
sc.delta(factor*self.delta0)
scr=sc.screen()
scr.distance(factor*self.d0, 'geometrical')
print(factor, scr.distance('geometrical'))
ao=sc.astrobj()
ao.deltaMaxInsideRMax(factor*self.deltaMax0)
ao.set('InnerRadius', factor*self.rin0, 'geometrical')
ao.set('OuterRadius', factor*self.rout0, 'geometrical')
ao.rMax(factor*self.rmax0)
## Helper function for tracing one frame
def rayTraceFrame(sc, func, k, nframes, width, height):
'''Ray-trace one frame of a Gyoto video
Parameters:
sc: Scenery to ray-trace
func: callable to mutate the Screen
k: number of the frame
width: width of the video
height: height of the video
Returns:
The raytraced intensity as a NumPy array
'''
intensity=numpy.zeros((height, width))
pintensity=core.array_double.fromnumpy2(intensity)
func(sc, k, nframes)
res=max(width, height)
sc.screen().resolution(res)
ii=core.Range(res//2-width//2+1, res//2-width//2+width, 1)
jj=core.Range(res//2-height//2+1, res//2-height//2+height, 1)
grid=core.Grid(ii, jj)
aop=core.AstrobjProperties()
aop.intensity=pintensity
sc.rayTrace(grid, aop)
# print(newpos)
# print(newvel)
# plt.imshow(intensity)
# plt.show()
return intensity
## Build default scenery and trajectory
def defaultScenery():
'''Create a default scenery
The astrobj is a PatternDisk.
'''
metric = core.Metric("KerrBL")
metric.mass(4e6, "sunmass");
gridshape=numpy.asarray( (1, 3, 11) , numpy.uint64)
pgridshape=core.array_size_t.fromnumpy1(gridshape)
opacity=numpy.zeros(gridshape)
popacity=core.array_double.fromnumpy3(opacity)
opacity[:, 0::2, 0::2]=100.
opacity[:, 1::2, 1::2]=100.
intensity=opacity*0.+1.;
pintensity=core.array_double.fromnumpy3(intensity)
pd=std.PatternDisk()
pd.velocityKind('ZAMO')
pd.copyIntensity(pintensity, pgridshape)
pd.copyOpacity (popacity, pgridshape)
pd.innerRadius(0)
pd.outerRadius(28)
pd.repeatPhi(8)
pd.metric(metric)
pd.rMax(50)
screen=core.Screen()
screen.metric(metric)
screen.resolution(64)
screen.time(1000., "geometrical_time")
screen.distance(28., "geometrical")
# Standard 24x36 field of view after a 55mm objective
screen.fieldOfView(2.*numpy.arctan(18./55), 'radians')
screen.anglekind('Rectilinear')
screen.inclination(95., "degree")
screen.PALN(180., "degree")
sc=core.Scenery()
sc.metric(metric)
sc.screen(screen)
sc.astrobj(pd)
sc.nThreads(8)
return sc
def defaultTrajectory(screen):
'''Get default trajectory and adapt screen (field-of-view etc.)
'''
screen.observerKind('VelocitySpecified')
screen.fieldOfView(90, 'degree')
traj=std.Star()
traj.metric(screen.metric())
traj.setInitCoord((0., 28., 0.8, 0.), (0., 0., 0.007))
return traj
### The main function
def mk_video(scenery=None,
func="orbiting_screen",
orbit_trajectory=None, orbit_t0=0., orbit_t1=1000.,
static_t0=0., static_t1=1000., static_unit='geometrical',
acceleration_maxvel=0.99,
growth_factor_first=None,
growth_factor_last=None,
duration=10, fps=3, width=128, height=72,
dangle1=None, dangle2=None, fov=None,
verbose=0, debug=False, nthreads=8,
output=None,
backend=OpenCVVideoWriter,
cmap=None,
observerkind=None,
plot=False,
frame_first=0,
frame_last=None
):
'''Make a video from a Gyoto Scenery
Keyword arguments:
scenery -- the Scenery to animate, a string (XML file name),
Gyoto.core.Scenery instance or None in which case a
default Scenery is used
func -- a callable which will be called as func(scenery, k)
where k is the frame number. func() is responsible to
mutate the Scenery for each frame, for instance by
moving the camera, changing its field-of view etc..
func may also be a string, the name of one of the
built-in callables: orbiting_screen (default),
orbiting_screen_forward, static_screen,
accelerating_tangential_screen or growing_mass. Those
options take parameters below
orbit_trajectory --
only if func above starts with 'orbiting_screen', a
gyoto.std.Star instance or a string (XML file name) or
None (in which case a default trajectory is used)
specifying the trajectory of the Screen.
orbit_t0 -- only if func above starts with 'orbiting_screen',
proper time along the trajectory at the beginning of
the movie
orbit_t1 -- only if func above starts with 'orbiting_screen',
proper time along the trajectory at the end of the
movie
static_t0-- only if func above is 'static_screen', coordinate
observing time offset at first frame
static_t0-- only if func above is 'static_screen', coordinate
observing time offset at last frame
static_unit --
only if func above is 'static_screen', unit in which
static_t0 and static_t1 are expressed ('geometrical').
acceleration_maxvel --
only if func is 'accelerating_tangential_screen',
maximum velocity of the observer, in terms of c
(default: 0.99)
growth_factor_first --
only if func is 'growing_mass', scale factor for first
frame.
growth_factor_last --
only if func is 'growing_mass', scale factor for last
frame.
duration -- duration pf the movie in seconds (default: 10.)
fps -- frames per second (default: 3)
width -- width of the movie in pixels (default: 128)
height -- height of the movie in pixels (default: 72)
dangle1 -- rotate the camera dangle1 degrees horizontally
dangle2 -- rotate the camera dangle2 degrees vertically
fov -- screen field-of-view
verbose -- verbosity level (default: 0)
debug -- debug mode (default: False)
nthreads -- number of parallel threads to use (default: 8)
output -- output file name
backend -- class implementing VideoWriter
observerkind --
change observer kind (default: VelocitySpecified)
plot -- show each frame (default: False)
'''
# Set a few variables
nframes=int(duration*fps)
# Read or create Scenery
if scenery is None:
sc=defaultScenery()
elif type(scenery) is core.Scenery:
sc=scenery
else:
sc=core.Factory(scenery).scenery()
screen=sc.screen()
metric=sc.metric()
# Select video type, init func callable
if func == 'orbiting_screen':
# Read or create trajectory
if orbit_trajectory is None:
traj=defaultTrajectory(screen)
elif type(orbit_trajectory) is std.Star:
traj=orbit_trajectory
else:
traj=std.Star(core.Factory(orbit_trajectory).astrobj())
traj.metric(metric)
screen.observerKind('VelocitySpecified')
func=orbiting_screen(trajectory=traj, t0=orbit_t0, t1=orbit_t1)
elif func == 'static_screen':
func=static_screen(unit=static_unit, t0=static_t0, t1=static_t1)
elif func == 'orbiting_screen_forward':
# Read or create trajectory
if orbit_trajectory is None:
traj=defaultTrajectory(screen)
elif type(orbit_trajectory) is std.Star:
traj=orbit_trajectory
else:
traj=std.Star(core.Factory(orbit_trajectory).astrobj())
traj.metric(metric)
screen.observerKind('FullySpecified')
func=orbiting_screen_forward(trajectory=traj, t0=orbit_t0, t1=orbit_t1)
elif func == 'accelerating_tangential_screen':
screen.observerKind('VelocitySpecified')
screen.dangle1(-45, 'degree')
screen.fieldOfView(90, 'degree')
func=accelerating_tangential_screen(maxvel=acceleration_maxvel)
elif func == 'growing_mass':
func=growing_mass(sc)
if growth_factor_first is not None:
func.factor_first=growth_factor_first
if growth_factor_last is not None:
func.factor_last=growth_factor_last
# else assume func is a callable
# Override some values set on command-line
if (observerkind is not None):
screen.observerKind(observerkind)
if dangle1 is not None:
screen.dangle1(dangle1, 'degree')
if dangle2 is not None:
screen.dangle2(dangle2, 'degree')
if fov is not None:
screen.fieldOfView(fov, 'degree')
# Prepare for ray-tracing
nframes=int(duration*fps)
screen.resolution(max(height, width))
core.verbose(verbose)
core.debug(debug)
sc.nThreads(nthreads)
# Open video
if backend == 'OpenCV':
backend=OpenCVVideoWriter
elif backend == 'PyAV':
backend=PyAVVideoWriter
elif backend is None or backend == 'Null':
backend=NullVideoWriter
if type(output) == str or backend is NullVideoWriter:
video=backend(output, fps, width, height)
elif isinstance(output, VideoWriter):
video=output
else:
raise ValueError('output needs to be a string or VideoWriter')
if type(cmap) == str:
video.cmap=plt.cm.get_cmap(cmap)
elif cmap is not None:
video.cmap=cmap
# Loop on frame number
if frame_last is None:
frame_last=nframes-1
for k in range(frame_first, frame_last+1):
print(k, "/", nframes)
intensity=rayTraceFrame(sc, func, k, nframes, width, height)
frame=video.colorize(intensity)
if plot:
plt.imshow(frame, origin='lower')
plt.show()
video.write(frame)
# Close video
del video
### Define arguments
parser = argparse.ArgumentParser(description=
'''Make a video from a Gyoto Scenery
Synopsys:
gyoto mk-video --output=<out.avi> [--options...]
Several types of videos are available and can be selected with
--func. Currently, only the KerrBL Metric implements the methods
needed for those various videos (zamoVelocity, circularVelocity and
observerTetrad are needed). All parameters except --output have
reasonable defaults. For even more advanced usage, see the module
'gyoto.animate' in Python. This script requires one of the modules
OpenCV-python or PyAV to be installed (see --backend option).
gyoto mk-video --output=<out.avi> \\
--func=static_screen \\
[--scenery=<scenery.xml>] \\
[--static-unit=<time unit>] \\
[--static-t0=<t0>] \\
[--static-t1=<t1>]
will produce a video of the Scenery <scenery.xml> with the Screen
(a.k.a. camera) fixed, with observing (coordinate) time varying from
Time+<t0> to Time+<t1> in <time unit>, where Time is the observing
date specified in<scenery.xml>. This kind of video makes sense only if
the astrobj in <scenery.xml> is time-variable.
gyoto mk-video --output=<out.avi> \\
--func=orbiting_screen \\
[--scenery=<scenery.xml>] \\
[--orbit-trajectory=<orbit.xml>] \\
[--orbit-t0=<t0>] \\
[--orbit-t1=<t1>]
will produce a video of the Scenery <scenery.xml> with the Screen
(a.k.a. camera) orbiting the central object along the trajectory
described in <trajectory.xml>. <trajectory.xml> may be a scenery file
or a file produced by gyotoy and must contain a Star astrobj. The
geodesic of this Star will be used as the camera trajectory. The
Screen is pointing along -er, i.e. in the direction of the central object.
gyoto mk-video --output=<out.avi> \\
--func=orbiting_screen_forward \\
[--scenery=<scenery.xml>] \\
[--orbit-trajectory=<orbit.xml>] \\
[--orbit-t0=<t0>] \\
[--orbit-t1=<t1>]
will produce a video of the Scenery <scenery.xml> with the Screen
(a.k.a. camera) orbiting the central object along the trajectory
described in <trajectory.xml>. <trajectory.xml> may be a scenery file
or a file produced by gyotoy and must contain a Star astrobj. The
geodesic of this Star will be used as the camera trajectory. The
Screen is pointing in the direction of motion, i.e. looking forward.
gyoto mk-video --output=<out.avi> \\
--func=accelerating_tangential_screen \\
[--scenery=<scenery.xml>] \\
[--acceleration-maxvel=<maxvel>]
will produce a video where the Screen is fixed but changes velocity
from 0 to maxvel*c. This is not an actual time sequence but helps
vizualizing effects such as light aberration.
gyoto mk-video --output=<out.avi> \\
--func=growing_mass \\
[--scenery=<scenery.xml>] \\
[--growth_factor_first=<ff>] \\
[--growth_factor_last=<fl>]
will produce a video where the scale of the Scenery changes for each
frame, from ff to fl. For this particular type of video, the Astrobj
in the Scenery must be some kind of PatternDisk.
''',
formatter_class=argparse.RawDescriptionHelpFormatter,
prefix_chars='-+')
parser.add_argument('-s', '--scenery', type=str, default=None,
help='name of a Gyoto Scenery XML file. Default: use built-in Scenery.')
parser.add_argument('-t', '--orbit-trajectory', type=str, default=None,
dest='orbit_trajectory',
help='name of a Gyoto Scenery or Astrobj XML file containing a star '
'describing the screen motion. Default: use built-in trajectory.')
parser.add_argument('-o', '--output', type=str, default=None,
help='name of video file to save the movie in')
parser.add_argument('-B', '--backend', type=str, default='OpenCV',
choices=['OpenCV', 'PyAV', 'Null'],
help='name of backend to create video')
parser.add_argument('-c', '--cmap', type=str, default='hot',
help='name of pyplot color map')
parser.add_argument("-V", "--func", help="type of video to produce.",
type=str, default='orbiting_screen',
choices=['orbiting_screen', 'orbiting_screen_forward',
'accelerating_tangential_screen',
'growing_mass', 'static_screen'])
parser.add_argument("-D", "--duration", help="movie duration in seconds",
type=float, default=10.)
parser.add_argument("-f", "--fps", help="number of frames per second",
type=int, default=3)
parser.add_argument("-W", "--width", help="image width in pixels",
type=int, default=128)
parser.add_argument("-H", "--height", help="image height in pixels",
type=int, default=72)
parser.add_argument("-a", "--dangle1", help="camera azimuth offset in degrees",
type=float, default=None)
parser.add_argument("-b", "--dangle2", help="camera elevation offset in degrees",
type=float, default=None)
parser.add_argument("-F", "--fov", help="camera field-of-view in degrees",
type=float, default=None)
parser.add_argument("-O", "--observerkind", help="observer kind",
type=str, default=None)
parser.add_argument("-v", "--verbose", help="verbosity level",
type=int, default=0)
parser.add_argument("-d", "--debug", help="debug mode",
dest='debug', action='store_true', default=False)
parser.add_argument("-p", "--plot", help="plot each frame",
dest='plot', action='store_true', default=False)
parser.add_argument("-T", "--nthreads", help="number of threads to use",
type=int, default=8)
parser.add_argument("--orbit-t0", help="for orbit video type, initial time in geometrical units",
dest='orbit_t0', type=float, default=0)
parser.add_argument("--orbit-t1", help="for orbit video type, final time in geometrical units",
dest='orbit_t1', type=float, default=1000)
parser.add_argument("--static-t0", help="for static video type, initial time offset",
dest='static_t0', type=float, default=0)
parser.add_argument("--static-t1", help="for static video type, final time offset",
dest='static_t1', type=float, default=1000)
parser.add_argument("--static-unit", dest="static_unit", help="unit for static-t0 and static-t1",
type=str, default="geometrical")
parser.add_argument("--acceleration-maxvel", help="for acceleration video type, max velocity in terms of light velocity",
dest='acceleration_maxvel', type=float, default=0.99)
parser.add_argument("--growth_factor_first", help="for growth video type, scale factor on first frame",
dest='growth_factor_first', type=float, default=None)
parser.add_argument("--growth-factor-last", help="for growth video type, scale factor on last frame",
dest='growth_factor_last', type=float, default=None)
def main():
args = parser.parse_args()
mk_video(**args.__dict__)
# If called as script, process command line and produce video
if (__name__ == "__main__"):
main()
|