File: example-torusjet.xml

package info (click to toggle)
gyoto 2.0.2-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,444 kB
  • sloc: cpp: 42,330; sh: 4,512; python: 3,436; xml: 2,865; makefile: 691; ansic: 346
file content (72 lines) | stat: -rw-r--r-- 2,857 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Scenery>

  <!-- <DeltaMaxOverR> 0.1 </DeltaMaxOverR> -->
  Uncomment the line above to generate high-quality images.
  Useless for spectra (increases computing time).
  
  <Metric kind = "KerrBL">
    <Mass unit="sunmass">4.1e6</Mass>
    <Spin>0.</Spin>
  </Metric>

  <Screen>
    <Distance unit="kpc"> 8.1 </Distance>
    <Time unit="yr"> 100e3 </Time> 27.169411e3
    <FieldOfView unit="µas"> 500 </FieldOfView>
    <Inclination unit="°"> 160 </Inclination> i = 180 - Inclination
    <PALN> 3.1415  </PALN>  This rotates the Screen in its plane
    <Argument> -1.5708 </Argument> This changes the phi position of the Screen 
    <Resolution>201</Resolution> Choose an odd integer, easier for
    spectrum computation by plot-Spectrum.py
    <Spectrometer kind="freqlog" nsamples="30">11. 18.</Spectrometer>
    The Spectrometer above computes a spectrum with 30 values
    of frequency between 1e11 and 1e18 Hz.
    To compute just one image at 1.3mm, use the Spectro below
    <!--<Spectrometer kind="freqlog" nsamples="1">11.36 11.36</Spectrometer>-->
  </Screen>
  
  <Quantities>Spectrum</Quantities>

  <Astrobj kind = "Complex">
    <SubAstrobj kind = "Jet">

      <JetOuterOpeningAngle>0.41</JetOuterOpeningAngle>
      <JetInnerOpeningAngle>0.35</JetInnerOpeningAngle>
      <JetBaseHeight>2.</JetBaseHeight> in M units
      <GammaJet>1.15</GammaJet>
      <BaseNumberDensity unit="cm-3">5e7</BaseNumberDensity>
      <BaseTemperature>3e10</BaseTemperature>
      <TemperatureSlope>0.21</TemperatureSlope>
      <MagnetizationParameter>0.01</MagnetizationParameter>
      <KappaIndex>5.5</KappaIndex> 
      <RMax>100.</RMax> in M units; photon discusses with Jet only below this
      value, so be sure that the interesting part of the Jet in your
      field of view is contained within this radius.
      <DeltaInObj>0.2</DeltaInObj> This is a radiative transfer parameter inside
      the Jet: the photon geodesic inside the Jet will be cut in small
      steps of this size in M units to integrated the radiative transfer.
    </SubAstrobj>
    <SubAstrobj kind = "PolishDoughnut">
      <AngleAveraged/>
      <AngMomRinner> 4. 8. </AngMomRinner> 
      <CentralEnthalpyPerUnitVolume unit="erg/cm3">
  	2000000
      </CentralEnthalpyPerUnitVolume>
      The central enthalpy (hc) is provided here.
      For a central number density of nc=1.2e9 cm-3,
      the central enthalpy is: hc = 2e6
      <CentralTemperature>7e9</CentralTemperature>
      <MagnetizationParameter>0.002</MagnetizationParameter>
      <OpticallyThin/>
      <RMax>100.</RMax>
      <DeltaInObj>0.2</DeltaInObj>
    </SubAstrobj>
  </Astrobj>

  <MinimumTime> -1e10 </MinimumTime> Photon integration stops for times
  smaller than that.
  <NThreads> 8 </NThreads> Depends on your machine!
  
</Scenery>