1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
/**
* \file GyotoFlaredDiskSynchrotron.h
* \brief A disk defined from a 2D grid in the equatorial plane
* and extrapolated in the vertical direction with H/r<<1
*/
/*
Copyright 2019-2021 Frederic Vincent, Thibaut Paumard, Nicolas Aimar
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __GyotoFlaredDiskSynchrotron_H_
#define __GyotoFlaredDiskSynchrotron_H_
#include <iostream>
#include <fstream>
#include <iomanip>
namespace Gyoto{
namespace Astrobj { class FlaredDiskSynchrotron; }
class GridData2D;
}
#include <GyotoStandardAstrobj.h>
#include <GyotoGridData2D.h>
#include <GyotoKappaDistributionSynchrotronSpectrum.h>
/**
* \class Gyoto::Astrobj::FlaredDiskSynchrotron
*/
class Gyoto::Astrobj::FlaredDiskSynchrotron
: public Astrobj::Standard,
public GridData2D,
public Hook::Listener
{
friend class Gyoto::SmartPointer<Gyoto::Astrobj::FlaredDiskSynchrotron>;
private:
SmartPointer<Spectrum::KappaDistributionSynchrotron> spectrumKappaSynch_;
std::string filename_; ///< Optional FITS file name containing the arrays
double hoverR_; ///< Value of aspect ratio H/R of flared disk, where R is the radius projected in the equatorial plane and H the altitude above the equatorial plane
double numberDensityMax_cgs_; ///< Maximum cgs value of number density
double temperatureMax_; ///< Maximum temperature in K
double BMax_cgs_; ///< Maximun strenght of the 3 veceor magnetic field, defined by numberDensityMax_cgs_, temperatureMax_ and beta_
double beta_;
/**
* An array of dimensionality double[nr_][nphi_][nt_]. In FITS
* format, the first dimension is t, the second phi, and the third
* r.
*/
double * density_; ///< Surface density (ν, r, φ)
/**
* An array of dimensionality double[nr_][nphi_][nt_][2]. In FITS format,
* the second dimension is phi, and the third r. The first plane in
* the first FITS dimention is dr/dt, the second dφ/dt.
*/
double * velocity_; ///< velocity(r, φ)
double * Bvector_; ///< 4vector of the magnetic field
double * time_array_; /// 1D Vector containing the times values of each time steps (dt not constant)
double magnetizationParameter_; ///< (B<SUP>2</SUP>/(4 pi)) / (n<SUB>e</SUB> m<SUB>p</SUB> c<SUP>2</SUP>)
double deltat_;///< time translation
double gamm1_; /// polytropic index - 1
bool flag_; /// flag for a fixed magnetic field or average
public:
GYOTO_OBJECT;
GYOTO_OBJECT_THREAD_SAFETY;
// Constructors - Destructor
// -------------------------
FlaredDiskSynchrotron(); ///< Standard constructor
FlaredDiskSynchrotron(const FlaredDiskSynchrotron& ) ;///< Copy constructor
virtual FlaredDiskSynchrotron* clone () const; ///< Cloner
virtual ~FlaredDiskSynchrotron() ; ///< Destructor
// Accessors
// ---------
public:
void file(std::string const &f) ;
std::string file() const;
void hoverR(double const hor) ;
double hoverR() const;
/*
timeTranslation shifts the value of GridData2D::tmin_ and tmax_,
allowing to scan the full simulation without having to change
the value of the Screen observation time (which is typically
not provided in M unit in the XML).
Choosing a negative timeTranslation, i.e. performing tmin_,tmax_-=dt,
amounts to increasing the Screen observation time by the same value,
tobs+=dt.
*/
void timeTranslation_inMunit(double const dt) ;
double timeTranslation_inMunit() const ;
void magnetizationParameter(double rr);
double magnetizationParameter() const;
void kappaIndex(double index);
double kappaIndex()const;
double numberDensityMax() const;
double numberDensityMax(std::string const &unit) const;
void numberDensityMax(double dens) ;
void numberDensityMax(double dens, std::string const &unit);
void temperatureMax(double tt);
double temperatureMax() const;
void polytropicIndex(double gamma);
double polytropicIndex() const;
void betaAtMax(double beta);
double betaAtMax() const;
void copyDensity(double const *const density,
size_t const naxes[3]);
double const * getDensity() const;
void copyVelocity(double const *const velocity,
size_t const naxes[3]);
double const * getVelocity() const;
void copyBvector(double const *const Bvector,
size_t const naxes[3]);
double const * getBvector() const;
void copyTimeArray(double const *const time_array, size_t const ntimes);
double const * getTimeArray() const;
public:
using Generic::metric;
std::vector<size_t> fitsRead(std::string filename) ;
virtual double operator()(double const coord[4]) ;
virtual void radiativeQ(double Inu[],
double Taunu[],
double const nu_ems[], size_t nbnu,
double dsem,
state_t const &coord_ph,
double const coord_obj[8]) const;
virtual void getVelocity(double const pos[4], double vel[4]) ;
};
#endif
|