File: DirectionalDisk.C

package info (click to toggle)
gyoto 2.0.2-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,444 kB
  • sloc: cpp: 42,330; sh: 4,512; python: 3,436; xml: 2,865; makefile: 691; ansic: 346
file content (694 lines) | stat: -rw-r--r-- 25,893 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
/*
    Copyright 2014, 2018 Frederic Vincent, Thibaut Paumard

    This file is part of Gyoto.

    Gyoto is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Gyoto is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Gyoto.  If not, see <http://www.gnu.org/licenses/>.
 */
#include "GyotoPhoton.h"
#include "GyotoDirectionalDisk.h"
#include "GyotoUtils.h"
#include "GyotoFactoryMessenger.h"
#include "GyotoProperty.h"
#include "GyotoKerrBL.h"
#include "GyotoKerrKS.h"


#ifdef GYOTO_USE_CFITSIO
#include <fitsio.h>
#define throwCfitsioError(status) \
    { fits_get_errstatus(status, ermsg); GYOTO_ERROR(ermsg); }
#endif
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
#include <fstream>
#include <cstring>
#include <cmath>
#include <limits>

using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;

//// Properties:

GYOTO_PROPERTY_START(DirectionalDisk)
GYOTO_PROPERTY_FILENAME(DirectionalDisk, File, file)
GYOTO_PROPERTY_DOUBLE(DirectionalDisk, LampAltitude, lampaltitude)
GYOTO_PROPERTY_VECTOR_DOUBLE(DirectionalDisk, LampCutOffsIneV, lampcutoffsinev)
GYOTO_PROPERTY_BOOL(DirectionalDisk,
		    AverageOverAngle, DontAverageOverAngle,
		    averageOverAngle)
GYOTO_PROPERTY_END(DirectionalDisk, ThinDisk::properties)

void DirectionalDisk::fillProperty(Gyoto::FactoryMessenger *fmp,
			       Property const &p) const {
  if (p.name == "File")
    fmp->setParameter("File", (filename_.compare(0,1,"!") ?
			       filename_ :
			       filename_.substr(1)) );
  else ThinDisk::fillProperty(fmp, p);
}

////

DirectionalDisk::DirectionalDisk() :
  ThinDisk("DirectionalDisk"), filename_(""),
  emission_(NULL), radius_(NULL), cosi_(NULL), freq_(NULL),
  nnu_(0), ni_(0), nr_(0),
  lampaltitude_(10.),
  minfreq_computed_(DBL_MIN), maxfreq_computed_(DBL_MAX),
  minfreq_lampframe_(1.), maxfreq_lampframe_(1e30),
  average_over_angle_(0)
{
  GYOTO_DEBUG << "DirectionalDisk Construction" << endl;
}

DirectionalDisk::DirectionalDisk(const DirectionalDisk& o) :
  ThinDisk(o), filename_(o.filename_),
  emission_(NULL), radius_(NULL), cosi_(NULL), freq_(NULL),
  nnu_(o.nnu_), ni_(o.ni_), nr_(o.nr_),
  lampaltitude_(o.lampaltitude_),
  minfreq_computed_(o.minfreq_computed_), 
  maxfreq_computed_(o.maxfreq_computed_),
  minfreq_lampframe_(o.minfreq_lampframe_), 
  maxfreq_lampframe_(o.maxfreq_lampframe_), 
  average_over_angle_(o.average_over_angle_)
{
  GYOTO_DEBUG << "DirectionalDisk Copy" << endl;
  size_t ncells = 0;
  if (o.emission_) {
    emission_ = new double[ncells = nnu_ * ni_ * nr_];
    memcpy(emission_, o.emission_, ncells * sizeof(double));
  }
  if (o.freq_) {
    freq_ = new double[ncells = nnu_];
    memcpy(freq_, o.freq_, ncells * sizeof(double));
  }
  if (o.cosi_) {
    cosi_ = new double[ncells = ni_];
    memcpy(cosi_, o.cosi_, ncells * sizeof(double));
  }
  if (o.radius_) {
    radius_ = new double[ncells = nr_];
    memcpy(radius_, o.radius_, ncells * sizeof(double));
  }
}
DirectionalDisk* DirectionalDisk::clone() const
{ return new DirectionalDisk(*this); }

DirectionalDisk::~DirectionalDisk() {
  GYOTO_DEBUG << "DirectionalDisk Destruction" << endl;
  if (emission_) delete [] emission_;
  if (radius_) delete [] radius_;
  if (cosi_) delete [] cosi_;
  if (freq_) delete [] freq_;

}

void DirectionalDisk::setEmission(double * pattern) {
  emission_ = pattern;
}

void DirectionalDisk::radius(double * pattern) {
  radius_ = pattern;
}

void DirectionalDisk::copyIntensity(double const *const pattern, size_t const naxes[3]) {
  GYOTO_DEBUG << endl;
  if (emission_) {
    GYOTO_DEBUG << "delete [] emission_;" << endl;
    delete [] emission_; emission_ = NULL;
  }
  if (pattern) {
    size_t nel;
    if (nnu_ != naxes[0]) {
      GYOTO_DEBUG <<"nnu_ changed, freeing freq_" << endl;
      if (freq_)  { delete [] freq_; freq_  = NULL; }
    }
    if (ni_ != naxes[1]) {
      GYOTO_DEBUG <<"ni_ changed, freeing freq_ and cosi_" << endl;
      if (freq_)  { delete [] freq_; freq_  = NULL; }
      if (cosi_) { delete [] cosi_; cosi_= NULL; }
    }
    if (nr_ != naxes[2]) {
      GYOTO_DEBUG <<"nr_ changed, freeing freq_, cosi_ and radius_" << endl;
      if (freq_)  { delete [] freq_; freq_  = NULL; }
      if (cosi_) { delete [] cosi_; cosi_= NULL; }
      if (radius_)   { delete [] radius_;   radius_  = NULL; }
    }
    if (!(nel=(nnu_ = naxes[0]) * (ni_=naxes[1]) * (nr_=naxes[2])))
      GYOTO_ERROR( "dimensions can't be null");
    GYOTO_DEBUG << "allocate emission_;" << endl;
    emission_ = new double[nel];
    GYOTO_DEBUG << "pattern >> emission_" << endl;
    memcpy(emission_, pattern, nel*sizeof(double));
  }
}

double const * DirectionalDisk::getIntensity() const { return emission_; }
void DirectionalDisk::getIntensityNaxes( size_t naxes[3] ) const
{ naxes[0] = nnu_; naxes[1] = ni_; naxes[2] = nr_; }

void DirectionalDisk::copyGridRadius(double const *const rad, size_t nr) {
  GYOTO_DEBUG << endl;
  if (radius_) {
    GYOTO_DEBUG << "delete [] radius_;" << endl;
    delete [] radius_; radius_ = NULL;
  }
  if (rad) {
    if (!emission_) 
      GYOTO_ERROR("Please use copyIntensity() before copyGridRadius()");
    if (nr_ != nr)
      GYOTO_ERROR("emission_ and radius_ have inconsistent dimensions");
    GYOTO_DEBUG << "allocate radius_;" << endl;
    radius_ = new double[nr_];
    GYOTO_DEBUG << "radius >> radius_" << endl;
    memcpy(radius_, rad, nr_*sizeof(double));
  }
}
double const * DirectionalDisk::getGridRadius() const { return radius_; }

void DirectionalDisk::copyGridCosi(double const *const cosi, size_t ni) {
  GYOTO_DEBUG << endl;
  if (cosi_) {
    GYOTO_DEBUG << "delete [] cosi_;" << endl;
    delete [] cosi_; cosi_ = NULL;
  }
  if (cosi) {
    if (!emission_) 
      GYOTO_ERROR("Please use copyIntensity() before copyGridCosi()");
    if (ni_ != ni)
      GYOTO_ERROR("emission_ and cosi_ have inconsistent dimensions");
    GYOTO_DEBUG << "allocate cosi_;" << endl;
    cosi_ = new double[ni_];
    GYOTO_DEBUG << "cosi >> cosi_" << endl;
    memcpy(cosi_, cosi, ni_*sizeof(double));
  }
}
double const * DirectionalDisk::getGridCosi() const { return cosi_; }

void DirectionalDisk::copyGridFreq(double const *const freq, size_t nnu) {
  GYOTO_DEBUG << endl;
  if (freq_) {
    GYOTO_DEBUG << "delete [] freq_;" << endl;
    delete [] freq_; freq_ = NULL;
  }
  if (freq) {
    if (!emission_) 
      GYOTO_ERROR("Please use copyIntensity() before copyGridFreq()");
    if (nnu_ != nnu)
      GYOTO_ERROR("emission_ and freq_ have inconsistent dimensions");
    GYOTO_DEBUG << "allocate freq_;" << endl;
    freq_ = new double[nnu_];
    GYOTO_DEBUG << "freq >> freq_" << endl;
    memcpy(freq_, freq, nnu_*sizeof(double));
  }
}
double const * DirectionalDisk::getGridFreq() const { return freq_; }

void DirectionalDisk::averageOverAngle(bool t) {average_over_angle_=t;}
bool DirectionalDisk::averageOverAngle()const {return average_over_angle_;}

void DirectionalDisk::file(std::string const &f) {
# ifdef GYOTO_USE_CFITSIO
  fitsRead(f);
# else
  GYOTO_ERROR("This Gyoto has no FITS i/o");
# endif
}

std::string DirectionalDisk::file() const {
  return filename_;
}

void DirectionalDisk::lampaltitude(double zz) {
  lampaltitude_ = zz;
}

double DirectionalDisk::lampaltitude() const {
  return lampaltitude_;
}

void DirectionalDisk::lampcutoffsinev(std::vector<double> const &v) {
  if (v.size() != 2)
    GYOTO_ERROR("In DirectionalDisk: Only 2 arguments to define lamp energy range");
  minfreq_lampframe_ = v[0]*GYOTO_eV2Hz;
  maxfreq_lampframe_ = v[1]*GYOTO_eV2Hz;
}

std::vector<double> DirectionalDisk::lampcutoffsinev() const {
  std::vector<double> v (2, 0.);
  v[0]=minfreq_lampframe_; v[1]=maxfreq_lampframe_;
  return v;
}

#ifdef GYOTO_USE_CFITSIO
void DirectionalDisk::fitsRead(string filename) {
  GYOTO_MSG << "DirectionalDisk reading FITS file: " << filename << endl;

  filename_ = filename;
  char*     pixfile   = const_cast<char*>(filename_.c_str());
  fitsfile* fptr      = NULL;
  int       status    = 0;
  int       anynul    = 0;
  long      naxes []  = {1, 1, 1};
  long      fpixel[]  = {1,1,1};
  long      inc   []  = {1,1,1};
  char      ermsg[31] = ""; // ermsg is used in throwCfitsioError()

  GYOTO_DEBUG << "DirectionalDisk::readFile(): opening file" << endl;
  if (fits_open_file(&fptr, pixfile, 0, &status)) throwCfitsioError(status) ;

  ////// FIND MANDATORY EMISSION HDU, READ KWDS & DATA ///////
  GYOTO_DEBUG << "DirectionalDisk::readFile(): search emission HDU" << endl;
  if (fits_movnam_hdu(fptr, ANY_HDU,
		      const_cast<char*>("GYOTO DirectionalDisk emission"),
		      0, &status))
    throwCfitsioError(status) ;
  GYOTO_DEBUG << "DirectionalDisk::readFile(): get image size" << endl;
  if (fits_get_img_size(fptr, 3, naxes, &status)) throwCfitsioError(status) ;

  //update nnu_, ni_, nr_
  nnu_ = naxes[0]; 
  ni_  = naxes[1];
  nr_  = naxes[2];

  if (emission_) { delete [] emission_; emission_ = NULL; }
  emission_ = new double[nnu_ * ni_ * nr_];
  if (debug())
    cerr << "DirectionalDisk::readFile(): read emission: "
	 << "nnu_=" << nnu_ << ", ni_="<<ni_ << ", nr_="<<nr_ << "...";
  if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc,
		       0, emission_,&anynul,&status)) {
    GYOTO_DEBUG << " error, trying to free pointer" << endl;
    delete [] emission_; emission_=NULL;
    throwCfitsioError(status) ;
  }
  GYOTO_DEBUG << " done." << endl;

  ////// FIND MANDATORY FREQ HDU ///////
  
   if (fits_movnam_hdu(fptr, ANY_HDU,
		       const_cast<char*>("GYOTO DirectionalDisk freq"),
		       0, &status))
     throwCfitsioError(status) ;
   if (fits_get_img_size(fptr, 1, naxes, &status)) throwCfitsioError(status) ;
   if (size_t(naxes[0]) != nnu_)
     GYOTO_ERROR("DirectionalDisk::readFile(): freq array not conformable");
   if (freq_) { delete [] freq_; freq_ = NULL; }
   freq_ = new double[nnu_];
   if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc, 
			0, freq_,&anynul,&status)) {
     delete [] freq_; freq_=NULL;
     throwCfitsioError(status) ;
   }

   // Computing min and max of freq_

   minfreq_computed_ = DBL_MAX;
   maxfreq_computed_ = DBL_MIN;
   for (int ii=0;ii<nnu_;ii++){
     if (freq_[ii]<minfreq_computed_) minfreq_computed_=freq_[ii];
     if (freq_[ii]>maxfreq_computed_) maxfreq_computed_=freq_[ii];
   }
   
   GYOTO_DEBUG << "Min, max freq= " << minfreq_computed_ << " " << maxfreq_computed_ << endl;

  ////// FIND MANDATORY COSI HDU ///////
  
   if (fits_movnam_hdu(fptr, ANY_HDU,
		       const_cast<char*>("GYOTO DirectionalDisk cosi"),
		       0, &status))
     throwCfitsioError(status) ;
   if (fits_get_img_size(fptr, 1, naxes, &status)) throwCfitsioError(status) ;
   if (size_t(naxes[0]) != ni_)
     GYOTO_ERROR("DirectionalDisk::readFile(): cosi array not conformable");
   if (cosi_) { delete [] cosi_; cosi_ = NULL; }
   cosi_ = new double[ni_];
   if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc, 
			0, cosi_,&anynul,&status)) {
     delete [] cosi_; cosi_=NULL;
     throwCfitsioError(status) ;
   }

  ////// FIND MANDATORY RADIUS HDU ///////
  
   if (fits_movnam_hdu(fptr, ANY_HDU,
		       const_cast<char*>("GYOTO DirectionalDisk radius"),
		       0, &status))
     throwCfitsioError(status) ;
   if (fits_get_img_size(fptr, 1, naxes, &status)) throwCfitsioError(status) ;
   if (size_t(naxes[0]) != nr_)
     GYOTO_ERROR("DirectionalDisk::readFile(): radius array not conformable");
   if (radius_) { delete [] radius_; radius_ = NULL; }
   radius_ = new double[nr_];
   if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc, 
			0, radius_,&anynul,&status)) {
     delete [] radius_; radius_=NULL;
     throwCfitsioError(status) ;
   }

   ////// CLOSING FITS /////////

  if (fits_close_file(fptr, &status)) throwCfitsioError(status) ;
  fptr = NULL;
}

void DirectionalDisk::fitsWrite(string filename) {
  if (!emission_) GYOTO_ERROR("DirectionalDisk::fitsWrite(filename): nothing to save!");
  filename_ = filename;
  char*     pixfile   = const_cast<char*>(filename_.c_str());
  fitsfile* fptr      = NULL;
  int       status    = 0;
  long      naxes []  = {long(nnu_), long(ni_), long(nr_)};
  long      fpixel[]  = {1,1,1};
  char * CNULL=NULL;

  char      ermsg[31] = ""; // ermsg is used in throwCfitsioError()

  ////// CREATE FILE
  GYOTO_DEBUG << "creating file \"" << pixfile << "\"... ";
  fits_create_file(&fptr, pixfile, &status);
  if (debug()) cerr << "done." << endl;
  fits_create_img(fptr, DOUBLE_IMG, 3, naxes, &status);
  if (status) throwCfitsioError(status) ;

  ////// SAVE EMISSION IN PRIMARY HDU ///////
  GYOTO_DEBUG << "saving emission_\n";
  fits_write_key(fptr, TSTRING,
		 const_cast<char*>("EXTNAME"),
		 const_cast<char*>("GYOTO DirectionalDisk emission"),
		 CNULL, &status);
  fits_write_pix(fptr, TDOUBLE, fpixel, nnu_*ni_*nr_, emission_, &status);
  if (status) throwCfitsioError(status) ;

  ////// SAVE FREQ HDU ///////
  if (!freq_) GYOTO_ERROR("DirectionalDisk::fitsWrite(filename): no freq to save!");
  GYOTO_DEBUG << "saving freq_\n";
  fits_create_img(fptr, DOUBLE_IMG, 1, naxes, &status);
  fits_write_key(fptr, TSTRING, const_cast<char*>("EXTNAME"),
		 const_cast<char*>("GYOTO DirectionalDisk freq"),
		 CNULL, &status);
  fits_write_pix(fptr, TDOUBLE, fpixel, nnu_, freq_, &status);
  if (status) throwCfitsioError(status) ;
  
  ////// SAVE COSI HDU ///////
  if (!cosi_) GYOTO_ERROR("DirectionalDisk::fitsWrite(filename): no cosi to save!");
  GYOTO_DEBUG << "saving cosi_\n";
  fits_create_img(fptr, DOUBLE_IMG, 1, naxes+1, &status);
  fits_write_key(fptr, TSTRING, const_cast<char*>("EXTNAME"),
		 const_cast<char*>("GYOTO DirectionalDisk cosi"),
		 CNULL, &status);
  fits_write_pix(fptr, TDOUBLE, fpixel, ni_, cosi_, &status);
  if (status) throwCfitsioError(status) ;
  
  ////// SAVE RADIUS HDU ///////
  if (!radius_) GYOTO_ERROR("DirectionalDisk::fitsWrite(filename): no radius to save!");
    GYOTO_DEBUG << "saving radius_\n";
    fits_create_img(fptr, DOUBLE_IMG, 1, naxes+2, &status);
    fits_write_key(fptr, TSTRING, const_cast<char*>("EXTNAME"),
		   const_cast<char*>("GYOTO DirectionalDisk radius"),
		   CNULL, &status);
    fits_write_pix(fptr, TDOUBLE, fpixel, nr_, radius_, &status);
    if (status) throwCfitsioError(status) ;

  ////// CLOSING FILE ///////
  GYOTO_DEBUG << "close FITS file\n";
  if (fits_close_file(fptr, &status)) throwCfitsioError(status) ;
  fptr = NULL;
}
#endif

void DirectionalDisk::getIndices(size_t i[3], double const co[4], 
				 double cosi, double nu) const {
  double rr = projectedRadius(co);
  if (radius_) {
    if (rr >= radius_[nr_-1]) i[2] = nr_-1; // emission will be 0
    else {
      for(i[2]=0; rr > radius_[i[2]]; ++i[2]){}
      /*
	With this definition:
	radius_[i[2]-1] <= r < radius_[i[2]]
	
	The case i[2]=0 (if r<radius_[0]) is dealt
	with later on, it returns 0
      */
    }
  } else {
    GYOTO_ERROR("In DirectionalDisk::getIndices: radius undefined!");
  }

  if (cosi_) {
    if (cosi >= cosi_[ni_-1]) i[1] = ni_-1;
    else {
      for(i[1]=0; cosi > cosi_[i[1]]; ++i[1]){}
      /*
	cosi_[i[1]-1] <= cosi < cosi_[i[1]]
      */
    }
  } else {
    GYOTO_ERROR("In DirectionalDisk::getIndices: cosi undefined!");
  }

  if (freq_) {
    if (nu <= freq_[nnu_-1]) i[0] = nnu_-1;
    else { 
      for(i[0]=nnu_-1; nu > freq_[i[0]]; --i[0]){}
      /*
	Caution: freq is ordered decreasingly!
	freq_[i[0]+1] <= nu < freq_[i[0]]
      */
    }
  } else {
    GYOTO_ERROR("In DirectionalDisk::getIndices: freq undefined!");
  }

}

double DirectionalDisk::emission(double nu, double,
				 state_t const &cp,
				 double const co[8]) const{
  GYOTO_DEBUG << endl;
  // Checking whether the current freq is outside of 
  // the redshifted illumination range
  double aa = static_cast<SmartPointer<Metric::KerrBL> >(gg_) -> spin();
  double zz = lampaltitude_;
  double rr = co[1];
  double gg_lampdisk = (pow(rr,1.5)+aa)/sqrt(rr*rr*rr+2*aa*pow(rr,1.5)-3*rr*rr)
    *sqrt((zz*zz+aa*aa-2.*zz)/(zz*zz+aa*aa)); // this is the redshift factor
  // linking the lamp-frame and the disk-frame, it has nothing to do with the
  // redshift factor between the disk and the far-away-observer frames.
  double minfreq_diskframe = minfreq_lampframe_*gg_lampdisk,
    maxfreq_diskframe = maxfreq_lampframe_*gg_lampdisk;
  //cout << "Limits computed= " << minfreq_computed_ << " " << maxfreq_computed_<< endl;
  //cout << "Limits lamp= " << minfreq_lampframe_ << " " << maxfreq_lampframe_<< endl;
  //cout << "Limits disk= " << minfreq_diskframe << " " << maxfreq_diskframe << endl;
  //cout << "Local nu= " << nu << endl;
  if (minfreq_diskframe < minfreq_computed_ || maxfreq_diskframe > maxfreq_computed_){
    GYOTO_ERROR("In DirectionalDisk::emission(): "
	       "bad freq value ; update LampCutOffsIneV in XML");
  }

  // Cut-offs in disk frame: if the local freq is not inside the
  // redshifted illumination band, no signal
  if (nu < minfreq_diskframe || nu > maxfreq_diskframe) return 0.;

  // Compute angle between photon direction and normal
  double normal[4]={0.,0.,-1.,0.}; // parallel to -d_theta (upwards)
  double normal_norm=gg_->ScalarProd(&cp[0],normal,normal);
  if (normal_norm<=0.) GYOTO_ERROR("In DirectionalDisk::emission"
				  " normal should be spacelike");
  normal_norm=sqrt(normal_norm);
  double np = 1./normal_norm*gg_->ScalarProd(&cp[0],normal,&cp[4]),
    up = gg_->ScalarProd(&cp[0],co+4,&cp[4]);
  double cosi = fabs(-np/up);
  double tolcos = 0.005;
  GYOTO_DEBUG_EXPR(cosi);
  GYOTO_DEBUG_ARRAY(co, 8);
  GYOTO_DEBUG_ARRAY(cp, 8);
  if (cosi>1.){
    if (fabs(cosi-1)>tolcos) GYOTO_ERROR("In DirectionalDisk: bad cos!");
    cosi=1.;
  }
  //cout << "cosi= " << cosi << endl;
  // Don't put a "return cosi" here, see later

  // cos between unit normal n and tangent to photon p
  // is equal -n.p/u.p (u being the emitter's 4-vel);
  // fabs because assuming plane symmetry

  // Indices of the current closest grid point
  size_t ind[3]; // {i_nu, i_cosi, i_r}
  getIndices(ind, co, cosi, nu);

  //cout << "r, i2, nr= " << co[1] << " " << ind[2] << " " << nr_ <<endl;

  //if (ind[2]==nr_) return 0.; // 0 emission outside simulation scope

  // Specific intensity emitted at the current location
  // No emission outside radius and frequency data range
  if (rr<=radius_[0] || rr>=radius_[nr_-1]) return 0.;
  if (nu<=freq_[nnu_-1] || nu>=freq_[0]) return 0.;
  // So here, ind[2] should be >0 and ind[0]<nnu_-1
  if (ind[2]==0 || ind[0]==nnu_-1){
    GYOTO_ERROR("In DirectionalDisk::emission "
	       "bad {nu,r} indices");
  }

  //return acos(cosi)*180./M_PI; // TEST!!! Don't forget to impose redshift to 1

  //cout << "nu(eV), r(rS), cosi= " << nu/GYOTO_eV2Hz << " " << rr/2. << " " << cosi << endl;
  double Iem=0.;
  size_t i0l=ind[0]+1, i0u=ind[0], 
    i2l=ind[2]-1, i2u=ind[2]; // Correct: i0 is freq, ordered decreasingly,
                              // i2 is radius ordered increasingly

  //  cout << "ind_cosi=, ni= " << ind[1] << " " << ni_ << endl;
  //cout << "min max r= " << radius_[0] << " " << radius_[nr_-1] << endl;

  if (!average_over_angle_){
    if (cosi <= cosi_[0] || cosi >= cosi_[ni_-1]){
      // If cosi is out of the cosi_ range, bilinear interpol in nu,r
      size_t i1=ind[1];
      //cout << "cos value unique= " << cosi_[i1] << endl;
      double I00 = emission_[i2l*(ni_*nnu_)+i1*nnu_+i0l], // I_{nu,r}
	I01 = emission_[i2u*(ni_*nnu_)+i1*nnu_+i0l],
	I10 = emission_[i2l*(ni_*nnu_)+i1*nnu_+i0u],
	I11 = emission_[i2u*(ni_*nnu_)+i1*nnu_+i0u];
      //cout << "bilin dir: " << I00 << " " << I01 << " " << I10 << " " << I11 << endl;
      double rationu = (nu-freq_[i0l])/(freq_[i0u]-freq_[i0l]),
	ratior = (rr-radius_[i2l])/(radius_[i2u]-radius_[i2l]);
      Iem = I00+(I10-I00)*rationu
	+(I01-I00)*ratior
	+(I11-I01-I10+I00)*rationu*ratior;
      //cout << "I interp= " << Iem << endl;
    }else{
      // Trilinear interpol
      if (ind[1]==0){
	GYOTO_ERROR("In DirectionalDisk::emission "
		   "bad cosi indice");
      }
      size_t i1l=ind[1]-1, i1u=ind[1];
      double I000 = emission_[i2l*(ni_*nnu_)+i1l*nnu_+i0l], // I_{nu,cosi,r}
	I100 = emission_[i2l*(ni_*nnu_)+i1l*nnu_+i0u],
	I110 = emission_[i2l*(ni_*nnu_)+i1u*nnu_+i0u], 
	I010 = emission_[i2l*(ni_*nnu_)+i1u*nnu_+i0l],
	I001 = emission_[i2u*(ni_*nnu_)+i1l*nnu_+i0l], 
	I101 = emission_[i2u*(ni_*nnu_)+i1l*nnu_+i0u],
	I111 = emission_[i2u*(ni_*nnu_)+i1u*nnu_+i0u],
	I011 = emission_[i2u*(ni_*nnu_)+i1u*nnu_+i0l];
      //cout << "trilin dir: " << I000 << " " << I100 << " " << I110 << " " << I010 << " " << I001 << " " << I101 << " " << I111 << " " << I011 << endl;
      double rationu = (nu-freq_[i0l])/(freq_[i0u]-freq_[i0l]),
	ratioi = (cosi-cosi_[i1l])/(cosi_[i1u]-cosi_[i1l]),
	ratior = (rr-radius_[i2l])/(radius_[i2u]-radius_[i2l]);
      Iem = I000
	+ (I100-I000)*rationu
	+ (I010-I000)*ratioi
	+ (I001-I000)*ratior
	+ (I110-I010-I100+I000)*rationu*ratioi
	+ (I011-I010-I001+I000)*ratioi*ratior
	+ (I101-I001-I100+I000)*rationu*ratior
	+ (I111-I011-I101-I110+I100+I001+I010-I000)*rationu*ratioi*ratior;
      //cout << "I interp= " << Iem << endl;
    }
  }else{
    // Average over cosi values
    // with bilinear interpol in nu,r
    double I00=0., I01=0., I10=0., I11=0.;
    double I00min=DBL_MAX, I00max=DBL_MIN, I01min=DBL_MAX, I01max=DBL_MIN, I10min=DBL_MAX, I10max=DBL_MIN, I11min=DBL_MAX, I11max=DBL_MIN;
    /* Using trapezoidal rule, I_integ = \int I(mu)*dmu, mu=cos(i)
       NB: in Garcia+14, they compute a flux because they don't raytrace,
       so they use F = 1/4pi * \int I(i) cos(i) di = 1/2 * \int I(mu) mu dmu,
       here we are not interested in the same quantity */
    double dcostot = 0.; // will contain \int d\mu (~1 but not exactly)
    for (size_t ii=0; ii<ni_-1; ++ii){
      double dcos = cosi_[ii+1]-cosi_[ii];
      I00 += 0.5*dcos*
	(emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0l]
	 +emission_[i2l*(ni_*nnu_)+ii*nnu_+i0l]);
      I01 += 0.5*dcos*
	(emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0l]
	 +emission_[i2u*(ni_*nnu_)+ii*nnu_+i0l]);
      I10 += 0.5*dcos*
	(emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0u]
	 +emission_[i2l*(ni_*nnu_)+ii*nnu_+i0u]);
      I11 += 0.5*dcos*
	(emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0u]
	 +emission_[i2u*(ni_*nnu_)+ii*nnu_+i0u]);
      dcostot+=dcos;

      /*
	// CHECK MINIMUM
	if (emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0l]<I00min) I00min=emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0l];
      if (emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0l]<I00min) I00min=emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0l];
      if (emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0l]<I01min) I01min=emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0l];
      if (emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0l]<I01min) I01min=emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0l];
      if (emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0u]<I10min) I10min=emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0u];
      if (emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0u]<I10min) I10min=emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0u];
      if (emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0u]<I11min) I11min=emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0u];
      if (emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0u]<I11min) I11min=emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0u];
      */

      /*
      // CHECK MAXIMUM
      if (emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0l]>I00max) I00max=emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0l];
      if (emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0l]>I00max) I00max=emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0l];
      if (emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0l]>I01max) I01max=emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0l];
      if (emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0l]>I01max) I01max=emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0l];
      if (emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0u]>I10max) I10max=emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0u];
      if (emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0u]>I10max) I10max=emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0u];
      if (emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0u]>I11max) I11max=emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0u];
      if (emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0u]>I11max) I11max=emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0u];
      */
      
      
      //cout << "Raw data 1 for I00= " << radius_[i2l]/2. << " " << radius_[i2u]/2. << " " << freq_[i0l]/GYOTO_eV2Hz << " " << freq_[i0u]/GYOTO_eV2Hz << " " << cosi_[ii] << " " << cosi_[ii+1] << endl;
      //cout << "Raw data 2 for I00= " << emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0l] << " " << emission_[i2l*(ni_*nnu_)+ii*nnu_+i0l] << endl;

      //cout << "IO in avg i= " << ii << " and I0= " << I00 << endl;

      
    } 

    // Normalizing (int d co(i) is very close to 1 but not exactly 1)
    I00/=dcostot;
    I01/=dcostot;
    I10/=dcostot;
    I11/=dcostot;

    //cout << "bilin avg: " << I00 << " " << I01 << " " << I10 << " " << I11 << endl;

    //if (I00<I00min || I01<I01min || I10<I10min || I11<I11min) GYOTO_ERROR("test");
    //if (I00>I00max || I01>I01max || I10>I10max || I11>I11max) GYOTO_ERROR("test");
    double rationu = (nu-freq_[i0l])/(freq_[i0u]-freq_[i0l]),
      ratior = (rr-radius_[i2l])/(radius_[i2u]-radius_[i2l]);
    Iem = I00+(I10-I00)*rationu
      +(I01-I00)*ratior
      +(I11-I01-I10+I00)*rationu*ratior;
    //cout << "I interp= " << Iem << endl;
  }
  //cout << "return= " << Iem << endl;
  return Iem;
}

void DirectionalDisk::metric(SmartPointer<Metric::Generic> gg) {
  //Metric must be KerrBL (see emission function)
  string kin = gg->kind();
  if (kin != "KerrBL")
    GYOTO_ERROR("DirectionalDisk::metric(): metric must be KerrBL");
  ThinDisk::metric(gg);
}