1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
|
/*
Copyright 2014, 2018 Frederic Vincent, Thibaut Paumard
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#include "GyotoPhoton.h"
#include "GyotoDirectionalDisk.h"
#include "GyotoUtils.h"
#include "GyotoFactoryMessenger.h"
#include "GyotoProperty.h"
#include "GyotoKerrBL.h"
#include "GyotoKerrKS.h"
#ifdef GYOTO_USE_CFITSIO
#include <fitsio.h>
#define throwCfitsioError(status) \
{ fits_get_errstatus(status, ermsg); GYOTO_ERROR(ermsg); }
#endif
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
#include <fstream>
#include <cstring>
#include <cmath>
#include <limits>
using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;
//// Properties:
GYOTO_PROPERTY_START(DirectionalDisk)
GYOTO_PROPERTY_FILENAME(DirectionalDisk, File, file)
GYOTO_PROPERTY_DOUBLE(DirectionalDisk, LampAltitude, lampaltitude)
GYOTO_PROPERTY_VECTOR_DOUBLE(DirectionalDisk, LampCutOffsIneV, lampcutoffsinev)
GYOTO_PROPERTY_BOOL(DirectionalDisk,
AverageOverAngle, DontAverageOverAngle,
averageOverAngle)
GYOTO_PROPERTY_END(DirectionalDisk, ThinDisk::properties)
void DirectionalDisk::fillProperty(Gyoto::FactoryMessenger *fmp,
Property const &p) const {
if (p.name == "File")
fmp->setParameter("File", (filename_.compare(0,1,"!") ?
filename_ :
filename_.substr(1)) );
else ThinDisk::fillProperty(fmp, p);
}
////
DirectionalDisk::DirectionalDisk() :
ThinDisk("DirectionalDisk"), filename_(""),
emission_(NULL), radius_(NULL), cosi_(NULL), freq_(NULL),
nnu_(0), ni_(0), nr_(0),
lampaltitude_(10.),
minfreq_computed_(DBL_MIN), maxfreq_computed_(DBL_MAX),
minfreq_lampframe_(1.), maxfreq_lampframe_(1e30),
average_over_angle_(0)
{
GYOTO_DEBUG << "DirectionalDisk Construction" << endl;
}
DirectionalDisk::DirectionalDisk(const DirectionalDisk& o) :
ThinDisk(o), filename_(o.filename_),
emission_(NULL), radius_(NULL), cosi_(NULL), freq_(NULL),
nnu_(o.nnu_), ni_(o.ni_), nr_(o.nr_),
lampaltitude_(o.lampaltitude_),
minfreq_computed_(o.minfreq_computed_),
maxfreq_computed_(o.maxfreq_computed_),
minfreq_lampframe_(o.minfreq_lampframe_),
maxfreq_lampframe_(o.maxfreq_lampframe_),
average_over_angle_(o.average_over_angle_)
{
GYOTO_DEBUG << "DirectionalDisk Copy" << endl;
size_t ncells = 0;
if (o.emission_) {
emission_ = new double[ncells = nnu_ * ni_ * nr_];
memcpy(emission_, o.emission_, ncells * sizeof(double));
}
if (o.freq_) {
freq_ = new double[ncells = nnu_];
memcpy(freq_, o.freq_, ncells * sizeof(double));
}
if (o.cosi_) {
cosi_ = new double[ncells = ni_];
memcpy(cosi_, o.cosi_, ncells * sizeof(double));
}
if (o.radius_) {
radius_ = new double[ncells = nr_];
memcpy(radius_, o.radius_, ncells * sizeof(double));
}
}
DirectionalDisk* DirectionalDisk::clone() const
{ return new DirectionalDisk(*this); }
DirectionalDisk::~DirectionalDisk() {
GYOTO_DEBUG << "DirectionalDisk Destruction" << endl;
if (emission_) delete [] emission_;
if (radius_) delete [] radius_;
if (cosi_) delete [] cosi_;
if (freq_) delete [] freq_;
}
void DirectionalDisk::setEmission(double * pattern) {
emission_ = pattern;
}
void DirectionalDisk::radius(double * pattern) {
radius_ = pattern;
}
void DirectionalDisk::copyIntensity(double const *const pattern, size_t const naxes[3]) {
GYOTO_DEBUG << endl;
if (emission_) {
GYOTO_DEBUG << "delete [] emission_;" << endl;
delete [] emission_; emission_ = NULL;
}
if (pattern) {
size_t nel;
if (nnu_ != naxes[0]) {
GYOTO_DEBUG <<"nnu_ changed, freeing freq_" << endl;
if (freq_) { delete [] freq_; freq_ = NULL; }
}
if (ni_ != naxes[1]) {
GYOTO_DEBUG <<"ni_ changed, freeing freq_ and cosi_" << endl;
if (freq_) { delete [] freq_; freq_ = NULL; }
if (cosi_) { delete [] cosi_; cosi_= NULL; }
}
if (nr_ != naxes[2]) {
GYOTO_DEBUG <<"nr_ changed, freeing freq_, cosi_ and radius_" << endl;
if (freq_) { delete [] freq_; freq_ = NULL; }
if (cosi_) { delete [] cosi_; cosi_= NULL; }
if (radius_) { delete [] radius_; radius_ = NULL; }
}
if (!(nel=(nnu_ = naxes[0]) * (ni_=naxes[1]) * (nr_=naxes[2])))
GYOTO_ERROR( "dimensions can't be null");
GYOTO_DEBUG << "allocate emission_;" << endl;
emission_ = new double[nel];
GYOTO_DEBUG << "pattern >> emission_" << endl;
memcpy(emission_, pattern, nel*sizeof(double));
}
}
double const * DirectionalDisk::getIntensity() const { return emission_; }
void DirectionalDisk::getIntensityNaxes( size_t naxes[3] ) const
{ naxes[0] = nnu_; naxes[1] = ni_; naxes[2] = nr_; }
void DirectionalDisk::copyGridRadius(double const *const rad, size_t nr) {
GYOTO_DEBUG << endl;
if (radius_) {
GYOTO_DEBUG << "delete [] radius_;" << endl;
delete [] radius_; radius_ = NULL;
}
if (rad) {
if (!emission_)
GYOTO_ERROR("Please use copyIntensity() before copyGridRadius()");
if (nr_ != nr)
GYOTO_ERROR("emission_ and radius_ have inconsistent dimensions");
GYOTO_DEBUG << "allocate radius_;" << endl;
radius_ = new double[nr_];
GYOTO_DEBUG << "radius >> radius_" << endl;
memcpy(radius_, rad, nr_*sizeof(double));
}
}
double const * DirectionalDisk::getGridRadius() const { return radius_; }
void DirectionalDisk::copyGridCosi(double const *const cosi, size_t ni) {
GYOTO_DEBUG << endl;
if (cosi_) {
GYOTO_DEBUG << "delete [] cosi_;" << endl;
delete [] cosi_; cosi_ = NULL;
}
if (cosi) {
if (!emission_)
GYOTO_ERROR("Please use copyIntensity() before copyGridCosi()");
if (ni_ != ni)
GYOTO_ERROR("emission_ and cosi_ have inconsistent dimensions");
GYOTO_DEBUG << "allocate cosi_;" << endl;
cosi_ = new double[ni_];
GYOTO_DEBUG << "cosi >> cosi_" << endl;
memcpy(cosi_, cosi, ni_*sizeof(double));
}
}
double const * DirectionalDisk::getGridCosi() const { return cosi_; }
void DirectionalDisk::copyGridFreq(double const *const freq, size_t nnu) {
GYOTO_DEBUG << endl;
if (freq_) {
GYOTO_DEBUG << "delete [] freq_;" << endl;
delete [] freq_; freq_ = NULL;
}
if (freq) {
if (!emission_)
GYOTO_ERROR("Please use copyIntensity() before copyGridFreq()");
if (nnu_ != nnu)
GYOTO_ERROR("emission_ and freq_ have inconsistent dimensions");
GYOTO_DEBUG << "allocate freq_;" << endl;
freq_ = new double[nnu_];
GYOTO_DEBUG << "freq >> freq_" << endl;
memcpy(freq_, freq, nnu_*sizeof(double));
}
}
double const * DirectionalDisk::getGridFreq() const { return freq_; }
void DirectionalDisk::averageOverAngle(bool t) {average_over_angle_=t;}
bool DirectionalDisk::averageOverAngle()const {return average_over_angle_;}
void DirectionalDisk::file(std::string const &f) {
# ifdef GYOTO_USE_CFITSIO
fitsRead(f);
# else
GYOTO_ERROR("This Gyoto has no FITS i/o");
# endif
}
std::string DirectionalDisk::file() const {
return filename_;
}
void DirectionalDisk::lampaltitude(double zz) {
lampaltitude_ = zz;
}
double DirectionalDisk::lampaltitude() const {
return lampaltitude_;
}
void DirectionalDisk::lampcutoffsinev(std::vector<double> const &v) {
if (v.size() != 2)
GYOTO_ERROR("In DirectionalDisk: Only 2 arguments to define lamp energy range");
minfreq_lampframe_ = v[0]*GYOTO_eV2Hz;
maxfreq_lampframe_ = v[1]*GYOTO_eV2Hz;
}
std::vector<double> DirectionalDisk::lampcutoffsinev() const {
std::vector<double> v (2, 0.);
v[0]=minfreq_lampframe_; v[1]=maxfreq_lampframe_;
return v;
}
#ifdef GYOTO_USE_CFITSIO
void DirectionalDisk::fitsRead(string filename) {
GYOTO_MSG << "DirectionalDisk reading FITS file: " << filename << endl;
filename_ = filename;
char* pixfile = const_cast<char*>(filename_.c_str());
fitsfile* fptr = NULL;
int status = 0;
int anynul = 0;
long naxes [] = {1, 1, 1};
long fpixel[] = {1,1,1};
long inc [] = {1,1,1};
char ermsg[31] = ""; // ermsg is used in throwCfitsioError()
GYOTO_DEBUG << "DirectionalDisk::readFile(): opening file" << endl;
if (fits_open_file(&fptr, pixfile, 0, &status)) throwCfitsioError(status) ;
////// FIND MANDATORY EMISSION HDU, READ KWDS & DATA ///////
GYOTO_DEBUG << "DirectionalDisk::readFile(): search emission HDU" << endl;
if (fits_movnam_hdu(fptr, ANY_HDU,
const_cast<char*>("GYOTO DirectionalDisk emission"),
0, &status))
throwCfitsioError(status) ;
GYOTO_DEBUG << "DirectionalDisk::readFile(): get image size" << endl;
if (fits_get_img_size(fptr, 3, naxes, &status)) throwCfitsioError(status) ;
//update nnu_, ni_, nr_
nnu_ = naxes[0];
ni_ = naxes[1];
nr_ = naxes[2];
if (emission_) { delete [] emission_; emission_ = NULL; }
emission_ = new double[nnu_ * ni_ * nr_];
if (debug())
cerr << "DirectionalDisk::readFile(): read emission: "
<< "nnu_=" << nnu_ << ", ni_="<<ni_ << ", nr_="<<nr_ << "...";
if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc,
0, emission_,&anynul,&status)) {
GYOTO_DEBUG << " error, trying to free pointer" << endl;
delete [] emission_; emission_=NULL;
throwCfitsioError(status) ;
}
GYOTO_DEBUG << " done." << endl;
////// FIND MANDATORY FREQ HDU ///////
if (fits_movnam_hdu(fptr, ANY_HDU,
const_cast<char*>("GYOTO DirectionalDisk freq"),
0, &status))
throwCfitsioError(status) ;
if (fits_get_img_size(fptr, 1, naxes, &status)) throwCfitsioError(status) ;
if (size_t(naxes[0]) != nnu_)
GYOTO_ERROR("DirectionalDisk::readFile(): freq array not conformable");
if (freq_) { delete [] freq_; freq_ = NULL; }
freq_ = new double[nnu_];
if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc,
0, freq_,&anynul,&status)) {
delete [] freq_; freq_=NULL;
throwCfitsioError(status) ;
}
// Computing min and max of freq_
minfreq_computed_ = DBL_MAX;
maxfreq_computed_ = DBL_MIN;
for (int ii=0;ii<nnu_;ii++){
if (freq_[ii]<minfreq_computed_) minfreq_computed_=freq_[ii];
if (freq_[ii]>maxfreq_computed_) maxfreq_computed_=freq_[ii];
}
GYOTO_DEBUG << "Min, max freq= " << minfreq_computed_ << " " << maxfreq_computed_ << endl;
////// FIND MANDATORY COSI HDU ///////
if (fits_movnam_hdu(fptr, ANY_HDU,
const_cast<char*>("GYOTO DirectionalDisk cosi"),
0, &status))
throwCfitsioError(status) ;
if (fits_get_img_size(fptr, 1, naxes, &status)) throwCfitsioError(status) ;
if (size_t(naxes[0]) != ni_)
GYOTO_ERROR("DirectionalDisk::readFile(): cosi array not conformable");
if (cosi_) { delete [] cosi_; cosi_ = NULL; }
cosi_ = new double[ni_];
if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc,
0, cosi_,&anynul,&status)) {
delete [] cosi_; cosi_=NULL;
throwCfitsioError(status) ;
}
////// FIND MANDATORY RADIUS HDU ///////
if (fits_movnam_hdu(fptr, ANY_HDU,
const_cast<char*>("GYOTO DirectionalDisk radius"),
0, &status))
throwCfitsioError(status) ;
if (fits_get_img_size(fptr, 1, naxes, &status)) throwCfitsioError(status) ;
if (size_t(naxes[0]) != nr_)
GYOTO_ERROR("DirectionalDisk::readFile(): radius array not conformable");
if (radius_) { delete [] radius_; radius_ = NULL; }
radius_ = new double[nr_];
if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc,
0, radius_,&anynul,&status)) {
delete [] radius_; radius_=NULL;
throwCfitsioError(status) ;
}
////// CLOSING FITS /////////
if (fits_close_file(fptr, &status)) throwCfitsioError(status) ;
fptr = NULL;
}
void DirectionalDisk::fitsWrite(string filename) {
if (!emission_) GYOTO_ERROR("DirectionalDisk::fitsWrite(filename): nothing to save!");
filename_ = filename;
char* pixfile = const_cast<char*>(filename_.c_str());
fitsfile* fptr = NULL;
int status = 0;
long naxes [] = {long(nnu_), long(ni_), long(nr_)};
long fpixel[] = {1,1,1};
char * CNULL=NULL;
char ermsg[31] = ""; // ermsg is used in throwCfitsioError()
////// CREATE FILE
GYOTO_DEBUG << "creating file \"" << pixfile << "\"... ";
fits_create_file(&fptr, pixfile, &status);
if (debug()) cerr << "done." << endl;
fits_create_img(fptr, DOUBLE_IMG, 3, naxes, &status);
if (status) throwCfitsioError(status) ;
////// SAVE EMISSION IN PRIMARY HDU ///////
GYOTO_DEBUG << "saving emission_\n";
fits_write_key(fptr, TSTRING,
const_cast<char*>("EXTNAME"),
const_cast<char*>("GYOTO DirectionalDisk emission"),
CNULL, &status);
fits_write_pix(fptr, TDOUBLE, fpixel, nnu_*ni_*nr_, emission_, &status);
if (status) throwCfitsioError(status) ;
////// SAVE FREQ HDU ///////
if (!freq_) GYOTO_ERROR("DirectionalDisk::fitsWrite(filename): no freq to save!");
GYOTO_DEBUG << "saving freq_\n";
fits_create_img(fptr, DOUBLE_IMG, 1, naxes, &status);
fits_write_key(fptr, TSTRING, const_cast<char*>("EXTNAME"),
const_cast<char*>("GYOTO DirectionalDisk freq"),
CNULL, &status);
fits_write_pix(fptr, TDOUBLE, fpixel, nnu_, freq_, &status);
if (status) throwCfitsioError(status) ;
////// SAVE COSI HDU ///////
if (!cosi_) GYOTO_ERROR("DirectionalDisk::fitsWrite(filename): no cosi to save!");
GYOTO_DEBUG << "saving cosi_\n";
fits_create_img(fptr, DOUBLE_IMG, 1, naxes+1, &status);
fits_write_key(fptr, TSTRING, const_cast<char*>("EXTNAME"),
const_cast<char*>("GYOTO DirectionalDisk cosi"),
CNULL, &status);
fits_write_pix(fptr, TDOUBLE, fpixel, ni_, cosi_, &status);
if (status) throwCfitsioError(status) ;
////// SAVE RADIUS HDU ///////
if (!radius_) GYOTO_ERROR("DirectionalDisk::fitsWrite(filename): no radius to save!");
GYOTO_DEBUG << "saving radius_\n";
fits_create_img(fptr, DOUBLE_IMG, 1, naxes+2, &status);
fits_write_key(fptr, TSTRING, const_cast<char*>("EXTNAME"),
const_cast<char*>("GYOTO DirectionalDisk radius"),
CNULL, &status);
fits_write_pix(fptr, TDOUBLE, fpixel, nr_, radius_, &status);
if (status) throwCfitsioError(status) ;
////// CLOSING FILE ///////
GYOTO_DEBUG << "close FITS file\n";
if (fits_close_file(fptr, &status)) throwCfitsioError(status) ;
fptr = NULL;
}
#endif
void DirectionalDisk::getIndices(size_t i[3], double const co[4],
double cosi, double nu) const {
double rr = projectedRadius(co);
if (radius_) {
if (rr >= radius_[nr_-1]) i[2] = nr_-1; // emission will be 0
else {
for(i[2]=0; rr > radius_[i[2]]; ++i[2]){}
/*
With this definition:
radius_[i[2]-1] <= r < radius_[i[2]]
The case i[2]=0 (if r<radius_[0]) is dealt
with later on, it returns 0
*/
}
} else {
GYOTO_ERROR("In DirectionalDisk::getIndices: radius undefined!");
}
if (cosi_) {
if (cosi >= cosi_[ni_-1]) i[1] = ni_-1;
else {
for(i[1]=0; cosi > cosi_[i[1]]; ++i[1]){}
/*
cosi_[i[1]-1] <= cosi < cosi_[i[1]]
*/
}
} else {
GYOTO_ERROR("In DirectionalDisk::getIndices: cosi undefined!");
}
if (freq_) {
if (nu <= freq_[nnu_-1]) i[0] = nnu_-1;
else {
for(i[0]=nnu_-1; nu > freq_[i[0]]; --i[0]){}
/*
Caution: freq is ordered decreasingly!
freq_[i[0]+1] <= nu < freq_[i[0]]
*/
}
} else {
GYOTO_ERROR("In DirectionalDisk::getIndices: freq undefined!");
}
}
double DirectionalDisk::emission(double nu, double,
state_t const &cp,
double const co[8]) const{
GYOTO_DEBUG << endl;
// Checking whether the current freq is outside of
// the redshifted illumination range
double aa = static_cast<SmartPointer<Metric::KerrBL> >(gg_) -> spin();
double zz = lampaltitude_;
double rr = co[1];
double gg_lampdisk = (pow(rr,1.5)+aa)/sqrt(rr*rr*rr+2*aa*pow(rr,1.5)-3*rr*rr)
*sqrt((zz*zz+aa*aa-2.*zz)/(zz*zz+aa*aa)); // this is the redshift factor
// linking the lamp-frame and the disk-frame, it has nothing to do with the
// redshift factor between the disk and the far-away-observer frames.
double minfreq_diskframe = minfreq_lampframe_*gg_lampdisk,
maxfreq_diskframe = maxfreq_lampframe_*gg_lampdisk;
//cout << "Limits computed= " << minfreq_computed_ << " " << maxfreq_computed_<< endl;
//cout << "Limits lamp= " << minfreq_lampframe_ << " " << maxfreq_lampframe_<< endl;
//cout << "Limits disk= " << minfreq_diskframe << " " << maxfreq_diskframe << endl;
//cout << "Local nu= " << nu << endl;
if (minfreq_diskframe < minfreq_computed_ || maxfreq_diskframe > maxfreq_computed_){
GYOTO_ERROR("In DirectionalDisk::emission(): "
"bad freq value ; update LampCutOffsIneV in XML");
}
// Cut-offs in disk frame: if the local freq is not inside the
// redshifted illumination band, no signal
if (nu < minfreq_diskframe || nu > maxfreq_diskframe) return 0.;
// Compute angle between photon direction and normal
double normal[4]={0.,0.,-1.,0.}; // parallel to -d_theta (upwards)
double normal_norm=gg_->ScalarProd(&cp[0],normal,normal);
if (normal_norm<=0.) GYOTO_ERROR("In DirectionalDisk::emission"
" normal should be spacelike");
normal_norm=sqrt(normal_norm);
double np = 1./normal_norm*gg_->ScalarProd(&cp[0],normal,&cp[4]),
up = gg_->ScalarProd(&cp[0],co+4,&cp[4]);
double cosi = fabs(-np/up);
double tolcos = 0.005;
GYOTO_DEBUG_EXPR(cosi);
GYOTO_DEBUG_ARRAY(co, 8);
GYOTO_DEBUG_ARRAY(cp, 8);
if (cosi>1.){
if (fabs(cosi-1)>tolcos) GYOTO_ERROR("In DirectionalDisk: bad cos!");
cosi=1.;
}
//cout << "cosi= " << cosi << endl;
// Don't put a "return cosi" here, see later
// cos between unit normal n and tangent to photon p
// is equal -n.p/u.p (u being the emitter's 4-vel);
// fabs because assuming plane symmetry
// Indices of the current closest grid point
size_t ind[3]; // {i_nu, i_cosi, i_r}
getIndices(ind, co, cosi, nu);
//cout << "r, i2, nr= " << co[1] << " " << ind[2] << " " << nr_ <<endl;
//if (ind[2]==nr_) return 0.; // 0 emission outside simulation scope
// Specific intensity emitted at the current location
// No emission outside radius and frequency data range
if (rr<=radius_[0] || rr>=radius_[nr_-1]) return 0.;
if (nu<=freq_[nnu_-1] || nu>=freq_[0]) return 0.;
// So here, ind[2] should be >0 and ind[0]<nnu_-1
if (ind[2]==0 || ind[0]==nnu_-1){
GYOTO_ERROR("In DirectionalDisk::emission "
"bad {nu,r} indices");
}
//return acos(cosi)*180./M_PI; // TEST!!! Don't forget to impose redshift to 1
//cout << "nu(eV), r(rS), cosi= " << nu/GYOTO_eV2Hz << " " << rr/2. << " " << cosi << endl;
double Iem=0.;
size_t i0l=ind[0]+1, i0u=ind[0],
i2l=ind[2]-1, i2u=ind[2]; // Correct: i0 is freq, ordered decreasingly,
// i2 is radius ordered increasingly
// cout << "ind_cosi=, ni= " << ind[1] << " " << ni_ << endl;
//cout << "min max r= " << radius_[0] << " " << radius_[nr_-1] << endl;
if (!average_over_angle_){
if (cosi <= cosi_[0] || cosi >= cosi_[ni_-1]){
// If cosi is out of the cosi_ range, bilinear interpol in nu,r
size_t i1=ind[1];
//cout << "cos value unique= " << cosi_[i1] << endl;
double I00 = emission_[i2l*(ni_*nnu_)+i1*nnu_+i0l], // I_{nu,r}
I01 = emission_[i2u*(ni_*nnu_)+i1*nnu_+i0l],
I10 = emission_[i2l*(ni_*nnu_)+i1*nnu_+i0u],
I11 = emission_[i2u*(ni_*nnu_)+i1*nnu_+i0u];
//cout << "bilin dir: " << I00 << " " << I01 << " " << I10 << " " << I11 << endl;
double rationu = (nu-freq_[i0l])/(freq_[i0u]-freq_[i0l]),
ratior = (rr-radius_[i2l])/(radius_[i2u]-radius_[i2l]);
Iem = I00+(I10-I00)*rationu
+(I01-I00)*ratior
+(I11-I01-I10+I00)*rationu*ratior;
//cout << "I interp= " << Iem << endl;
}else{
// Trilinear interpol
if (ind[1]==0){
GYOTO_ERROR("In DirectionalDisk::emission "
"bad cosi indice");
}
size_t i1l=ind[1]-1, i1u=ind[1];
double I000 = emission_[i2l*(ni_*nnu_)+i1l*nnu_+i0l], // I_{nu,cosi,r}
I100 = emission_[i2l*(ni_*nnu_)+i1l*nnu_+i0u],
I110 = emission_[i2l*(ni_*nnu_)+i1u*nnu_+i0u],
I010 = emission_[i2l*(ni_*nnu_)+i1u*nnu_+i0l],
I001 = emission_[i2u*(ni_*nnu_)+i1l*nnu_+i0l],
I101 = emission_[i2u*(ni_*nnu_)+i1l*nnu_+i0u],
I111 = emission_[i2u*(ni_*nnu_)+i1u*nnu_+i0u],
I011 = emission_[i2u*(ni_*nnu_)+i1u*nnu_+i0l];
//cout << "trilin dir: " << I000 << " " << I100 << " " << I110 << " " << I010 << " " << I001 << " " << I101 << " " << I111 << " " << I011 << endl;
double rationu = (nu-freq_[i0l])/(freq_[i0u]-freq_[i0l]),
ratioi = (cosi-cosi_[i1l])/(cosi_[i1u]-cosi_[i1l]),
ratior = (rr-radius_[i2l])/(radius_[i2u]-radius_[i2l]);
Iem = I000
+ (I100-I000)*rationu
+ (I010-I000)*ratioi
+ (I001-I000)*ratior
+ (I110-I010-I100+I000)*rationu*ratioi
+ (I011-I010-I001+I000)*ratioi*ratior
+ (I101-I001-I100+I000)*rationu*ratior
+ (I111-I011-I101-I110+I100+I001+I010-I000)*rationu*ratioi*ratior;
//cout << "I interp= " << Iem << endl;
}
}else{
// Average over cosi values
// with bilinear interpol in nu,r
double I00=0., I01=0., I10=0., I11=0.;
double I00min=DBL_MAX, I00max=DBL_MIN, I01min=DBL_MAX, I01max=DBL_MIN, I10min=DBL_MAX, I10max=DBL_MIN, I11min=DBL_MAX, I11max=DBL_MIN;
/* Using trapezoidal rule, I_integ = \int I(mu)*dmu, mu=cos(i)
NB: in Garcia+14, they compute a flux because they don't raytrace,
so they use F = 1/4pi * \int I(i) cos(i) di = 1/2 * \int I(mu) mu dmu,
here we are not interested in the same quantity */
double dcostot = 0.; // will contain \int d\mu (~1 but not exactly)
for (size_t ii=0; ii<ni_-1; ++ii){
double dcos = cosi_[ii+1]-cosi_[ii];
I00 += 0.5*dcos*
(emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0l]
+emission_[i2l*(ni_*nnu_)+ii*nnu_+i0l]);
I01 += 0.5*dcos*
(emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0l]
+emission_[i2u*(ni_*nnu_)+ii*nnu_+i0l]);
I10 += 0.5*dcos*
(emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0u]
+emission_[i2l*(ni_*nnu_)+ii*nnu_+i0u]);
I11 += 0.5*dcos*
(emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0u]
+emission_[i2u*(ni_*nnu_)+ii*nnu_+i0u]);
dcostot+=dcos;
/*
// CHECK MINIMUM
if (emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0l]<I00min) I00min=emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0l];
if (emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0l]<I00min) I00min=emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0l];
if (emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0l]<I01min) I01min=emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0l];
if (emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0l]<I01min) I01min=emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0l];
if (emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0u]<I10min) I10min=emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0u];
if (emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0u]<I10min) I10min=emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0u];
if (emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0u]<I11min) I11min=emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0u];
if (emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0u]<I11min) I11min=emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0u];
*/
/*
// CHECK MAXIMUM
if (emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0l]>I00max) I00max=emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0l];
if (emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0l]>I00max) I00max=emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0l];
if (emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0l]>I01max) I01max=emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0l];
if (emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0l]>I01max) I01max=emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0l];
if (emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0u]>I10max) I10max=emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0u];
if (emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0u]>I10max) I10max=emission_[i2l*(ni_*nnu_)+(ii)*nnu_+i0u];
if (emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0u]>I11max) I11max=emission_[i2u*(ni_*nnu_)+(ii+1)*nnu_+i0u];
if (emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0u]>I11max) I11max=emission_[i2u*(ni_*nnu_)+(ii)*nnu_+i0u];
*/
//cout << "Raw data 1 for I00= " << radius_[i2l]/2. << " " << radius_[i2u]/2. << " " << freq_[i0l]/GYOTO_eV2Hz << " " << freq_[i0u]/GYOTO_eV2Hz << " " << cosi_[ii] << " " << cosi_[ii+1] << endl;
//cout << "Raw data 2 for I00= " << emission_[i2l*(ni_*nnu_)+(ii+1)*nnu_+i0l] << " " << emission_[i2l*(ni_*nnu_)+ii*nnu_+i0l] << endl;
//cout << "IO in avg i= " << ii << " and I0= " << I00 << endl;
}
// Normalizing (int d co(i) is very close to 1 but not exactly 1)
I00/=dcostot;
I01/=dcostot;
I10/=dcostot;
I11/=dcostot;
//cout << "bilin avg: " << I00 << " " << I01 << " " << I10 << " " << I11 << endl;
//if (I00<I00min || I01<I01min || I10<I10min || I11<I11min) GYOTO_ERROR("test");
//if (I00>I00max || I01>I01max || I10>I10max || I11>I11max) GYOTO_ERROR("test");
double rationu = (nu-freq_[i0l])/(freq_[i0u]-freq_[i0l]),
ratior = (rr-radius_[i2l])/(radius_[i2u]-radius_[i2l]);
Iem = I00+(I10-I00)*rationu
+(I01-I00)*ratior
+(I11-I01-I10+I00)*rationu*ratior;
//cout << "I interp= " << Iem << endl;
}
//cout << "return= " << Iem << endl;
return Iem;
}
void DirectionalDisk::metric(SmartPointer<Metric::Generic> gg) {
//Metric must be KerrBL (see emission function)
string kin = gg->kind();
if (kin != "KerrBL")
GYOTO_ERROR("DirectionalDisk::metric(): metric must be KerrBL");
ThinDisk::metric(gg);
}
|