File: EquatorialHotSpot.C

package info (click to toggle)
gyoto 2.0.2-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,444 kB
  • sloc: cpp: 42,330; sh: 4,512; python: 3,436; xml: 2,865; makefile: 691; ansic: 346
file content (428 lines) | stat: -rw-r--r-- 15,349 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/*
    Copyright 2016, 2018-2020 Frederic Vincent, Thibaut Paumard

    This file is part of Gyoto.

    Gyoto is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Gyoto is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Gyoto.  If not, see <http://www.gnu.org/licenses/>.
*/
#include "GyotoEquatorialHotSpot.h"
#include "GyotoPhoton.h"
#include "GyotoPageThorneDisk.h"
#include "GyotoUtils.h"
#include "GyotoFactoryMessenger.h"
#include "GyotoKerrBL.h"
#include "GyotoKerrKS.h"

#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
#include <fstream>
#include <string>
#include <cmath>
#include <limits>
#include <string>
#include <cstring>
#include <time.h> 

using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;

/// Properties
#include "GyotoProperty.h"
GYOTO_PROPERTY_START(EquatorialHotSpot, "Equatorial hot spot with beaming")
GYOTO_PROPERTY_DOUBLE(EquatorialHotSpot, SpotRadSize, spotRadSize)
GYOTO_PROPERTY_STRING(EquatorialHotSpot, BeamingKind, beaming,
		      "One of: IsotropicBeaming, NormalBeaming, RadialBeaming, "
		      "IsotropicConstant (emission is isotropic and constant"
		      "equals to 1)")
GYOTO_PROPERTY_DOUBLE(EquatorialHotSpot, BeamAngle, beamAngle)
GYOTO_WORLDLINE_PROPERTY_END(EquatorialHotSpot, ThinDisk::properties)

// accessors
void EquatorialHotSpot::spotRadSize(double t) {sizespot_=t;}
double EquatorialHotSpot::spotRadSize() const {return sizespot_;}

void EquatorialHotSpot::beaming(std::string const &b) {
  if (b=="IsotropicBeaming") beaming_=IsotropicBeaming;
  else if (b=="NormalBeaming") beaming_=NormalBeaming;
  else if (b=="RadialBeaming") beaming_=RadialBeaming;
  else if (b=="IsotropicConstant") beaming_=IsotropicConstant;
  else GYOTO_ERROR("Unknown beaming kind");
}
std::string EquatorialHotSpot::beaming() const {
  string b;
  switch (beaming_) {
  case IsotropicBeaming: b="IsotropicBeaming"; break;
  case NormalBeaming:    b="NormalBeaming";    break;
  case RadialBeaming:    b="RadialBeaming";    break;
  case IsotropicConstant: b="IsotropicConstant"; break;
  default: GYOTO_ERROR("Unknown beaming kind");
  }
  return b;
}

void EquatorialHotSpot::beamAngle(double t) {beamangle_=t;}
double EquatorialHotSpot::beamAngle() const {return beamangle_;}

// Needed for legacy XML files
int EquatorialHotSpot::setParameter(string name, string content, string unit) {
  double coord[8];
  char* tc = const_cast<char*>(content.c_str());
  if (name=="InitialCoordinate") {
    name="InitCoord";
    return ThinDisk::setParameter(name, content, unit);
  } else if (name=="Position") {
    if (FactoryMessenger::parseArray(content, coord, 4) != 4)
      GYOTO_ERROR("Worldline \"Position\" requires exactly 4 tokens");
    if (init_vel_) {
      setInitCoord(coord, init_vel_);
      delete[] init_vel_; init_vel_=NULL;
    } else setPosition(coord);
    wait_pos_ = 0;
  } else if (name=="Velocity") {
    if (FactoryMessenger::parseArray(content, coord, 3) != 3)
      GYOTO_ERROR("Worldline \"Velocity\" requires exactly 3 tokens");
    if (wait_pos_) {
      if (init_vel_) delete [] init_vel_;
      init_vel_ = new double[3];
      memcpy(init_vel_, coord, 3*sizeof(double));
    } else setVelocity(coord);
  } else if (name=="NormalBeaming") {
    GYOTO_WARNING << "<" << name << "/> is deprecated, please use "
      "<BeamingKind> " << name << " </BeamingKind> instead";
    beaming(name);
  } else if (name=="NormalBeaming" || name=="RadialBeaming") {
    GYOTO_WARNING << "<" << name << "/> is deprecated, please use \n";
    GYOTO_WARNING << "<BeamingKind> " << name << " </BeamingKind>" << endl;
    GYOTO_WARNING << "<BeamAngle> " << content << "</BeamAngle>" << endl;
    GYOTO_WARNING <<" instead";
    beaming(name);
    setParameter("BeamAngle", content, unit);
  } else return ThinDisk::setParameter(name, content, unit);
  return 0;
}

// Needed for wait_pos_
#ifdef GYOTO_USE_XERCES
void EquatorialHotSpot::fillProperty(Gyoto::FactoryMessenger *fmp, Property const &p) const {
  if (p.name == "InitCoord") {
    if (imin_ <= imax_) {
      state_t coord;
      getInitialCoord(coord);
      // For massive particule, express initial condition with 3-velocity
      double vel[3] = {coord[5]/coord[4], coord[6]/coord[4], coord[7]/coord[4]};
      fmp -> setParameter ("Position", &coord[0], 4);
      fmp -> setParameter ("Velocity", vel, 3);
    }
    return;
  }
  ThinDisk::fillProperty(fmp, p);
}

void EquatorialHotSpot::setParameters(FactoryMessenger* fmp) {
  wait_pos_ = 1;
  ThinDisk::setParameters(fmp);
  wait_pos_ = 0;
  if (init_vel_) {
    delete[] init_vel_; init_vel_=NULL;
    GYOTO_ERROR("Worldline::setParameters(): "
	       "Velocity was found but not Position");
  }
}
#endif
///

Gyoto::Astrobj::EquatorialHotSpot::EquatorialHotSpot()
  : ThinDisk("EquatorialHotSpot"), Worldline(), 
    sizespot_(0.), beaming_(IsotropicBeaming), beamangle_(0.), spectrumThermalSynch_(NULL), magneticConfig_("None")
{
  GYOTO_DEBUG  << "Building EquatorialHotSpot";
  spectrumThermalSynch_ = new Spectrum::ThermalSynchrotron();
}

Gyoto::Astrobj::EquatorialHotSpot::EquatorialHotSpot(const EquatorialHotSpot &o)
  : ThinDisk(o), Worldline(o),
    sizespot_(o.sizespot_), beaming_(o.beaming_), beamangle_(o.beamangle_), spectrumThermalSynch_(NULL), magneticConfig_(o.magneticConfig_)
{
  GYOTO_DEBUG  << "Copying EquatorialHotSpot";
  if (o.spectrumThermalSynch_()) spectrumThermalSynch_=o.spectrumThermalSynch_->clone();
}
EquatorialHotSpot * EquatorialHotSpot::clone() const { 
  return new EquatorialHotSpot(*this); }

Gyoto::Astrobj::EquatorialHotSpot::~EquatorialHotSpot()
{
  GYOTO_DEBUG  << "Destroying EquatorialHotSpot";
}

double EquatorialHotSpot::getMass() const {return 1. ;}

void EquatorialHotSpot::metric(SmartPointer<Metric::Generic> gg) {
  ThinDisk::metric(gg);
  Worldline::metric(gg);
}

void EquatorialHotSpot::setInitialCondition(double coord[8]) {
  if (!metric_) GYOTO_ERROR("Please set metric before calling "
			   "EquatorialHotSpot::setInitialCondition(double*)");
  Worldline::setInitialCondition(metric_, coord, 1);
}

void EquatorialHotSpot::getVelocity(double const pos[4], double vel[4]) {
  double coord_spot[4]={pos[0]};
  const_cast<EquatorialHotSpot*>(this)
    ->getCoord(coord_spot, 1, coord_spot+1, coord_spot+2, coord_spot+3);
  gg_ -> circularVelocity(coord_spot, vel, dir_);
  //cout << "equat Omega= " << vel[3]/vel[0] << endl;
}

double EquatorialHotSpot::emission(double nu_em, double dsem,
				   state_t const &coord_ph,
				   double const coord_obj[8]) const{
  double coord_spot[4]={coord_obj[0]};
  const_cast<EquatorialHotSpot*>(this)
    ->getCartesian(coord_spot, 1, coord_spot+1, coord_spot+2, coord_spot+3);
  //above: nasty trick to deal with constness of emission
  double xspot=coord_spot[1], yspot=coord_spot[2];
  //cout << "spot is at xy= " << xspot << " " << yspot << endl;
  double rr=coord_obj[1], phi=coord_obj[3];
  double difx=(rr*cos(phi)-xspot),
    dify=(rr*sin(phi)-yspot);
  double d2 = difx*difx+dify*dify;
  double ds2=sizespot_*sizespot_;
  if (d2 < 16*ds2){ // we are within 4*rspot,
                    // same as in Schnittman & Bertschinger 2004

    // computing the angle (normal,photon tangent)
    double cosalpha=0.;
    if (beaming_ == NormalBeaming or beaming_ == RadialBeaming){
      double gthth=gg_->gmunu(&coord_ph[0],2,2);
      double pth=coord_ph[6];
      double uemitter[4];
      const_cast<EquatorialHotSpot*>(this)
	->getVelocity(&coord_ph[0],uemitter);
      double pscalu=fabs(gg_->ScalarProd(&coord_ph[0],&coord_ph[4],
					 uemitter));
      if (pscalu==0.) GYOTO_ERROR("Undefined cosalpha!");
      cosalpha = 1./pscalu*sqrt(gthth)*fabs(pth); // = |cos(alpha)|

      if (fabs(cosalpha)>1.)
	GYOTO_ERROR("cosalpha>1!");
    }
      
    // emission Gaussian width
    double sigma2=ds2 ; // following choice of Schnittman & Bertschinger 2004:
                        // sigma = Rspot

    switch (beaming_) {
    case IsotropicBeaming:
      return exp(-d2/(2*sigma2));
    case IsotropicConstant:
      return 1.;
    case NormalBeaming:
      return cosalpha*cosalpha*exp(-d2/(2*sigma2));
    case RadialBeaming:
      return (1.-cosalpha)*(1.-cosalpha)*exp(-d2/(2*sigma2));
    default:
      GYOTO_ERROR("In EquatorialHotSpot::emission:"
		 " incorrect beaming argument");
    }
  }
  // else
  return 0.;
}

void EquatorialHotSpot::radiativeQ(double *Inu, double *Qnu, double *Unu,
				   double *Vnu,
				   Eigen::Matrix4d *Onu,
				   double const *nuem , size_t nbnu,
				   double dsem,
				   state_t const &cph,
				   double const *co) const {
  // polarized radiativeQ

  double vel[4]; // 4-velocity of emitter
  for (int ii=0;ii<4;ii++){
    vel[ii]=co[ii+4];
  }
  
  Eigen::Matrix4d Omat;
  Omat << 1, 0, 0, 0,
          0, 1, 0, 0,
          0, 0, 1, 0,
          0, 0, 0, 1;

 // Defining emission, absoprtion and rotation coefficients for the transmission matrix
  double jInu[nbnu], jQnu[nbnu], jUnu[nbnu], jVnu[nbnu];
  double aInu[nbnu], aQnu[nbnu], aUnu[nbnu], aVnu[nbnu];
  double rotQnu[nbnu], rotUnu[nbnu], rotVnu[nbnu];
  
  for (size_t ii=0; ii<nbnu; ++ii){
    // Initialze them to -1 to create error if not updated
    jInu[ii]=-1.;
    jQnu[ii]=-1.;
    jUnu[ii]=-1.;
    jVnu[ii]=-1.;
    aInu[ii]=-1.;
    aQnu[ii]=-1.;
    aUnu[ii]=-1.;
    aVnu[ii]=-1.;
    rotQnu[ii]=-1.;
    rotUnu[ii]=-1.;
    rotVnu[ii]=-1.;
  }

  // CHOOSE BFIELD GEOMETRY
  double B4vect[4]={0.,0.,0.,0.};
  if (magneticConfig_=="None")
    GYOTO_ERROR("Specify the magnetic field configuration");
  if (magneticConfig_=="Vertical"){
    B4vect[2]=-1;
  }
  else if (magneticConfig_=="Radial"){
    B4vect[1]=1;
  }
  else if (magneticConfig_=="Toroidal"){
    double gtt=gg_->gmunu(&cph[0],0,0),
      gpp=gg_->gmunu(&cph[0],3,3),
      Bp=1.,
      Bt=(-gpp*Bp*vel[3])/(gtt*vel[0]);
    B4vect[0]=Bt;
    B4vect[3]=Bp;
  }
  else if (magneticConfig_=="Radial-Azimuthal"){
    double gtt=gg_->gmunu(&cph[0],0,0),
      gpp=gg_->gmunu(&cph[0],3,3),
      Bp=1.,
      Bt=(-gpp*Bp*vel[3])/(gtt*vel[0]);
    B4vect[0]=Bt;
    B4vect[1]=1.;
    B4vect[3]=Bp;
  }
  else
    GYOTO_ERROR("Unknown magnetic field configuration");
  
  double B0 = 100.; // Gauss
  double norm=sqrt(gg_->ScalarProd(&cph[0], B4vect, B4vect));
  gg_->multiplyFourVect(B4vect,1./norm);

  double Chi=getChi(B4vect, cph, vel); // this is EVPA

  double nu0 = GYOTO_ELEMENTARY_CHARGE_CGS*B0
    /(2.*M_PI*GYOTO_ELECTRON_MASS_CGS*GYOTO_C_CGS); // cyclotron freq

  // Computing the angle theta_mag between the magnetic field vector and photon tgt vector in the rest frame of the emitter
  gg_->projectFourVect(&cph[0],B4vect,vel); //Projection of the 4-vector B to 4-velocity to be in the rest frame of the emitter
  double photon_emframe[4]; // photon tgt vector projected in comoving frame
  for (int ii=0;ii<4;ii++){
    photon_emframe[ii]=cph[ii+4]+vel[ii]*gg_->ScalarProd(&cph[0],&cph[4],vel);
  }
  double bnorm = gg_->norm(&cph[0],B4vect);
  double lnorm = gg_->norm(&cph[0],photon_emframe);
  double lscalb = gg_->ScalarProd(&cph[0],photon_emframe,B4vect);
  double theta_mag = acos(lscalb/(lnorm*bnorm));
  

  double n0 = 6e6; // cm-3
  double Theta0=200; // Dimensionless temperature

  double coord_spot[4]={co[0]};
  const_cast<EquatorialHotSpot*>(this)
    ->getCartesian(coord_spot, 1, coord_spot+1, coord_spot+2, coord_spot+3);
  //above: nasty trick to deal with constness of emission
  double xspot=coord_spot[1], yspot=coord_spot[2];
  //cout << "spot is at xy= " << xspot << " " << yspot << endl;
  double rr=co[1], phi=co[3];
  double difx=(rr*cos(phi)-xspot),
    dify=(rr*sin(phi)-yspot);
  double d2 = difx*difx+dify*dify;
  double ds2=sizespot_*sizespot_;

  double number_density=n0/3.*exp(-d2/(2.*ds2)),
  Theta=Theta0*exp(-d2/(2.*ds2))*pow(rr,-0.84);

  if (number_density<1e5) number_density=0.;
  double temperature=GYOTO_ELECTRON_MASS_CGS*GYOTO_C2_CGS*Theta/GYOTO_BOLTZMANN_CGS;

  
  double bessK2 = bessk(2, 1./Theta);
  //cout << "In EquatorialHotSpot: ne, temperature, BB, nu0, besselK2, theta_mag: " << number_density << " " << temperature << " " << B0 << " " << nu0 << " " << bessK2 << " " << theta_mag << endl;

  // THERMAL SYNCHRO
  spectrumThermalSynch_->numberdensityCGS(number_density);
  spectrumThermalSynch_->temperature(temperature);
  spectrumThermalSynch_->besselK2(bessK2);
  spectrumThermalSynch_->angle_averaged(0);
  spectrumThermalSynch_->angle_B_pem(theta_mag);
  spectrumThermalSynch_->cyclotron_freq(nu0);

  spectrumThermalSynch_->radiativeQ(jInu, jQnu, jUnu, jVnu,
                                    aInu, aQnu, aUnu, aVnu,
                                    rotQnu, rotUnu, rotVnu, nuem, nbnu);


  for (size_t ii=0; ii<nbnu; ++ii) {
    //cout << "d2, ds2:" << ", " << d2 << ", " << ds2 << endl;
    //cout << "In EquatorialHotSpot: jInu, jQnu, jUnu, jVnu: " << jInu[ii] << ", " << jQnu[ii] << ", " << jUnu[ii] << ", " << jVnu[ii] << endl;
    //cout << "In EquatorialHotSpot: aInu, aQnu, aUnu, aVnu: " << aInu[ii] << ", " << aQnu[ii] << ", " << aUnu[ii] << ", " << aVnu[ii] << endl;
    //cout << "In EquatorialHotSpot: rQnu, rUnu, rVnu: " << rotQnu[ii] << ", " << rotUnu[ii] << ", " << rotVnu[ii] << endl;
    Eigen::Vector4d Jstokes=rotateJs(jInu[ii], jQnu[ii], jUnu[ii], jVnu[ii], Chi)*dsem*gg_->unitLength();
    //cout << Jstokes << endl;
    Omat = Omatrix(aInu[ii], aQnu[ii], aUnu[ii], aVnu[ii], rotQnu[ii], rotUnu[ii], rotVnu[ii], Chi, dsem);
    //cout << Omat << endl;
    // Computing the increment of the Stokes parameters. Equivalent to dInu=exp(-anu*dsem)*jnu*dsem in the non-polarised case.
    Eigen::Vector4d Stokes=Omat*Jstokes;
    //cout << Stokes << endl;
    Inu[ii] = Stokes(0);
    Qnu[ii] = Stokes(1);
    Unu[ii] = Stokes(2);
    Vnu[ii] = Stokes(3);
    Onu[ii] = Omat;

    if (Inu[ii]<0.)
      GYOTO_ERROR("In Blob::radiativeQ: Inu<0");
    if (Inu[ii]!=Inu[ii] or Onu[ii](0,0)!=Onu[ii](0,0))
      GYOTO_ERROR("In Blob::radiativeQ: Inu or Taunu is nan");
    if (Inu[ii]==Inu[ii]+1. or Onu[ii](0,0)==Onu[ii](0,0)+1.)
      GYOTO_ERROR("In Blob::radiativeQ: Inu or Taunu is infinite");

    //cout << "In EquatorialHotSpot: Inu, Qnu, Unu, Vnu, dsem: " << Inu[ii] << ", " << Qnu[ii] << ", " << Unu[ii] << ", " << Vnu[ii] << ", " << dsem << endl;
    //cout << "Onu :" << endl;
    //cout << Omat << endl;
  }
}


void EquatorialHotSpot::radiativeQ(double Inu[], // output
				   double Taunu[], // output
				   double const nu_ems[], size_t nbnu, // input
				   double dsem,
				   state_t const &coord_ph,
				   double const coord_obj[8]) const {
  // unpolarized radiativeQ
  for (size_t ii=0; ii<nbnu; ++ii) {
    Inu[ii]=emission(nu_ems[ii], dsem, coord_ph, coord_obj);
    Taunu[ii]=1.;
  }
}

void EquatorialHotSpot::magneticConfiguration(string config){
  magneticConfig_=config;
}

string EquatorialHotSpot::magneticConfiguration() const{
  return magneticConfig_;
}