1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
|
/*
Copyright 2019-2021 Frederic Vincent & Thibaut Paumard & Nicolas Aimar
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#include "GyotoPhoton.h"
#include "GyotoFlaredDiskSynchrotron.h"
#include "GyotoProperty.h"
#include "GyotoUtils.h"
#include "GyotoFactoryMessenger.h"
#ifdef GYOTO_USE_CFITSIO
#define throwCfitsioError(status) \
{ fits_get_errstatus(status, ermsg); GYOTO_ERROR(ermsg); }
#endif
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
#include <fstream>
#include <string>
#include <cmath>
#include <limits>
#include <cstring>
using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;
GYOTO_PROPERTY_START(FlaredDiskSynchrotron)
GYOTO_PROPERTY_FILENAME(FlaredDiskSynchrotron, File, file,
"File name of FITS file containing data")
GYOTO_PROPERTY_DOUBLE(FlaredDiskSynchrotron, TimeTranslation_inMunit,
timeTranslation_inMunit,
"Shift simulation times by this amount, in GM/c3 unit")
GYOTO_PROPERTY_DOUBLE(FlaredDiskSynchrotron, HoverR, hoverR,
"Aspect ratio H/r of flared disk")
GYOTO_PROPERTY_DOUBLE_UNIT(FlaredDiskSynchrotron, NumberDensityMax, numberDensityMax,
"Maximum value of nb density in SI")
GYOTO_PROPERTY_DOUBLE(FlaredDiskSynchrotron, TemperatureMax, temperatureMax,
"Maximum value of temperature in K")
GYOTO_PROPERTY_DOUBLE(FlaredDiskSynchrotron, BetaAtMax, betaAtMax,
"Value of Beta at Maximum nb density")
GYOTO_PROPERTY_DOUBLE(FlaredDiskSynchrotron, MagnetizationParameter,
magnetizationParameter,
"Standard magnetization parameter (B^2/4pi) / (rho*c^2) "
"where rho is mass density")
GYOTO_PROPERTY_DOUBLE(FlaredDiskSynchrotron, KappaIndex, kappaIndex)
GYOTO_PROPERTY_DOUBLE(FlaredDiskSynchrotron, PolytropicIndex, polytropicIndex)
GYOTO_PROPERTY_END(FlaredDiskSynchrotron, Standard::properties)
FlaredDiskSynchrotron::FlaredDiskSynchrotron() :
Standard("FlaredDiskSynchrotron"), GridData2D(),
filename_(""), hoverR_(0.), time_array_(NULL),
density_(NULL), velocity_(NULL), Bvector_(NULL),
numberDensityMax_cgs_(0.), temperatureMax_(0.),
BMax_cgs_(0.), beta_(1.), magnetizationParameter_(1.),
deltat_(0.), flag_(false), gamm1_(5./3.)
{
GYOTO_DEBUG << endl;
spectrumKappaSynch_ = new Spectrum::KappaDistributionSynchrotron();
}
FlaredDiskSynchrotron::FlaredDiskSynchrotron(const FlaredDiskSynchrotron& o) :
Standard(o), GridData2D(o),
filename_(o.filename_), hoverR_(o.hoverR_), time_array_(NULL),
density_(NULL), velocity_(NULL), Bvector_(NULL),
numberDensityMax_cgs_(o.numberDensityMax_cgs_), temperatureMax_(o.temperatureMax_), beta_(o.beta_),
magnetizationParameter_(o.magnetizationParameter_), deltat_(o.deltat_), flag_(o.flag_),
gamm1_(o.gamm1_), BMax_cgs_(o.BMax_cgs_)
{
GYOTO_DEBUG << endl;
size_t ncells = 0;
size_t nt=GridData2D::nt(), nphi=GridData2D::nphi(), nr=GridData2D::nr();
if (o.density_) {
density_ = new double[ncells = nt * nphi * nr];
memcpy(density_, o.density_, ncells * sizeof(double));
}
if (o.velocity_) {
velocity_ = new double[ncells = 2 * nt * nphi * nr];
memcpy(velocity_, o.velocity_, ncells * sizeof(double));
}
if (o.Bvector_) {
Bvector_= new double[ncells = 4* nt * nphi * nr];
memcpy(Bvector_,o.Bvector_, ncells * sizeof(double));
}
if (o.time_array_) {
time_array_ = new double[nt];
memcpy(time_array_,o.time_array_, nt*sizeof(double));
}
if (o.spectrumKappaSynch_()) spectrumKappaSynch_=o.spectrumKappaSynch_->clone();
}
FlaredDiskSynchrotron* FlaredDiskSynchrotron::clone() const
{ return new FlaredDiskSynchrotron(*this); }
FlaredDiskSynchrotron::~FlaredDiskSynchrotron() {
GYOTO_DEBUG << endl;
if (density_) delete [] density_;
if (velocity_) delete [] velocity_;
if (time_array_) delete [] time_array_;
if (Bvector_) delete [] Bvector_;
}
void FlaredDiskSynchrotron::file(std::string const &f) {
# ifdef GYOTO_USE_CFITSIO
fitsRead(f);
# else
GYOTO_ERROR("This Gyoto has no FITS i/o");
# endif
}
std::string FlaredDiskSynchrotron::file() const {
return filename_;
}
void FlaredDiskSynchrotron::hoverR(double const hor) {
double hmin=1e-4;
if (hor < hmin){
cerr << " " << endl;
cerr << "***!!WARNING!!*** In FlaredDiskSynchrotron::hoverR: "
"H/R very small, you might not resolve your disk; "
"increase H/R or decrease GYOTO_T_TOL." << endl;
cerr << " " << endl;
}
hoverR_ = hor;
}
double FlaredDiskSynchrotron::hoverR() const {
return hoverR_;
}
void FlaredDiskSynchrotron::timeTranslation_inMunit(double const dt) {
double tmin=GridData2D::tmin(), tmax=GridData2D::tmax();
GridData2D::tmin(tmin-deltat_+dt);
GridData2D::tmax(tmax-deltat_+dt);
deltat_=dt;
if (GridData2D::nt()==0)
GYOTO_ERROR("In FlaredDiskSynchrotron::timeTranslation nt not yet defined");
int nt = GridData2D::nt();
if (!time_array_)
GYOTO_ERROR("In FlaredDiskSynchrotron::timeTranslation time_array_ not defined. Please use FlaredDiskSynchrotron::file(string) before this function");
for (int ii=0;ii<nt;ii++){
time_array_[ii]+=dt;
}
if (GridData2D::tmin()>0)
cout << "\nWARNING : tmin is positive, in most cases the stationnary boundary condition will be applied. You should decrease more timeTranslation_inMunit until at least " << -tmin << "\n" << endl;
}
double FlaredDiskSynchrotron::timeTranslation_inMunit() const {
return deltat_;
}
double FlaredDiskSynchrotron::numberDensityMax() const {
// Converts internal cgs dens to SI
double dens=numberDensityMax_cgs_;
# ifdef HAVE_UDUNITS
dens = Units::Converter("cm-3", "m-3")(dens);
# else
GYOTO_WARNING << "Units ignored, please recompile Gyoto with --with-udunits"
<< endl ;
# endif
return dens; }
double FlaredDiskSynchrotron::numberDensityMax(string const &unit) const
{
double dens = numberDensityMax();
if (unit != "") {
# ifdef HAVE_UDUNITS
dens = Units::Converter("m-3", unit)(dens);
# else
GYOTO_WARNING << "Units ignored, please recompile Gyoto with --with-udunits"
<< endl ;
# endif
}
return dens;
}
void FlaredDiskSynchrotron::numberDensityMax(double dens) {
# ifdef HAVE_UDUNITS
dens = Units::Converter("m-3", "cm-3")(dens);
# else
GYOTO_WARNING << "Units ignored, please recompile Gyoto with --with-udunits"
<< endl ;
# endif
numberDensityMax_cgs_=dens;
BMax_cgs_=sqrt(8.*M_PI*numberDensityMax_cgs_*GYOTO_BOLTZMANN_CGS*temperatureMax_/beta_);
}
void FlaredDiskSynchrotron::numberDensityMax(double dens, string const &unit) {
if (unit != "") {
# ifdef HAVE_UDUNITS
dens = Units::Converter(unit, "m-3")(dens);
# else
GYOTO_WARNING << "Units ignored, please recompile Gyoto with --with-udunits"
<< endl ;
# endif
}
numberDensityMax(dens);
}
void FlaredDiskSynchrotron::temperatureMax(double tt) {
temperatureMax_=tt;
BMax_cgs_=sqrt(8.*M_PI*numberDensityMax_cgs_*GYOTO_BOLTZMANN_CGS*temperatureMax_/beta_);
}
double FlaredDiskSynchrotron::temperatureMax() const{return temperatureMax_;}
void FlaredDiskSynchrotron::polytropicIndex(double gamma) {gamm1_=gamma-1;}
double FlaredDiskSynchrotron::polytropicIndex() const {return gamm1_+1;}
void FlaredDiskSynchrotron::betaAtMax(double beta){
if (beta<=0.)
GYOTO_ERROR("In betaAtMax: beta must be >0!");
beta_=beta;
BMax_cgs_=sqrt(8.*M_PI*numberDensityMax_cgs_*GYOTO_BOLTZMANN_CGS*temperatureMax_/beta_);
}
double FlaredDiskSynchrotron::betaAtMax() const {return beta_;}
void FlaredDiskSynchrotron::magnetizationParameter(double rr) {
magnetizationParameter_=rr;}
double FlaredDiskSynchrotron::magnetizationParameter()const{
return magnetizationParameter_;}
void FlaredDiskSynchrotron::kappaIndex(double index) {
spectrumKappaSynch_->kappaindex(index);
}
double FlaredDiskSynchrotron::kappaIndex()const{
return spectrumKappaSynch_->kappaindex();
}
void FlaredDiskSynchrotron::copyDensity(double const *const density,
size_t const naxes[3]) {
GYOTO_DEBUG << endl;
if (density_) {
GYOTO_DEBUG << "delete [] density_;" << endl;
delete [] density_; density_ = NULL;
}
size_t nt=GridData2D::nt(), nphi=GridData2D::nphi(), nr=GridData2D::nr();
if (density) {
if (nt != naxes[2] || nphi != naxes[1] || nr != naxes[0]) {
GYOTO_DEBUG <<"grid dims changed, freeing velocity_" << endl;
if (velocity_) { delete [] velocity_; velocity_= NULL; }
}
size_t nel;
GridData2D::nt(naxes[2]);
GridData2D::nphi(naxes[1]);
GridData2D::nr(naxes[0]);
//cout << naxes[0] << "," << naxes[1] << "," << naxes[2] << endl;
if (!(nel=naxes[0] * naxes[1] * naxes[2]))
GYOTO_ERROR( "dimensions can't be null");
// NB: not updating dr_ contrary to PD
GYOTO_DEBUG << "allocate density_;" << endl;
density_ = new double[nel];
GYOTO_DEBUG << "density >> density_" << endl;
memcpy(density_, density, nel*sizeof(double));
}
//cout << "density stored= " << endl;
//for (int ii=0;ii<30;ii++) cerr << density_[ii] << " " ;
//cout << endl;
}
double const * FlaredDiskSynchrotron::getDensity() const { return density_; }
void FlaredDiskSynchrotron::copyVelocity(double const *const velocity,
size_t const naxes[3]) {
GYOTO_DEBUG << endl;
if (velocity_) {
GYOTO_DEBUG << "delete [] velocity_;\n";
delete [] velocity_; velocity_ = NULL;
}
size_t nt=GridData2D::nt(), nphi=GridData2D::nphi(), nr=GridData2D::nr();
if (velocity) {
if (!density_) GYOTO_ERROR("Please use copyDensity() before copyVelocity()");
if (nt != naxes[2] || nphi != naxes[1] || nr != naxes[0])
GYOTO_ERROR("density_ and velocity_ have inconsistent dimensions");
GYOTO_DEBUG << "allocate velocity_;" << endl;
size_t nel = 2*nt*nphi*nr;
velocity_ = new double[nel];
GYOTO_DEBUG << "velocity >> velocity_" << endl;
memcpy(velocity_, velocity, nel*sizeof(double));
}
//cout << "velo stored= " << endl;
//for (int ii=0;ii<60;ii++) cerr << velocity_[ii] << " " ;
//cout << endl;
}
double const * FlaredDiskSynchrotron::getVelocity() const { return velocity_; }
void FlaredDiskSynchrotron::copyBvector(double const *const Bvector,
size_t const naxes[3]) {
GYOTO_DEBUG << endl;
if (Bvector_) {
GYOTO_DEBUG << "delete [] Bvector_;\n";
delete [] Bvector_; Bvector_ = NULL;
}
size_t nt=GridData2D::nt(), nphi=GridData2D::nphi(), nr=GridData2D::nr();
if (Bvector) {
if (!density_) GYOTO_ERROR("Please use copyDensity() before copyBvector()");
if (nt != naxes[2] || nphi != naxes[1] || nr != naxes[0])
GYOTO_ERROR("density_ and Bvector_ have inconsistent dimensions");
GYOTO_DEBUG << "allocate Bvector_;" << endl;
size_t nel = 4*nt*nphi*nr;
Bvector_ = new double[nel];
GYOTO_DEBUG << "Bvector >> Bvector_" << endl;
memcpy(Bvector_, Bvector, nel*sizeof(double));
flag_=true;
}
//cout << "velo stored= " << endl;
//for (int ii=0;ii<60;ii++) cerr << velocity_[ii] << " " ;
//cout << endl;
}
double const * FlaredDiskSynchrotron::getBvector() const { return Bvector_; }
void FlaredDiskSynchrotron::copyTimeArray(double const *const time_array, size_t const ntimes) {
GYOTO_DEBUG << endl;
if (time_array_) {
GYOTO_DEBUG << "delete [] time_array_;\n";
delete [] time_array_; time_array_ = NULL;
}
size_t nt=GridData2D::nt();
if (time_array) {
if (nt != ntimes)
GYOTO_ERROR("the given ntimes and nt from FITS file are inconsistent");
GYOTO_DEBUG << "allocate time_array_;" << endl;
time_array_ = new double[ntimes];
GYOTO_DEBUG << "time_array >> time_array_" << endl;
memcpy(time_array_, time_array, ntimes*sizeof(double));
}
}
double const * FlaredDiskSynchrotron::getTimeArray() const { return time_array_; }
#ifdef GYOTO_USE_CFITSIO
vector<size_t> FlaredDiskSynchrotron::fitsRead(string filename) {
// Remove first char if it is "!"
if (filename.substr(0,1)=="!")
filename.erase(0,1);
GYOTO_MSG << "FlaredDiskSynchrotron reading FITS file: " << filename << endl;
filename_ = filename;
char* pixfile = const_cast<char*>(filename_.c_str());
fitsfile* fptr = NULL;
int status = 0;
double tmpd;
char ermsg[31] = ""; // ermsg is used in throwCfitsioError()
GYOTO_DEBUG << "FlaredDiskSynchrotron::fitsRead: opening file" << endl;
if (fits_open_file(&fptr, pixfile, 0, &status)) throwCfitsioError(status) ;
////// READ FITS KEYWORDS COMMON TO ALL TABLES ///////
// These are: tmin, tmax, rmin, rmax, phimin, phimax
GYOTO_DEBUG << "FlaredDiskSynchrotron::fitsRead(): read tmin_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO GridData2D tmin", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else GridData2D::tmin(tmpd+deltat_); // tmin_ found
GYOTO_DEBUG << "FlaredDiskSynchrotron::fitsRead(): read tmax_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO GridData2D tmax", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else GridData2D::tmax(tmpd+deltat_); // tmax_ found
GYOTO_DEBUG << "FlaredDiskSynchrotron::fitsRead(): read rmin_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO GridData2D rmin", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else GridData2D::rmin(tmpd); // rmin_ found
GYOTO_DEBUG << "FlaredDiskSynchrotron::fitsRead(): read rmax_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO GridData2D rmax", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else GridData2D::rmax(tmpd); // rmax_ found
GYOTO_DEBUG << "FlaredDiskSynchrotron::fitsRead(): read phimin_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO GridData2D phimin", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else GridData2D::phimin(tmpd); // phimin_ found
GYOTO_DEBUG << "FlaredDiskSynchrotron::fitsRead(): read phimax_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO GridData2D phimax", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else GridData2D::phimax(tmpd); // phimax_ found
// READ EXTENSIONS
// Density
vector<size_t> naxes_dens = GridData2D::fitsReadHDU(fptr,"GYOTO GridData2D DENSITY",
density_);
//cout << "density read= " << endl;
//for (int ii=0;ii<30;ii++) cerr << density_[ii] << " " ;
//cout << endl;
// Velocity
size_t length=2; // velocity is a 2-vector
vector<size_t> naxes_velo = GridData2D::fitsReadHDU(fptr,"GYOTO GridData2D VELOCITY",
velocity_,
length);
if (naxes_dens[0]!=naxes_velo[0] ||
naxes_dens[1]!=naxes_velo[1] ||
naxes_dens[2]!=naxes_velo[2])
throwError("In FlaredDiskSynchro: density and velocity, dimensions "
"do not agree");
// 4-vector B
string name="GYOTO GridData2D BVECTOR";
fits_movnam_hdu(fptr, ANY_HDU, const_cast<char*>(name.c_str()), 0, &status);
if (status==0){ // read only if the HDU exist
flag_=true;
size_t lengthB=4; // Bvector is a 4-vector
vector<size_t> naxes_Bvec = GridData2D::fitsReadHDU(fptr,"GYOTO GridData2D BVECTOR",
Bvector_,
lengthB);
if (naxes_dens[0]!=naxes_velo[0] || naxes_dens[0]!=naxes_Bvec[0] ||
naxes_dens[1]!=naxes_velo[1] || naxes_dens[1]!=naxes_Bvec[1] ||
naxes_dens[2]!=naxes_velo[2] || naxes_dens[2]!=naxes_Bvec[2])
throwError("In FlaredDiskSynchro: density and B4vector dimensions "
"do not agree");
/*cout << "B4vector read= " << endl;
for (int ii=0;ii<4*naxes_Bvec[1]*naxes_Bvec[2];ii++) cerr << Bvector_[ii] << " " ;
cout << endl;*/
}
// Time array
vector<size_t> naxes_time = GridData2D::fitsReadHDU(fptr,"GYOTO GridData2D TIMEARRAY",
time_array_);
if (naxes_time[0]!=naxes_dens[2])
GYOTO_ERROR("In FlaredDiskSynchro: ntimes differ from density array and time_array");
/*cout << "velo read= " << endl;
for (int ii=0;ii<60;ii++) cerr << velocity_[ii] << " " ;
cout << endl;*/
GridData2D::nr(naxes_dens[0]);
GridData2D::nphi(naxes_dens[1]);
GridData2D::nt(naxes_dens[2]);
//cout << "axes dens: " << naxes_dens[0] << " " << naxes_dens[1] << " " << naxes_dens[2] << endl;
//cout << "axes velo: " << naxes_velo[0] << " " << naxes_velo[1] << " " << naxes_velo[2] << " " << naxes_velo[3] << endl;
return naxes_velo;
}
#endif
double FlaredDiskSynchrotron::operator()(double const coord[4]) {
// zpos: modulus of altitude above equatorial plane
// rproj: radius projected in the equatorial plane
double zpos=0., rproj=0.;
switch (gg_ -> coordKind()) {
case GYOTO_COORDKIND_SPHERICAL:
rproj = coord[1]*sin(coord[2]);
zpos = fabs(coord[1]*cos(coord[2]));
break;
case GYOTO_COORDKIND_CARTESIAN:
zpos = fabs(coord[3]);
rproj = sqrt(coord[1]*coord[1]+coord[2]*coord[2]);
break;
default:
GYOTO_ERROR("FlaredDiskSynchrotron::operator(): unknown COORDKIND");
}
//cout << coord[0] << ", " << coord[1] << ", " << coord[2] << ", " << coord[3] << endl;
if (rproj < GridData2D::rmin() or rproj > GridData2D::rmax())
return 1.; // outside disk
double zdisk = rproj*hoverR_; // altitude of flared disk at this rproj
return zpos - zdisk; // >0 outside, <0 inside flared disk
}
void FlaredDiskSynchrotron::radiativeQ(double Inu[], // output
double Taunu[], // output
double const nu_ems[], size_t nbnu, // input
double dsem,
state_t const &coord_ph,
double const coord_obj[8]) const {
double rcyl=0.; // cylindrical radius
double zz=0.; // height, z coord
switch (gg_->coordKind()) {
case GYOTO_COORDKIND_SPHERICAL:
rcyl = coord_ph[1]*sin(coord_ph[2]);
zz = coord_ph[1]*cos(coord_ph[2]);
break;
case GYOTO_COORDKIND_CARTESIAN:
rcyl = pow(coord_ph[1]*coord_ph[1]+coord_ph[2]*coord_ph[2], 0.5);
zz = coord_ph[3];
break;
default:
GYOTO_ERROR("In FlaredDiskSynchrotron::radiativeQ: Unknown coordinate system kind");
}
double tt = coord_ph[0], phi = coord_ph[3];
if (rcyl<GridData2D::rmin() || rcyl>GridData2D::rmax())
throwError("In FlaredDiskSynchrotron::radiativeQ: r is not in grid!");
if (phi<0. or phi>2.*M_PI)
throwError("In FlaredDiskSynchrotron::radiativeQ: phi is not in 0,2pi!");
// NB: phi is always in grid, and t might be outside, assuming stationnary
// disk at t<tmin_ and t>tmax_
//cout << "CALLING INTERPO FOR RHO" << endl;
// Interpolating the density_ table, which contains
// Sigma/r (surface density divided by radius), normalized.
double Sigma_over_r_interpo=GridData2D::interpolate(tt,phi,rcyl,density_,time_array_);
// Polytrop: p = kappa*rho^gamma
double HH = hoverR_*rcyl; // Height of the flared disk at the local rcyl
// 3D number density as a function of 2D surface density,
// for a polytropic disk. See notes for details:
double zfactor = 1.-zz*zz/(HH*HH),
number_density = Sigma_over_r_interpo*numberDensityMax_cgs_
*pow(zfactor,1./gamm1_);
// 3D temperature now, see notes for details.
// Perfect gas: p = (rho/mp)*k*T
// Thus: T \propto rho^{gamma-1}
double temperature = pow(Sigma_over_r_interpo,gamm1_)*temperatureMax_*zfactor;
//cout << "stuff: " << Sigma_over_r_interpo << " " << hoverR_ << " " << rcyl << " " << zz << " " << HH << " " << zfactor << endl;
double thetae = GYOTO_BOLTZMANN_CGS*temperature
/(GYOTO_ELECTRON_MASS_CGS*GYOTO_C2_CGS);
double hypergeom = Gyoto::hypergeom(kappaIndex(), thetae);
double BB=0;
double theta_mag=0.;
if (flag_){ // magnetic field defined in FITS data
size_t nr = GridData2D::nr(), nphi = GridData2D::nphi(),
nt = GridData2D::nt(), nel = nt*nphi*nr-1;
//cout << "CALLING INTERPO FOR B" << endl;
double Bt=GridData2D::interpolate(tt, phi, rcyl, Bvector_, time_array_),
Br=GridData2D::interpolate(tt, phi, rcyl, Bvector_+nel+1, time_array_),
Btheta=GridData2D::interpolate(tt, phi, rcyl, Bvector_+2*(nel+1), time_array_),
Bphi=GridData2D::interpolate(tt, phi, rcyl, Bvector_+3*(nel+1), time_array_);
double b4vec[4]={Bt,Br,Btheta,Bphi}; // B 4-vector in BL frame
double vel[4]; // 4-velocity of emitter
const_cast<FlaredDiskSynchrotron*>(this)->getVelocity(coord_obj, vel);
gg_->projectFourVect(&coord_ph[0],b4vec,vel); //Projection of the 4-vector B to 4-velocity to be in the rest frame of the emitter
double photon_emframe[4]; // photon tgt vector projected in comoving frame
for (int ii=0;ii<4;ii++){
photon_emframe[ii]=coord_ph[ii+4]+vel[ii]*gg_->ScalarProd(&coord_ph[0],&coord_ph[4],vel);
}
double bnorm = gg_->norm(&coord_ph[0],b4vec);
double lnorm = gg_->norm(&coord_ph[0],photon_emframe);
double lscalb = gg_->ScalarProd(&coord_ph[0],photon_emframe,b4vec);
theta_mag = acos(lscalb/(lnorm*bnorm));
double sth = sin(theta_mag);//, cth = cos(theta_mag);
if (sth==0.) GYOTO_ERROR("In FlaredDiskSynchrotron::radiativeQ: "
"theta_mag is zero leads to undefined emission");
if (sth!=sth) GYOTO_ERROR("In FlaredDiskSynchrotron::radiativeQ: "
"theta_mag is nan");
spectrumKappaSynch_->angle_averaged(0);
//cout << "4 composant of B: " << b4vec[0] << "," << b4vec[1] << "," << b4vec[2] << "," << b4vec[3] << endl;
BB = BMax_cgs_*sqrt(pow(b4vec[1],2.)+pow(b4vec[2],2.)+pow(b4vec[3],2.)); // norm of the 3-vector B
}
else{
spectrumKappaSynch_->angle_averaged(1); // impose angle-averaging
BB = sqrt(4.*M_PI*magnetizationParameter_
*GYOTO_PROTON_MASS_CGS * GYOTO_C_CGS * GYOTO_C_CGS
*number_density);
}
double nu0 = GYOTO_ELEMENTARY_CHARGE_CGS*BB
/(2.*M_PI*GYOTO_ELECTRON_MASS_CGS*GYOTO_C_CGS); // cyclotron freq
//cout << "jet stuff= " << coord_ph[1] << " " << coord_ph[2] << " " << zz << " " << rcyljetbase << " " << rcyl << " " << number_density << " " << thetae << " " << temperatureSlope_ << " " << nu0 << endl;
//cout << "jet zz,rcyl,th,ph,ne,Te= " << zz << " " << rcyl << " " << coord_ph[2] << " " << coord_ph[3] << " " << number_density << " " << temperature << endl;
// Use that line for Compton study:
//cout << zz << " " << rcyl << " " << number_density << " " << temperature << endl;
// KAPPA-DISTRIB SYNCHROTRON
double jnu_synch_kappa[nbnu], anu_synch_kappa[nbnu];
for (size_t ii=0; ii<nbnu; ++ii){
// Initializing to <0 value to create errors if not updated
jnu_synch_kappa[ii]=-1.;
anu_synch_kappa[ii]=-1.;
}
spectrumKappaSynch_->numberdensityCGS(number_density);
spectrumKappaSynch_->cyclotron_freq(nu0);
spectrumKappaSynch_->thetae(thetae);
spectrumKappaSynch_->angle_B_pem(theta_mag); // so we don't care about angle
spectrumKappaSynch_->hypergeometric(hypergeom);
//cout << "jet stuff for kappa: " << nu_ems[0] << " " << number_density << " " << nu0 << " " << thetae << " " << BB << " " << temperature << " " << hypergeom << endl;
spectrumKappaSynch_->radiativeQ(jnu_synch_kappa,anu_synch_kappa,
nu_ems,nbnu);
// RETURNING TOTAL INTENSITY AND TRANSMISSION
for (size_t ii=0; ii<nbnu; ++ii){
double jnu_tot = jnu_synch_kappa[ii],
anu_tot = anu_synch_kappa[ii];
//cout << jnu_tot << ", " << anu_tot << endl;
//cout << "in jet stuff: " << number_density << " " << nu0 << " " << thetae << " " << hypergeom << " " << jnu_tot << " " << anu_tot << " " << dsem << endl;
//cout << "at r,th= " << coord_ph[1] << " " << coord_ph[2] << endl;
//cout << "jet jnu anu kappa= " << jnu_tot << " " << anu_tot << endl; //x" " << jnu_tot/anu_tot << " " << dsem << endl;
// expm1 is a precise implementation of exp(x)-1
double em1=std::expm1(-anu_tot * dsem * gg_->unitLength());
Taunu[ii] = em1+1.;
Inu[ii] = anu_tot == 0. ? jnu_tot * dsem * gg_->unitLength() :
-jnu_tot / anu_tot * em1;
if (Inu[ii]<0.)
GYOTO_ERROR("In FlaredDiskSynchrotron::radiativeQ: Inu<0");
if (Inu[ii]!=Inu[ii] or Taunu[ii]!=Taunu[ii]){
GYOTO_ERROR("In FlaredDiskSynchrotron::radiativeQ: Inu or Taunu is nan");
}
if (Inu[ii]==Inu[ii]+1. or Taunu[ii]==Taunu[ii]+1.)
GYOTO_ERROR("In FlaredDiskSynchrotron::radiativeQ: Inu or Taunu is infinite");
}
}
void FlaredDiskSynchrotron::getVelocity(double const pos[4], double vel[4]){
double rcyl=0.; // cylindrical radius
double zz=0.; // height, z coord
switch (gg_->coordKind()) {
case GYOTO_COORDKIND_SPHERICAL:
rcyl = pos[1]*sin(pos[2]);
zz = pos[1]*cos(pos[2]);
break;
case GYOTO_COORDKIND_CARTESIAN:
rcyl = pow(pos[1]*pos[1]+pos[2]*pos[2], 0.5);
zz = pos[3];
break;
default:
GYOTO_ERROR("In FlaredDiskSynchrotron::getVelocity: "
" Unknown coordinate system kind");
}
double tt = pos[0], phi = pos[3];
if (rcyl<GridData2D::rmin() || rcyl>GridData2D::rmax())
throwError("In FlaredDiskSynchrotron::getVelocity: r is not in grid!");
if (phi<0. or phi>2*M_PI)
throwError("In FlaredDiskSynchrotron::getVelocity phi is not in 0;2pi!");
// NB: phi is always in grid, and t might be outside, assuming stationnary
// disk at t<tmin_ and t>tmax_
size_t nr = GridData2D::nr(), nphi = GridData2D::nphi(),
nt = GridData2D::nt(), nel = nt*nphi*nr-1;
// first half od velocity_ contains all values of dr/dt
// second hald contains all values of dphi/dt
//cout << "In VELO R: " << velocity_[0] << " " << velocity_[1] << " " << velocity_[nr-1] << " " << velocity_[nr] << " " << velocity_[nr*nphi-1] << endl;
//cout << "In VELO PHI: " << velocity_[0+nr*nphi] << " " << velocity_[1+nr*nphi] << " " << velocity_[nr-1+nr*nphi] << " " << velocity_[nr+nr*nphi] << " " << velocity_[nr*nphi-1+nr*nphi] << endl;
//cout << "CALLING INTERPO FOR DR/DT" << endl;
double drdt_interpo=GridData2D::interpolate(tt,phi,rcyl,velocity_,time_array_);
//cout << "CALLING INTERPO FOR DPHI/DT" << endl;
double dphidt_interpo=GridData2D::interpolate(tt,phi,rcyl,velocity_+nel+1,time_array_);
switch (gg_->coordKind()) {
case GYOTO_COORDKIND_SPHERICAL:
{
vel[1] = drdt_interpo;
vel[2] = 0.;
vel[3] = dphidt_interpo;
//cout << "IN FLARED: pos and vel= " << pos[1] << " " << pos[2] << " " << pos[3] << " " << vel[1] << " " << vel[2] << " " << vel[3] << endl;
vel[0] = gg_->SysPrimeToTdot(pos, vel+1);
vel[1] *= vel[0];
vel[3] *= vel[0];
}
break;
case GYOTO_COORDKIND_CARTESIAN:
GYOTO_ERROR("FlaredDiskSynchro::getVelocity(): metric must be in "
"spherical coordinates if velocity field is provided");
break;
default:
GYOTO_ERROR("FlaredDiskSynchro::getVelocity(): unknown COORDKIND");
}
}
bool FlaredDiskSynchrotron::isThreadSafe() const {
return Standard::isThreadSafe();
}
|