File: InflateStar.C

package info (click to toggle)
gyoto 2.0.2-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,444 kB
  • sloc: cpp: 42,330; sh: 4,512; python: 3,436; xml: 2,865; makefile: 691; ansic: 346
file content (139 lines) | stat: -rw-r--r-- 4,492 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*
    Copyright 2011, 2018 Thibaut Paumard, Frederic Vincent

    This file is part of Gyoto.

    Gyoto is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Gyoto is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Gyoto.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "GyotoUtils.h"
#include "GyotoInflateStar.h"
#include "GyotoPhoton.h"
#include "GyotoPowerLawSpectrum.h"
#include "GyotoBlackBodySpectrum.h"
#include "GyotoFactoryMessenger.h"

#include <iostream>
#include <cmath>
#include <string>
#include <cstdlib>
#include <float.h>
#include <sstream>
#include <string.h>

using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;

/// Properties
#include "GyotoProperty.h"
GYOTO_PROPERTY_START(InflateStar, "Star with inflation")
GYOTO_PROPERTY_DOUBLE_UNIT(InflateStar, TimeInflateInit, timeInflateInit,
			   "Start time of inflation (geometrical units)")
GYOTO_PROPERTY_DOUBLE_UNIT(InflateStar, TimeInflateStop, timeInflateStop,
			   "End time of inflation (geometrical units)")
GYOTO_PROPERTY_DOUBLE_UNIT(InflateStar, RadiusStop, radiusStop,
			   "End radius (geometrical units)")
GYOTO_PROPERTY_END(InflateStar, Star::properties)

GYOTO_PROPERTY_ACCESSORS(InflateStar, double,
			 timeinflateinit_, timeInflateInit)
double InflateStar::timeInflateInit(const string &unit) const {
  return Units::FromGeometricalTime(timeInflateInit(), unit, gg_);
}
void InflateStar::timeInflateInit(double t, const string &unit) {
  timeInflateInit(Units::ToGeometricalTime(t, unit, gg_));
}

GYOTO_PROPERTY_ACCESSORS(InflateStar, double,
			 timeinflatestop_, timeInflateStop)
double InflateStar::timeInflateStop(const string &unit) const {
  return Units::FromGeometricalTime(timeInflateStop(), unit, gg_);
}
void InflateStar::timeInflateStop(double t, const string &unit) {
  timeInflateStop(Units::ToGeometricalTime(t, unit, gg_));
}

GYOTO_PROPERTY_ACCESSORS_GEOMETRICAL(InflateStar, radiusstop_, radiusStop, gg_)

double InflateStar::radiusAt(double time) const {
  double radinit = radius();
  double radcur=radinit;
  if (time>=timeinflatestop_) radcur=radiusstop_;
  else if (time>timeinflateinit_){
    // linear increase of radius in between extreme times
    radcur = radinit+(time-timeinflateinit_)/(timeinflatestop_-timeinflateinit_)
      *(radiusstop_-radinit);
  }
  return radcur;
}

double InflateStar::radiusAt(double time, const string &t_unit) const {
  return radiusAt(Units::ToGeometricalTime(time, t_unit, gg_));
}

double InflateStar::radiusAt(double time, const string &t_unit, const string &r_unit) const {
  return Units::FromGeometrical(radiusAt(time, t_unit), r_unit, gg_);
}

InflateStar::InflateStar() :
  Star(),
  timeinflateinit_(0.), timeinflatestop_(0.), radiusstop_(DBL_MAX)
{
  kind_="InflateStar";
# ifdef GYOTO_DEBUG_ENABLED
  GYOTO_DEBUG << "done." << endl;
# endif
}

InflateStar::InflateStar(const InflateStar& orig) :
  Star(orig),
  timeinflateinit_(orig.timeinflateinit_), timeinflatestop_(orig.timeinflatestop_),
  radiusstop_(orig.radiusstop_)
{
}

InflateStar* InflateStar::clone() const { return new InflateStar(*this); }

InflateStar::~InflateStar() {
  if (debug()) cerr << "DEBUG: InflateStar::~InflateStar()\n";
}

string InflateStar::className() const { return  string("InflateStar"); }
string InflateStar::className_l() const { return  string("inflate_star"); }

int InflateStar::Impact(Gyoto::Photon* ph, size_t index,
			 Astrobj::Properties *data) {
  state_t p1;
  ph->getCoord(index, p1);
  double time = p1[0];
  double radinit = radius();
  double radcur=radiusAt(time);

  critical_value_=radcur*radcur;

  return UniformSphere::Impact(ph,index,data);
}

double InflateStar::emission(double nu_em, double dsem, 
			     state_t const &coord_ph, double const coord_obj[8]) const {
  double time = coord_ph[0];
  double radinit = radius();
  double radcur=radiusAt(time);
  double volume=radcur*radcur*radcur;
  double volumei=radinit*radinit*radinit;

  return volumei/volume * UniformSphere::emission(nu_em, dsem, coord_ph, coord_obj);

}