1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
/*
Copyright 2011, 2018 Thibaut Paumard, Frederic Vincent
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#include "GyotoUtils.h"
#include "GyotoInflateStar.h"
#include "GyotoPhoton.h"
#include "GyotoPowerLawSpectrum.h"
#include "GyotoBlackBodySpectrum.h"
#include "GyotoFactoryMessenger.h"
#include <iostream>
#include <cmath>
#include <string>
#include <cstdlib>
#include <float.h>
#include <sstream>
#include <string.h>
using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;
/// Properties
#include "GyotoProperty.h"
GYOTO_PROPERTY_START(InflateStar, "Star with inflation")
GYOTO_PROPERTY_DOUBLE_UNIT(InflateStar, TimeInflateInit, timeInflateInit,
"Start time of inflation (geometrical units)")
GYOTO_PROPERTY_DOUBLE_UNIT(InflateStar, TimeInflateStop, timeInflateStop,
"End time of inflation (geometrical units)")
GYOTO_PROPERTY_DOUBLE_UNIT(InflateStar, RadiusStop, radiusStop,
"End radius (geometrical units)")
GYOTO_PROPERTY_END(InflateStar, Star::properties)
GYOTO_PROPERTY_ACCESSORS(InflateStar, double,
timeinflateinit_, timeInflateInit)
double InflateStar::timeInflateInit(const string &unit) const {
return Units::FromGeometricalTime(timeInflateInit(), unit, gg_);
}
void InflateStar::timeInflateInit(double t, const string &unit) {
timeInflateInit(Units::ToGeometricalTime(t, unit, gg_));
}
GYOTO_PROPERTY_ACCESSORS(InflateStar, double,
timeinflatestop_, timeInflateStop)
double InflateStar::timeInflateStop(const string &unit) const {
return Units::FromGeometricalTime(timeInflateStop(), unit, gg_);
}
void InflateStar::timeInflateStop(double t, const string &unit) {
timeInflateStop(Units::ToGeometricalTime(t, unit, gg_));
}
GYOTO_PROPERTY_ACCESSORS_GEOMETRICAL(InflateStar, radiusstop_, radiusStop, gg_)
double InflateStar::radiusAt(double time) const {
double radinit = radius();
double radcur=radinit;
if (time>=timeinflatestop_) radcur=radiusstop_;
else if (time>timeinflateinit_){
// linear increase of radius in between extreme times
radcur = radinit+(time-timeinflateinit_)/(timeinflatestop_-timeinflateinit_)
*(radiusstop_-radinit);
}
return radcur;
}
double InflateStar::radiusAt(double time, const string &t_unit) const {
return radiusAt(Units::ToGeometricalTime(time, t_unit, gg_));
}
double InflateStar::radiusAt(double time, const string &t_unit, const string &r_unit) const {
return Units::FromGeometrical(radiusAt(time, t_unit), r_unit, gg_);
}
InflateStar::InflateStar() :
Star(),
timeinflateinit_(0.), timeinflatestop_(0.), radiusstop_(DBL_MAX)
{
kind_="InflateStar";
# ifdef GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << "done." << endl;
# endif
}
InflateStar::InflateStar(const InflateStar& orig) :
Star(orig),
timeinflateinit_(orig.timeinflateinit_), timeinflatestop_(orig.timeinflatestop_),
radiusstop_(orig.radiusstop_)
{
}
InflateStar* InflateStar::clone() const { return new InflateStar(*this); }
InflateStar::~InflateStar() {
if (debug()) cerr << "DEBUG: InflateStar::~InflateStar()\n";
}
string InflateStar::className() const { return string("InflateStar"); }
string InflateStar::className_l() const { return string("inflate_star"); }
int InflateStar::Impact(Gyoto::Photon* ph, size_t index,
Astrobj::Properties *data) {
state_t p1;
ph->getCoord(index, p1);
double time = p1[0];
double radinit = radius();
double radcur=radiusAt(time);
critical_value_=radcur*radcur;
return UniformSphere::Impact(ph,index,data);
}
double InflateStar::emission(double nu_em, double dsem,
state_t const &coord_ph, double const coord_obj[8]) const {
double time = coord_ph[0];
double radinit = radius();
double radcur=radiusAt(time);
double volume=radcur*radcur*radcur;
double volumei=radinit*radinit*radinit;
return volumei/volume * UniformSphere::emission(nu_em, dsem, coord_ph, coord_obj);
}
|