1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
/*
Copyright 2017-2019 Frederic Vincent & Thibaut Paumard
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#include "GyotoPhoton.h"
#include "GyotoJet.h"
#include "GyotoProperty.h"
#include "GyotoUtils.h"
#include "GyotoFactoryMessenger.h"
#include "GyotoKerrBL.h"
#include "GyotoKerrKS.h"
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
#include <fstream>
#include <string>
#include <cmath>
#include <limits>
#include <string>
using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;
GYOTO_PROPERTY_START(Jet)
GYOTO_PROPERTY_DOUBLE(Jet, JetOuterOpeningAngle, jetOuterOpeningAngle)
GYOTO_PROPERTY_DOUBLE(Jet, JetInnerOpeningAngle, jetInnerOpeningAngle)
GYOTO_PROPERTY_DOUBLE(Jet, JetBaseHeight, jetBaseHeight)
GYOTO_PROPERTY_DOUBLE(Jet, GammaJet, gammaJet)
GYOTO_PROPERTY_DOUBLE(Jet, JetVphiOverVr, jetVphiOverVr,"this is (r*Vphi/Vr) where V is the jet velocity measured by the ZAMO")
GYOTO_PROPERTY_DOUBLE_UNIT(Jet, BaseNumberDensity, baseNumberDensity)
GYOTO_PROPERTY_DOUBLE(Jet, BaseTemperature, baseTemperature)
GYOTO_PROPERTY_DOUBLE(Jet, TemperatureSlope, temperatureSlope)
GYOTO_PROPERTY_DOUBLE(Jet, MagnetizationParameter,
magnetizationParameter)
GYOTO_PROPERTY_DOUBLE(Jet, KappaIndex, kappaIndex, "Index of kappa-distribution synchrotron; leave non-specified to use thermal synchrotron")
GYOTO_PROPERTY_END(Jet, Standard::properties)
#define nstep_angint 10 // for angle-averaging integration
#define default_kappaindex -1 // default (absurd value) kappa index
// ACCESSORS
void Jet::jetOuterOpeningAngle(double ang) {jetOuterOpeningAngle_=ang;}
double Jet::jetOuterOpeningAngle()const{return jetOuterOpeningAngle_;}
void Jet::jetInnerOpeningAngle(double ang) {jetInnerOpeningAngle_=ang;}
double Jet::jetInnerOpeningAngle()const{return jetInnerOpeningAngle_;}
void Jet::jetBaseHeight(double hh) {jetBaseHeight_=hh;}
double Jet::jetBaseHeight()const{return jetBaseHeight_;}
void Jet::gammaJet(double gam) {gammaJet_=gam;}
double Jet::gammaJet()const{return gammaJet_;}
void Jet::jetVphiOverVr(double alpha) {jetVphiOverVr_=alpha;}
double Jet::jetVphiOverVr()const{return jetVphiOverVr_;}
double Jet::baseNumberDensity() const {
// Converts internal cgs central enthalpy to SI
double dens=baseNumberDensity_cgs_;
# ifdef HAVE_UDUNITS
dens = Units::Converter("cm-3", "m-3")(dens);
# else
GYOTO_WARNING << "Units ignored, please recompile Gyoto with --with-udunits"
<< endl ;
# endif
return dens; }
double Jet::baseNumberDensity(string const &unit) const
{
double dens = baseNumberDensity();
if (unit != "") {
# ifdef HAVE_UDUNITS
dens = Units::Converter("m-3", unit)(dens);
# else
GYOTO_WARNING << "Units ignored, please recompile Gyoto with --with-udunits"
<< endl ;
# endif
}
return dens;
}
void Jet::baseNumberDensity(double dens) {
# ifdef HAVE_UDUNITS
dens = Units::Converter("m-3", "cm-3")(dens);
# else
GYOTO_WARNING << "Units ignored, please recompile Gyoto with --with-udunits"
<< endl ;
# endif
baseNumberDensity_cgs_=dens;
}
void Jet::baseNumberDensity(double dens, string const &unit) {
if (unit != "") {
# ifdef HAVE_UDUNITS
dens = Units::Converter(unit, "m-3")(dens);
# else
GYOTO_WARNING << "Units ignored, please recompile Gyoto with --with-udunits"
<< endl ;
# endif
}
baseNumberDensity(dens);
}
void Jet::baseTemperature(double tt) {baseTemperature_=tt;}
double Jet::baseTemperature()const{return baseTemperature_;}
void Jet::temperatureSlope(double ss) {temperatureSlope_=ss;}
double Jet::temperatureSlope()const{return temperatureSlope_;}
void Jet::magnetizationParameter(double rr) {
magnetizationParameter_=rr;}
double Jet::magnetizationParameter()const{
return magnetizationParameter_;}
void Jet::kappaIndex(double index) {
spectrumKappaSynch_->kappaindex(index);
}
double Jet::kappaIndex()const{
return spectrumKappaSynch_->kappaindex();
}
//
Jet::Jet() :
Standard("Jet"), jetOuterOpeningAngle_(0.785),
jetInnerOpeningAngle_(0.5), jetBaseHeight_(2.),
gammaJet_(1.), jetVphiOverVr_(0.),
baseNumberDensity_cgs_(1.), baseTemperature_(1e10),
temperatureSlope_(1.),
magnetizationParameter_(1.)
{
GYOTO_DEBUG << endl;
spectrumKappaSynch_ = new Spectrum::KappaDistributionSynchrotron();
spectrumKappaSynch_->kappaindex(default_kappaindex);
spectrumThermalSynch_ = new Spectrum::ThermalSynchrotron();
}
Jet::Jet(const Jet& o) :
Standard(o), jetOuterOpeningAngle_(o.jetOuterOpeningAngle_),
jetInnerOpeningAngle_(o.jetInnerOpeningAngle_),
jetBaseHeight_(o.jetBaseHeight_),
gammaJet_(o.gammaJet_), jetVphiOverVr_(o.jetVphiOverVr_),
baseNumberDensity_cgs_(o.baseNumberDensity_cgs_),
baseTemperature_(o.baseTemperature_),
temperatureSlope_(o.temperatureSlope_),
magnetizationParameter_(o.magnetizationParameter_),
spectrumKappaSynch_(NULL),
spectrumThermalSynch_(NULL)
{
GYOTO_DEBUG << endl;
if (gg_) gg_->hook(this);
if (o.spectrumKappaSynch_()) spectrumKappaSynch_=o.spectrumKappaSynch_->clone();
if (o.spectrumThermalSynch_()) spectrumThermalSynch_=o.spectrumThermalSynch_->clone();
}
Jet* Jet::clone() const
{ return new Jet(*this); }
Jet::~Jet() {
GYOTO_DEBUG << endl;
if (gg_) gg_->unhook(this);
}
void Jet::radiativeQ(double Inu[], // output
double Taunu[], // output
double const nu_ems[], size_t nbnu, // input
double dsem,
state_t const &coord_ph,
double const coord_obj[8]) const {
double rcyl=0.; // cylindrical radius
double zz=0.; // height, z coord
switch (gg_->coordKind()) {
case GYOTO_COORDKIND_SPHERICAL:
rcyl = coord_ph[1]*sin(coord_ph[2]);
zz = coord_ph[1]*cos(coord_ph[2]);
break;
case GYOTO_COORDKIND_CARTESIAN:
rcyl = pow(coord_ph[1]*coord_ph[1]+coord_ph[2]*coord_ph[2], 0.5);
zz = coord_ph[3];
break;
default:
GYOTO_ERROR("In Jet::radiativeQ: Unknown coordinate system kind");
}
double rcyljetbase = jetBaseHeight_*tan(jetOuterOpeningAngle_);
//cout << "rcyl, rcylB, zz= " << rcyl << " " << rcyljetbase << " " << zz << endl;
//rcyl=rcyljetbase;
//zz=2.; // TEST!!!
double number_density = baseNumberDensity_cgs_
*(rcyljetbase*rcyljetbase)/(rcyl*rcyl);
double temperature = baseTemperature_*pow(jetBaseHeight_/fabs(zz),
temperatureSlope_);
double thetae = GYOTO_BOLTZMANN_CGS*temperature
/(GYOTO_ELECTRON_MASS_CGS*GYOTO_C2_CGS);
double BB = sqrt(4.*M_PI*magnetizationParameter_
*GYOTO_PROTON_MASS_CGS * GYOTO_C_CGS * GYOTO_C_CGS
*number_density);
//cout << "r, z, dens, T, B= " << rcyl << " " << zz << " " << number_density << " " << temperature << " " << BB << endl;
//cout << "r, z, ne, nebase, B, Bbase= " << coord_ph[1] << " " << zz << " " << number_density << " " << baseNumberDensity_cgs_ << " " << BB << " " << sqrt(8.*M_PI*magnetizationParameter_*GYOTO_PROTON_MASS_CGS * GYOTO_C_CGS * GYOTO_C_CGS*baseNumberDensity_cgs_) << endl;
//GYOTO_ERROR("testjet");
double nu0 = GYOTO_ELEMENTARY_CHARGE_CGS*BB
/(2.*M_PI*GYOTO_ELECTRON_MASS_CGS*GYOTO_C_CGS); // cyclotron freq
//cout << "jet stuff= " << coord_ph[1] << " " << coord_ph[2] << " " << zz << " " << rcyljetbase << " " << rcyl << " " << number_density << " " << thetae << " " << temperatureSlope_ << " " << nu0 << endl;
//cout << "jet zz,rcyl,th,ph,ne,Te= " << zz << " " << rcyl << " " << coord_ph[2] << " " << coord_ph[3] << " " << number_density << " " << temperature << endl;
// Use that line for Compton study:
//cout << "jet emis: " << zz << " " << rcyl << " " << number_density << " " << temperature << endl;
// Emission and absorption synchrotron coefs
double jnu_synch[nbnu], anu_synch[nbnu];
for (size_t ii=0; ii<nbnu; ++ii){
// Initializing to <0 value to create errors if not updated
jnu_synch[ii]=-1.;
anu_synch[ii]=-1.;
}
if (kappaIndex()!=default_kappaindex){
// KAPPA-DISTRIB SYNCHROTRON
spectrumKappaSynch_->numberdensityCGS(number_density);
spectrumKappaSynch_->angle_averaged(1); // impose angle-averaging
spectrumKappaSynch_->angle_B_pem(0.); // so we don't care about angle
spectrumKappaSynch_->cyclotron_freq(nu0);
spectrumKappaSynch_->thetae(thetae);
double hypergeom = Gyoto::hypergeom(kappaIndex(), thetae);
spectrumKappaSynch_->hypergeometric(hypergeom);
//cout << "jet stuff for kappa: " << nu_ems[0] << " " << number_density << " " << nu0 << " " << thetae << " " << BB << " " << temperature << " " << hypergeom << endl;
spectrumKappaSynch_->radiativeQ(jnu_synch,anu_synch,
nu_ems,nbnu);
}else{
// THERMAL SYNCHROTRON
spectrumThermalSynch_->temperature(temperature);
spectrumThermalSynch_->numberdensityCGS(number_density);
spectrumThermalSynch_->angle_averaged(1); // impose angle-averaging
spectrumThermalSynch_->angle_B_pem(0.); // so we don't care about angle
spectrumThermalSynch_->cyclotron_freq(nu0);
double besselK2 = bessk(2, 1./thetae);
spectrumThermalSynch_->besselK2(besselK2);
//cout << "for anu jnu: " << coord_ph[1] << " " << zz << " " << temperature << " " << number_density << " " << nu0 << " " << thetae << " " << besselK2 << endl;
//cout << "nu passed to synchro= " << nu_ems[0] << endl;
spectrumThermalSynch_->radiativeQ(jnu_synch,anu_synch,
nu_ems,nbnu);
}
// RETURNING TOTAL INTENSITY AND TRANSMISSION
for (size_t ii=0; ii<nbnu; ++ii){
double jnu_tot = jnu_synch[ii],
anu_tot = anu_synch[ii];
//cout << "in jet stuff: " << zz << " " << rcyl << " " << nu_ems[0] << " " << number_density << " " << nu0 << " " << temperature << " " << thetae << " " << jnu_tot << " " << anu_tot << " " << dsem << endl;
//cout << "at r,th= " << coord_ph[1] << " " << coord_ph[2] << endl;
//cout << "at rcyl,z= " << rcyl << " " << zz << endl;
//cout << "jet jnu anu kappa= " << jnu_tot << " " << anu_tot << endl; //x" " << jnu_tot/anu_tot << " " << dsem << endl;
// expm1 is a precise implementation of exp(x)-1
double em1=std::expm1(-anu_tot * dsem * gg_->unitLength());
Taunu[ii] = em1+1.;
Inu[ii] = anu_tot == 0. ? jnu_tot * dsem * gg_->unitLength() :
-jnu_tot / anu_tot * em1;
if (Inu[ii]<0.)
GYOTO_ERROR("In Jet::radiativeQ: Inu<0");
if (Inu[ii]!=Inu[ii] or Taunu[ii]!=Taunu[ii])
GYOTO_ERROR("In Jet::radiativeQ: Inu or Taunu is nan");
if (Inu[ii]==Inu[ii]+1. or Taunu[ii]==Taunu[ii]+1.)
GYOTO_ERROR("In Jet::radiativeQ: Inu or Taunu is infinite");
}
}
double Jet::operator()(double const coord[4]) {
//cout << "photon at r,z= " << coord[1] << " " << coord[1]*cos(coord[2]) << endl;
double rcyl=0.; // cylindrical radius
double zz=0.; // height, z coord, positive
switch (gg_->coordKind()) {
case GYOTO_COORDKIND_SPHERICAL:
rcyl = coord[1]*sin(coord[2]);
zz = fabs(coord[1]*cos(coord[2]));
break;
case GYOTO_COORDKIND_CARTESIAN:
rcyl = pow(coord[1]*coord[1]+coord[2]*coord[2], 0.5);
zz = fabs(coord[3]);
break;
default:
GYOTO_ERROR("In Jet::operator(): Unknown coordinate system kind");
}
// if (fabs(zz) < jetBaseHeight_) return 1.; // outside jet
// double rcyljetout = fabs(zz*tan(jetOuterOpeningAngle_)),
// rcyljetin = fabs(zz*tan(jetInnerOpeningAngle_));
// //double radbase=10.; // TO BE PARAM
// //double rcyljetout = radbase
// // + fabs((zz-jetBaseHeight_)*tan(jetOuterOpeningAngle_)),
// // rcyljetin = radbase + fabs((zz-jetBaseHeight_)*tan(jetInnerOpeningAngle_));
// if ((rcyl < rcyljetout) and (rcyl > rcyljetin)) return -1.; // inside jet
// else return 1.; // outside jet
// //cout << "r, rjet, z, theta0, ht= " << rcyl << " " << rcyljet << " " << zz << " " << theta0 << " " << ht << endl;
double hjetin = rcyl/tan(jetInnerOpeningAngle_),
hjetout = rcyl/tan(jetOuterOpeningAngle_);
// double distance = (zz - hjetin)*(zz - hjetout); // <0 inside jet sheath
// if (zz < jetBaseHeight_) // remove part below jet basis
// distance = fabs(distance) + (jetBaseHeight_ - zz);
//double distance = (zz - jetBaseHeight_ - hjetin)
// *(zz - jetBaseHeight_ - hjetout); // <0 inside jet sheath
double rcyljetin = zz*tan(jetInnerOpeningAngle_),
rcyljetout = zz*tan(jetOuterOpeningAngle_);
double distance = (rcyl - rcyljetin)*(rcyl - rcyljetout);
if (zz < jetBaseHeight_) // remove part below jet basis
distance = fabs(distance) + (jetBaseHeight_ - zz);
return distance;
}
void Jet::getVelocity(double const pos[4], double vel[4])
{
double rr = pos[1];
double Vjet = sqrt(gammaJet_*gammaJet_-1.)/gammaJet_;
//double Vr = Vjet/(sqrt(gg_->gmunu(pos,1,1)
// +jetVphiOverVr_*jetVphiOverVr_/(rr*rr)*gg_->gmunu(pos,3,3)));
//double Vphi = jetVphiOverVr_/rr*Vr;
//cout << "NEW STUFF" << endl;
//cout << "V2= " << gg_->gmunu(pos,1,1) * Vr*Vr + gg_->gmunu(pos,3,3) * Vphi*Vphi<< " " << (gammaJet_*gammaJet_-1.)/(gammaJet_*gammaJet_) << endl;
// KerrBL-specific part -- to generalize if possible
double gpp = gg_->gmunu(pos,3,3), gtt = gg_->gmunu(pos,0,0),
grr = gg_->gmunu(pos,1,1),
gtp = gg_->gmunu(pos,0,3);
double utZAMO = sqrt(-gpp/(gtt*gpp-gtp*gtp)),
uphiZAMO = -utZAMO*gtp/gpp;
double Vphi = jetVphiOverVr_*Vjet/sqrt(gpp),
Vr = sqrt(1-jetVphiOverVr_*jetVphiOverVr_)*Vjet / sqrt(grr);
//cout << "ZAMO=" << gtt*utZAMO*utZAMO + 2*gtp*utZAMO*uphiZAMO + gpp*uphiZAMO*uphiZAMO << endl;
// Paper def:
vel[0] = gammaJet_*utZAMO;
vel[1] = -gammaJet_*Vr;
vel[2] = 0.;
//vel[3] = gammaJet_*uphiZAMO;
vel[3] = gammaJet_*(uphiZAMO+Vphi);
double u2 = gg_->ScalarProd(pos,vel,vel);
double tol = 1e-6;
if (fabs(u2+1)>tol) throwError("In Jett::getVelo: bad jet velocity");
// TEST
//vel[0] = 1.;
//vel[1] = 0.;
//vel[2] = 0.;
//vel[3] = 0.;
// June 2019 def:
/*double gammar = 1., gammaphi = 1.5,
ur = sqrt(gammar*gammar-1.)/gammar,
uphi = 1./pos[1]*sqrt(gammaphi*gammaphi-1.)/gammaphi,
grr = gg_->gmunu(pos,1,1),
aa = gtt, bb = 2.*gtp*uphi, cc = 1.+gpp*uphi*uphi+grr*ur*ur,
Delta = bb*bb-4.*aa*cc,
ut1 = (-bb - sqrt(Delta))/(2.*aa),
ut2 = (-bb + sqrt(Delta))/(2.*aa);
vel[0]=ut1;
vel[1]=ur;
vel[2]=0.;
vel[3]=uphi;*/
//cout << "V2= " << gg_->gmunu(pos,1,1)*Vr*Vr + gg_->gmunu(pos,3,3)*Vphi*Vphi << endl;
//cout << "u2 = " << gg_->ScalarProd(pos,vel,vel) << endl;
}
bool Jet::isThreadSafe() const {
return Standard::isThreadSafe()
&& (!spectrumKappaSynch_ || spectrumKappaSynch_->isThreadSafe())
&& (!spectrumThermalSynch_ || spectrumThermalSynch_->isThreadSafe());
}
void Jet::metric(SmartPointer<Metric::Generic> gg) {
if (gg_) gg_->unhook(this);
string kin = gg->kind();
//if (kin != "KerrBL" or kin!="NumericalMetricLorene")
// GYOTO_ERROR
// ("Jet::metric(): metric must be KerrBL");
// NB: KerrBL needed for ZAMO velocity in getVelocity,
// could be generalized if needed
Generic::metric(gg);
}
|