1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
/*
Copyright 2018-2020 Frederic Vincent, Thibaut Paumard
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#include "GyotoKappaDistributionSynchrotronSpectrum.h"
#include "GyotoDefs.h"
#include <cmath>
#ifdef GYOTO_USE_XERCES
#include "GyotoFactory.h"
#include "GyotoFactoryMessenger.h"
#endif
using namespace Gyoto;
using namespace std;
#include "GyotoProperty.h"
GYOTO_PROPERTY_START(Spectrum::KappaDistributionSynchrotron,
"Kappa synchrotron emission")
GYOTO_PROPERTY_END(Spectrum::KappaDistributionSynchrotron, Generic::properties)
#define nstep_angint 100 // for angle-averaging integration
Spectrum::KappaDistributionSynchrotron::KappaDistributionSynchrotron()
: Spectrum::Generic("KappaDistributionSynchrotron"),
numberdensityCGS_(0.),
angle_B_pem_(0.), cyclotron_freq_(1.), thetae_(1.),
kappaindex_(0.), angle_averaged_(0), hypergeometric_(1)
{}
Spectrum::KappaDistributionSynchrotron::KappaDistributionSynchrotron(const KappaDistributionSynchrotron &o)
: Spectrum::Generic(o),
spectrumBB_(NULL),
numberdensityCGS_(o.numberdensityCGS_),
angle_B_pem_(o.angle_B_pem_),
cyclotron_freq_(o.cyclotron_freq_),
thetae_(o.thetae_),
kappaindex_(o.kappaindex_),
hypergeometric_(o.hypergeometric_),
angle_averaged_(o.angle_averaged_)
{
if (o.spectrumBB_()) spectrumBB_=o.spectrumBB_->clone();
}
double Spectrum::KappaDistributionSynchrotron::numberdensityCGS() const {
return numberdensityCGS_; }
void Spectrum::KappaDistributionSynchrotron::numberdensityCGS(double rho) {
numberdensityCGS_ = rho; }
double Spectrum::KappaDistributionSynchrotron::angle_B_pem() const {
return angle_B_pem_; }
void Spectrum::KappaDistributionSynchrotron::angle_B_pem(double angle) {
angle_B_pem_ = angle; }
double Spectrum::KappaDistributionSynchrotron::cyclotron_freq() const {
return cyclotron_freq_; }
void Spectrum::KappaDistributionSynchrotron::cyclotron_freq(double freq) {
cyclotron_freq_ = freq; }
double Spectrum::KappaDistributionSynchrotron::thetae() const {
return thetae_; }
void Spectrum::KappaDistributionSynchrotron::thetae(double th) {
thetae_ = th; }
double Spectrum::KappaDistributionSynchrotron::kappaindex() const {
return kappaindex_; }
void Spectrum::KappaDistributionSynchrotron::kappaindex(double ind) {
kappaindex_ = ind; }
double Spectrum::KappaDistributionSynchrotron::hypergeometric() const {
return hypergeometric_; }
void Spectrum::KappaDistributionSynchrotron::hypergeometric(double hh) {
hypergeometric_ = hh; }
bool Spectrum::KappaDistributionSynchrotron::angle_averaged() const {
return angle_averaged_; }
void Spectrum::KappaDistributionSynchrotron::angle_averaged(bool ang) {
angle_averaged_ = ang; }
Spectrum::KappaDistributionSynchrotron * Spectrum::KappaDistributionSynchrotron::clone() const
{ return new Spectrum::KappaDistributionSynchrotron(*this); }
double Spectrum::KappaDistributionSynchrotron::operator()(double nu) const {
GYOTO_ERROR("In PLSynch: "
"Synchrotron emission not defined for optically thick case");
return 0.;
}
double Spectrum::KappaDistributionSynchrotron::operator()(double nu,
double ,
double ds) const{
double dsCGS = ds*100.; // ds should be given in SI
// Returns intensity increment in SI:
return jnuCGS(nu)*dsCGS*exp(-alphanuCGS(nu)*dsCGS)*GYOTO_INU_CGS_TO_SI;
}
double Spectrum::KappaDistributionSynchrotron::jnuCGS(double nu) const{
// Pandya, Zhang, Chandra, Gammie, 2016
//cout << "in kappa jnu stuff: " << cyclotron_freq_ << " " << thetae_ << " " << kappaindex_ << endl;
double sinth = sin(angle_B_pem_),
nuk = cyclotron_freq_*pow(thetae_*kappaindex_,2.)*sinth,
Xk = nu/nuk,
Js_low = pow(Xk,1./3.)*sinth*4.*M_PI*tgamma(kappaindex_-4./3.)/ \
(pow(3.,7./3.)*tgamma(kappaindex_-2.)),
Js_high = pow(Xk,-(kappaindex_-2.)/2.)*sinth*pow(3.,(kappaindex_-1.)/2.)* \
(kappaindex_-1.)*(kappaindex_-2.)/4.*tgamma(kappaindex_/4.-1./3.)* \
tgamma(kappaindex_/4.+4./3.),
expo = 3.*pow(kappaindex_,-3./2.),
Js = pow(pow(Js_low,-expo) + pow(Js_high,-expo),-1./expo);
double emis_synch = numberdensityCGS_* \
GYOTO_ELEMENTARY_CHARGE_CGS*GYOTO_ELEMENTARY_CHARGE_CGS*cyclotron_freq_/ \
GYOTO_C_CGS* \
Js;
//cout << "in kappa spec angleB jnu= " << angle_B_pem_ << " " << emis_synch << endl;
return emis_synch;
}
double Spectrum::KappaDistributionSynchrotron::jQnuCGS(double nu) const{
// Marszewski, Prather, Joshi, Pandya, Gammie 2021
//cout << "in kappa jnu stuff: " << cyclotron_freq_ << " " << thetae_ << " " << kappaindex_ << endl;
double sinth = sin(angle_B_pem_),
nuk = cyclotron_freq_*pow(thetae_*kappaindex_,2.)*sinth,
Xk = nu/nuk,
Js_low = 0.5*pow(Xk,1./3.)*sinth*4.*M_PI*tgamma(kappaindex_-4./3.)/ \
(pow(3.,7./3.)*tgamma(kappaindex_-2.)),
Js_high = (pow(4./5.,2.)+kappaindex_/50.)*pow(Xk,-(kappaindex_-2.)/2.)*sinth*pow(3.,(kappaindex_-1.)/2.)* \
(kappaindex_-1.)*(kappaindex_-2.)/4.*tgamma(kappaindex_/4.-1./3.)* \
tgamma(kappaindex_/4.+4./3.),
expo = 3.7*pow(kappaindex_,-8./5.),
Js = pow(pow(Js_low,-expo) + pow(Js_high,-expo),-1./expo);
double emis_synch = numberdensityCGS_* \
GYOTO_ELEMENTARY_CHARGE_CGS*GYOTO_ELEMENTARY_CHARGE_CGS*cyclotron_freq_/ \
GYOTO_C_CGS* \
Js;
//cout << "in kappa spec angleB jnu= " << angle_B_pem_ << " " << emis_synch << endl;
return emis_synch;
}
double Spectrum::KappaDistributionSynchrotron::jUnuCGS(double nu) const{
// Marszewski, Prather, Joshi, Pandya, Gammie 2021
return 0.;
}
double Spectrum::KappaDistributionSynchrotron::jVnuCGS(double nu) const{
// Marszewski, Prather, Joshi, Pandya, Gammie 2021
//cout << "in kappa jnu stuff: " << cyclotron_freq_ << " " << thetae_ << " " << kappaindex_ << endl;
double sinth = sin(angle_B_pem_),
nuk = cyclotron_freq_*pow(thetae_*kappaindex_,2.)*sinth,
Xk = nu/nuk,
Js_low = pow(3./4.,2.)*pow(pow(sinth,-12./5.)-1.,12./25.)*pow(kappaindex_, -66./125.)/thetae_*\
pow(Xk,-7./20.)*pow(Xk,1./3.)*sinth*4.*M_PI*tgamma(kappaindex_-4./3.)/ \
(pow(3.,7./3.)*tgamma(kappaindex_-2.)),
Js_high = pow(7./8.,2.)*pow(pow(sinth,-5./2.)-1.,11./25.)*pow(kappaindex_, -11./25.)/thetae_*\
pow(Xk,-1./2.)*pow(Xk,-(kappaindex_-2.)/2.)*sinth*pow(3.,(kappaindex_-1.)/2.)* \
(kappaindex_-1.)*(kappaindex_-2.)/4.*tgamma(kappaindex_/4.-1./3.)* \
tgamma(kappaindex_/4.+4./3.),
expo = 3.*pow(kappaindex_,-3./2.),
Js = pow(pow(Js_low,-expo) + pow(Js_high,-expo),-1./expo)*cos(angle_B_pem_)/abs(cos(angle_B_pem_));
double emis_synch = numberdensityCGS_* \
GYOTO_ELEMENTARY_CHARGE_CGS*GYOTO_ELEMENTARY_CHARGE_CGS*cyclotron_freq_/ \
GYOTO_C_CGS* \
Js;
//cout << "in kappa spec angleB jnu= " << angle_B_pem_ << " " << emis_synch << endl;
return emis_synch;
}
double Spectrum::KappaDistributionSynchrotron::alphanuCGS(double nu) const{
// Pandya, Zhang, Chandra, Gammie, 2016
//cout << "in kappa anu stuff: " << cyclotron_freq_ << " " << thetae_ << " " << kappaindex_ << " " << hypergeometric_ << endl;
double sinth = sin(angle_B_pem_),
nuk = cyclotron_freq_*pow(thetae_*kappaindex_,2.)*sinth,
Xk = nu/nuk,
As_low = pow(Xk,-2./3.)*pow(3.,1./6.)*10./41.* \
2.*M_PI/pow(thetae_*kappaindex_,10./3.-kappaindex_) * \
(kappaindex_-1.)*(kappaindex_-2.)*kappaindex_/(3.*kappaindex_-1.) * \
tgamma(5./3.)*hypergeometric_,
As_high = pow(Xk,-(1.+kappaindex_)/2.)*pow(M_PI,3./2.)/3. * \
(kappaindex_-1.)*(kappaindex_-2.)*kappaindex_/pow(thetae_*kappaindex_,3.)* \
(2.*tgamma(2.+kappaindex_/2.)/(2.+kappaindex_)-1.)* \
(pow(3./kappaindex_,19./4.)+3./5.),
expo = pow(-7./4.+8./5.*kappaindex_,-43./50.),
As = pow(pow(As_low,-expo) + pow(As_high,-expo),-1./expo);
double abs_synch = numberdensityCGS_* \
GYOTO_ELEMENTARY_CHARGE_CGS*GYOTO_ELEMENTARY_CHARGE_CGS/ \
(nu*GYOTO_ELECTRON_MASS_CGS*GYOTO_C_CGS)* \
As;
//cout << "in kappa spec angleB anu= " << angle_B_pem_ << " " << abs_synch << endl;
return abs_synch;
}
double Spectrum::KappaDistributionSynchrotron::alphaQnuCGS(double nu) const{
// Marszewski, Prather, Joshi, Pandya, Gammie 2021
//cout << "in kappa anu stuff: " << cyclotron_freq_ << " " << thetae_ << " " << kappaindex_ << " " << hypergeometric_ << endl;
double sinth = sin(angle_B_pem_),
nuk = cyclotron_freq_*pow(thetae_*kappaindex_,2.)*sinth,
Xk = nu/nuk,
As_low = 25./48.*pow(Xk,-2./3.)*pow(3.,1./6.)*10./41.* \
2.*M_PI/pow(thetae_*kappaindex_,10./3.-kappaindex_) * \
(kappaindex_-1.)*(kappaindex_-2.)*kappaindex_/(3.*kappaindex_-1.) * \
tgamma(5./3.)*hypergeometric_,
As_high = pow(Xk,-(1.+kappaindex_)/2.)*pow(M_PI,3./2.)/3. * \
(kappaindex_-1.)*(kappaindex_-2.)*kappaindex_/pow(thetae_*kappaindex_,3.)* \
(2.*tgamma(2.+kappaindex_/2.)/(2.+kappaindex_)-1.)* \
(pow(21.,2.)*pow(kappaindex_,-pow(12./5.,2.))+11./20.),
expo = 7./5.*pow(kappaindex_,-23./20.),
As = pow(pow(As_low,-expo) + pow(As_high,-expo),-1./expo);
double abs_synch = numberdensityCGS_* \
GYOTO_ELEMENTARY_CHARGE_CGS*GYOTO_ELEMENTARY_CHARGE_CGS/ \
(nu*GYOTO_ELECTRON_MASS_CGS*GYOTO_C_CGS)* \
As;
//cout << "in kappa spec angleB anu= " << angle_B_pem_ << " " << abs_synch << endl;
return abs_synch;
}
double Spectrum::KappaDistributionSynchrotron::alphaUnuCGS(double nu) const{
// Marszewski, Prather, Joshi, Pandya, Gammie 2021
return 0.;
}
double Spectrum::KappaDistributionSynchrotron::alphaVnuCGS(double nu) const{
// Marszewski, Prather, Joshi, Pandya, Gammie 2021
//cout << "in kappa anu stuff: " << cyclotron_freq_ << " " << thetae_ << " " << kappaindex_ << " " << hypergeometric_ << endl;
double sinth = sin(angle_B_pem_),
nuk = cyclotron_freq_*pow(thetae_*kappaindex_,2.)*sinth,
Xk = nu/nuk,
As_low = 77./100./thetae_*pow(pow(sinth,-114./50.)-1.,223./500.)*pow(kappaindex_,-7./10.) *\
pow(Xk,-7./20.)*pow(Xk,-2./3.)*pow(3.,1./6.)*10./41.* \
2.*M_PI/pow(thetae_*kappaindex_,10./3.-kappaindex_) * \
(kappaindex_-1.)*(kappaindex_-2.)*kappaindex_/(3.*kappaindex_-1.) * \
tgamma(5./3.)*hypergeometric_,
As_high = pow(Xk,-(1.+kappaindex_)/2.)*pow(M_PI,3./2.)/3. * \
(kappaindex_-1.)*(kappaindex_-2.)*kappaindex_/pow(thetae_*kappaindex_,3.)* \
(2.*tgamma(2.+kappaindex_/2.)/(2.+kappaindex_)-1.)* \
143./10.*pow(thetae_,-116./125.)*pow(pow(sinth,-41./20.)-1.,1./2.) *\
(pow(13.,2.)*pow(kappaindex_,-8.)+13./2500.*kappaindex_-263./5000.+47./200./kappaindex_)*pow(Xk,-0.5),
expo = 61./50.*pow(kappaindex_,-142./125.)+7./1000.,
As = pow(pow(As_low,-expo) + pow(As_high,-expo),-1./expo)*cos(angle_B_pem_)/abs(cos(angle_B_pem_));
double abs_synch = numberdensityCGS_* \
GYOTO_ELEMENTARY_CHARGE_CGS*GYOTO_ELEMENTARY_CHARGE_CGS/ \
(nu*GYOTO_ELECTRON_MASS_CGS*GYOTO_C_CGS)* \
As;
//cout << "in kappa spec angleB anu= " << angle_B_pem_ << " " << abs_synch << endl;
return abs_synch;
}
double Spectrum::KappaDistributionSynchrotron::rQnuCGS(double nu) const{
// Marszewski, Prather, Joshi, Pandya, Gammie 2021
double rho_Q=0;
double sinth = sin(angle_B_pem_),
nuk = cyclotron_freq_*pow(thetae_*kappaindex_,2.)*sinth,
Xk = nu/nuk,
rho_kappa=0;
if (Xk<0.1)
GYOTO_ERROR("Xk too low to compute rhoQ with these formula");
switch(int(kappaindex_*10))
{
case 35:
rho_kappa=17.*thetae_-3.*sqrt(thetae_)+7.*sqrt(thetae_)*exp(-5.*thetae_)*\
(1-exp(-pow(Xk,0.84)/30.)-sin(Xk/10.)*exp(-3./2.*pow(Xk,0.471)));
break;
case 40:
rho_kappa=46./3.*thetae_-5./3.*sqrt(thetae_)+17./3.*sqrt(thetae_)*exp(-5.*thetae_)*\
(1-exp(-pow(Xk,0.84)/18.)-sin(Xk/6.)*exp(-7./4.*pow(Xk,0.5)));
break;
case 45:
rho_kappa=14.*thetae_-13./8.*sqrt(thetae_)+9./2.*sqrt(thetae_)*exp(-5.*thetae_)*\
(1-exp(-pow(Xk,0.84)/12.)-sin(Xk/4.)*exp(-2.*pow(Xk,0.525)));
break;
case 50:
rho_kappa=25./2.*thetae_-sqrt(thetae_)+5.*sqrt(thetae_)*exp(-5.*thetae_)*\
(1-exp(-pow(Xk,0.84)/8.)-sin(3.*Xk/8.)*exp(-9./4.*pow(Xk,0.541)));
break;
default:
GYOTO_ERROR("Faraday coefficients not defined for values of kappa different of 3.5, 4., 4.5, 5.");
}
rho_Q=numberdensityCGS_*pow(GYOTO_ELEMENTARY_CHARGE_CGS*cyclotron_freq_*sinth,2.)/ \
(GYOTO_ELECTRON_MASS_CGS*GYOTO_C_CGS*pow(nu,3.))* \
rho_kappa;
return rho_Q;
}
double Spectrum::KappaDistributionSynchrotron::rUnuCGS(double nu) const{
// Marszewski, Prather, Joshi, Pandya, Gammie 2021
return 0.;
}
double Spectrum::KappaDistributionSynchrotron::rVnuCGS(double nu) const{
// Marszewski, Prather, Joshi, Pandya, Gammie 2021
double rho_V=0;
double sinth = sin(angle_B_pem_),
nuk = cyclotron_freq_*pow(thetae_*kappaindex_,2.)*sinth,
Xk = nu/nuk,
rho_kappa=0;
if (Xk<0.1)
GYOTO_ERROR("Xk too low to compute rhoQ with these formula");
switch(int(kappaindex_*10))
{
case 35:
rho_kappa=(pow(thetae_,2.)+2.*thetae_+1.)/ \
(25./8.*pow(thetae_,2.)+4.*thetae_+1.)* \
(1-0.17*log(1.+0.447*pow(Xk,-0.5)));
break;
case 40:
rho_kappa=(pow(thetae_,2.)+54.*thetae_+50.)/ \
(30./11.*pow(thetae_,2.)+134.*thetae_+50.)* \
(1-0.17*log(1.+0.391*pow(Xk,-0.5)));
break;
case 45:
rho_kappa=(pow(thetae_,2.)+43.*thetae_+38.)/ \
(7./3.*pow(thetae_,2.)+185./2.*thetae_+38.)* \
(1-0.17*log(1.+0.348*pow(Xk,-0.5)));
break;
case 50:
rho_kappa=(thetae_+13./14.)/ \
(2.*thetae_+13./14.)* \
(1-0.17*log(1.+0.313*pow(Xk,-0.5)));
break;
default:
GYOTO_ERROR("Faraday coefficients not defined for values of kappa different of 3.5, 4., 4.5, 5.");
}
rho_V=2.*numberdensityCGS_*pow(GYOTO_ELEMENTARY_CHARGE_CGS,2.)*cyclotron_freq_*cos(angle_B_pem_)*bessk0(1./thetae_)/ \
(GYOTO_ELECTRON_MASS_CGS*GYOTO_C_CGS*pow(nu,2.)*bessk(2.,1./thetae_))* \
rho_kappa;
return rho_V;
}
void Spectrum::KappaDistributionSynchrotron::radiativeQ(double jnu[], // output
double alphanu[], // output
double const nu_ems[],
size_t nbnu
) {
for (size_t ii=0; ii< nbnu; ++ii){
double nu = nu_ems[ii];
double jnucur=0., anucur=0.;
if (!angle_averaged_){
jnucur = jnuCGS(nu);
anucur = alphanuCGS(nu);
}else{
double th0=0.01, thNm1=M_PI-0.01; // avoiding sinth=0.
double hh=(thNm1-th0)/double(nstep_angint);
double theta=th0;
angle_B_pem(theta);
double jnusinprev=jnuCGS(nu)*sin(theta), jnusinnext=jnusinprev;
double anusinprev=alphanuCGS(nu)*sin(theta), anusinnext=anusinprev;
for (int jj=1;jj<=nstep_angint;jj++){
theta=th0+double(jj)*hh;
angle_B_pem(theta);
jnusinnext=jnuCGS(nu)*sin(theta);
anusinnext=alphanuCGS(nu)*sin(theta);
jnucur+=0.5*0.5*hh*(jnusinprev+jnusinnext);
anucur+=0.5*0.5*hh*(anusinprev+anusinnext);
jnusinprev=jnusinnext;
anusinprev=anusinnext;
//NB: averaged jnu is: \int jnu dOmega = 1/2 * \int jnu*sinth dth
}
}
// OUTPUTS
jnu[ii]= jnucur * GYOTO_JNU_CGS_TO_SI;
alphanu[ii]= anucur * GYOTO_ANU_CGS_TO_SI;
}
}
void Spectrum::KappaDistributionSynchrotron::radiativeQ(double jInu[], double jQnu[], double jUnu[], double jVnu[], // Output
double aInu[], double aQnu[], double aUnu[], double aVnu[], // Output
double rQnu[], double rUnu[], double rVnu[], // Output
double const nu_ems[],
size_t nbnu ){
for (size_t ii=0; ii< nbnu; ++ii){
double nu = nu_ems[ii];
double jInucur=0., jQnucur=0.,jUnucur=0.,jVnucur=0.;
double aInucur=0., aQnucur=0., aUnucur=0., aVnucur=0.;
double rQnucur=0., rUnucur=0., rVnucur=0.;
if (!angle_averaged_){
jInucur = jnuCGS(nu);
jQnucur = jQnuCGS(nu);
jUnucur = jUnuCGS(nu);
jVnucur = jVnuCGS(nu);
aInucur = alphanuCGS(nu);
aQnucur = alphaQnuCGS(nu);
aUnucur = alphaUnuCGS(nu);
aVnucur = alphaVnuCGS(nu);
rQnucur = rQnuCGS(nu);
rUnucur = rUnuCGS(nu);
rVnucur = rVnuCGS(nu);
}else{
double th0=0.01, thNm1=M_PI-0.01; // sin(theta) must never be 0
double hh=(thNm1-th0)/double(nstep_angint);
double theta=th0;
angle_B_pem(theta);
double jInusinprev=jnuCGS(nu)*sin(theta), jInusinnext=jInusinprev;
double jQnusinprev=jQnuCGS(nu)*sin(theta), jQnusinnext=jQnusinprev;
double jUnusinprev=jUnuCGS(nu)*sin(theta), jUnusinnext=jUnusinprev;
double jVnusinprev=jVnuCGS(nu)*sin(theta), jVnusinnext=jVnusinprev;
double aInusinprev=alphanuCGS(nu)*sin(theta), aInusinnext=aInusinprev;
double aQnusinprev=alphaQnuCGS(nu)*sin(theta), aQnusinnext=aQnusinprev;
double aUnusinprev=alphaUnuCGS(nu)*sin(theta), aUnusinnext=aUnusinprev;
double aVnusinprev=alphaVnuCGS(nu)*sin(theta), aVnusinnext=aVnusinprev;
double rQnusinprev=rQnuCGS(nu)*sin(theta), rQnusinnext=rQnusinprev;
double rUnusinprev=rUnuCGS(nu)*sin(theta), rUnusinnext=rUnusinprev;
double rVnusinprev=rVnuCGS(nu)*sin(theta), rVnusinnext=rVnusinprev;
for (int jj=1;jj<=nstep_angint;jj++){
theta=th0+double(jj)*hh;
angle_B_pem(theta);
jInusinnext=jnuCGS(nu)*sin(theta);
jQnusinnext=jQnuCGS(nu)*sin(theta);
jUnusinnext=jUnuCGS(nu)*sin(theta);
jVnusinnext=jVnuCGS(nu)*sin(theta);
aInusinnext=alphanuCGS(nu)*sin(theta);
aQnusinnext=alphaQnuCGS(nu)*sin(theta);
aUnusinnext=alphaUnuCGS(nu)*sin(theta);
aVnusinnext=alphaVnuCGS(nu)*sin(theta);
rQnusinnext=rQnuCGS(nu)*sin(theta);
rUnusinnext=rUnuCGS(nu)*sin(theta);
rVnusinnext=rVnuCGS(nu)*sin(theta);
jInucur+=0.5*0.5*hh*(jInusinprev+jInusinnext);
jQnucur+=0.5*0.5*hh*(jQnusinprev+jQnusinnext);
jUnucur+=0.5*0.5*hh*(jUnusinprev+jUnusinnext);
jVnucur+=0.5*0.5*hh*(jVnusinprev+jVnusinnext);
aInucur+=0.5*0.5*hh*(aInusinprev+aInusinnext);
aQnucur+=0.5*0.5*hh*(aQnusinprev+aQnusinnext);
aUnucur+=0.5*0.5*hh*(aUnusinprev+aUnusinnext);
aVnucur+=0.5*0.5*hh*(aVnusinprev+aVnusinnext);
rQnucur+=0.5*0.5*hh*(rQnusinprev+rQnusinnext);
rUnucur+=0.5*0.5*hh*(rUnusinprev+rUnusinnext);
rVnucur+=0.5*0.5*hh*(rVnusinprev+rVnusinnext);
jInusinprev=jInusinnext;
jQnusinprev=jQnusinnext;
jUnusinprev=jUnusinnext;
jVnusinprev=jVnusinnext;
aInusinprev=aInusinnext;
aQnusinprev=aQnusinnext;
aUnusinprev=aUnusinnext;
aVnusinprev=aVnusinnext;
rQnusinprev=rQnusinnext;
rUnusinprev=rUnusinnext;
rVnusinprev=rVnusinnext;
//NB: averaged jnu is: 1/4pi * \int jnu dOmega = 1/2 * \int jnu*sinth dth
}
}
// OUTPUTS
jInu[ii]=jInucur * GYOTO_JNU_CGS_TO_SI;
jQnu[ii]=jQnucur * GYOTO_JNU_CGS_TO_SI;
jUnu[ii]=jUnucur * GYOTO_JNU_CGS_TO_SI;
jVnu[ii]=jVnucur * GYOTO_JNU_CGS_TO_SI;
aInu[ii]=aInucur * GYOTO_ANU_CGS_TO_SI;
aQnu[ii]=aQnucur * GYOTO_ANU_CGS_TO_SI;
aUnu[ii]=aUnucur * GYOTO_ANU_CGS_TO_SI;
aVnu[ii]=aVnucur * GYOTO_ANU_CGS_TO_SI;
rQnu[ii]=rQnucur * GYOTO_ANU_CGS_TO_SI;
rUnu[ii]=rUnucur * GYOTO_ANU_CGS_TO_SI;
rVnu[ii]=rVnucur * GYOTO_ANU_CGS_TO_SI;
}
}
|