File: Minkowski.C

package info (click to toggle)
gyoto 2.0.2-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,444 kB
  • sloc: cpp: 42,330; sh: 4,512; python: 3,436; xml: 2,865; makefile: 691; ansic: 346
file content (365 lines) | stat: -rw-r--r-- 10,687 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/*
    Copyright 2014, 2015, 2019-2020 Thibaut Paumard & Frédéric Vincent

    This file is part of Gyoto.

    Gyoto is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Gyoto is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Gyoto.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "GyotoUtils.h"
#include "GyotoFactoryMessenger.h"
#include "GyotoMinkowski.h"
#include "GyotoError.h"
#include "GyotoProperty.h"
#include <cmath>

using namespace std ; 
using namespace Gyoto ; 
using namespace Gyoto::Metric ; 

//// Property list:
//
// Note that none of those lines ends with punctation. "," and ";" are
// added by the macros where needed. Three steps:
//  1- GYOTO_PROPERTY_START(<classname>)
//  2- For each Property we want to support, a line such as:
//       GYOTO_PROPERTY_<type>(<classname>, <propertyname>, <accessorname>)
//     Note that the BOOL type is a bit special: the argument
//     <propertyname> is replaced by two arguments: <name_if_true> and
//     <name_if_false>.
//  3- GYOTO_PROPERTY_END(<classname>, <pointer to parent's property list>)
//
////
GYOTO_PROPERTY_START(Minkowski,
		     "Flat space-time.")
GYOTO_PROPERTY_BOOL(Minkowski, Spherical, Cartesian, spherical,
		    "Whether to use spherical or Cartesian coordinates.")
GYOTO_PROPERTY_END(Minkowski, Generic::properties)

// This is the minimal constructor: it just sets the coordinate kind and
// the metric kind name.
Minkowski::Minkowski() :
  Generic(GYOTO_COORDKIND_CARTESIAN, "Minkowski")
{}

// The cloner is necessary. If the metric class is not trivial (e.g. contains
// arrays), it may be necessary to implement the copy constructor as well. 
Minkowski* Minkowski::clone() const { return new Minkowski(*this); }

void Minkowski::gmunu(double g[4][4], const double * pos) const
{
  GYOTO_DEBUG<<endl;
  size_t mu, nu;
  for (mu=0; mu<4; ++mu)
    for (nu=mu+1; nu<4; ++nu)
      g[mu][nu]=g[nu][mu]=0;

  g[0][0]=-1;
  if (coordKind()==GYOTO_COORDKIND_CARTESIAN) {
    for (mu=1; mu<4; ++mu) g[mu][mu]=1.;
    GYOTO_DEBUG<<"done"<<endl;
    return;
  }

  double r=pos[1], theta=pos[2];
  double tmp=r*sin(theta);

  g[1][1]=1.;
  g[2][2]=r*r;
  g[3][3]=tmp*tmp;
  GYOTO_DEBUG<<"done"<<endl;

}

int Minkowski::christoffel(double dst[4][4][4], const double pos[8]) const {
  GYOTO_DEBUG<<endl;
  size_t alpha, mu, nu;
  for (alpha=0; alpha<4; ++alpha)
    for (mu=0; mu<4; ++mu)
      for (nu=0; nu<4; ++nu)
	dst[alpha][mu][nu]=0.;
  if (coordKind()==GYOTO_COORDKIND_CARTESIAN) return 0;

  double r=pos[1], theta=pos[2], sth, cth;
  sincos(theta, &sth, &cth);

  dst[1][2][2]=-r;                         // Gamma^r_th_th  = -r
  dst[1][3][3]=-r*sth*sth;                 // Gamma^r_ph_ph  = -r*sin²(th)
  dst[2][1][2]=dst[2][2][1]= 1./r;         // Gamma^th_r_th  = 1/r
  dst[2][3][3]=-sth*cth;                   // Gamma^th_ph_ph = -sin(th)*cos(th)
  dst[3][1][3]=dst[3][3][1]= dst[2][1][2]; // Gamma^ph_r_ph  = 1/r
  dst[3][2][3]=dst[3][3][2]= tan(M_PI_2 - pos[2]); // Gamma^ph_th_ph = cotan(th)

  return 0;
}

// It's only necessary to provide one of the two forms for gmunu and
// Christoffel. The preferred, most efficient form is given above. The
// second form is given below, as an example.
double Minkowski::gmunu(const double * pos, int mu, int nu) const {
  if (mu<0 || nu<0 || mu>3 || nu>3)
    GYOTO_ERROR ("Minkowski::gmunu: incorrect value for mu or nu");

  if (mu!=nu) return 0.;
  if (mu==0)  return -1.;

  double tmp;

  switch (coordKind()) {
  case GYOTO_COORDKIND_CARTESIAN:
    return 1.;
  case GYOTO_COORDKIND_SPHERICAL:
    switch (mu) {
    case 1:
      return 1.;
    case 2:
      return pos[1]*pos[1];
    case 3:
      tmp=pos[1]*sin(pos[2]);
      return tmp*tmp;
    }
  }

  GYOTO_ERROR("BUG: this point should not be reached.");
  return 0.;
  
} 

double Minkowski::christoffel(const double pos[8], const int alpha, const int mmu, const int nnu) const
{
  if (coordKind()==GYOTO_COORDKIND_CARTESIAN) return 0.;

  if (alpha==0) return 0;
  
  double tmp, tmp2; int mu, nu;
  if (nnu<mmu) {nu=mmu; mu=nnu; }
  else { nu=nnu; mu=mmu; }

  switch (alpha) {

  case 1:
    if (mu!=nu) return 0.;
    switch (mu) {
    case 2:
      return -pos[1];                       // Gamma^r_th_th  = -r
    case 3:
      tmp=sin(pos[2]);
      return -pos[1]*tmp*tmp;               // Gamma^r_ph_ph  = -r*sin²(th)
    default:
      return 0.;
    }
  case 2:
    if (mu==1 && nu==2) return 1./pos[1];   // Gamma^th_r_th  = 1/r
    if (mu==3 && nu==3) {
      sincos(pos[2], &tmp, &tmp2);
      return -tmp*tmp2;                     // Gamma^th_ph_ph = -sin(th)*cos(th)
    }
    return 0.;
  case 3:
    if (nu!=3) return 0.;
    if (mu==1) return 1./pos[1];            // Gamma^ph_r_ph  = 1/r
    if (mu==2) return tan(M_PI_2 - pos[2]); // Gamma^ph_th_ph = cotan(th)
    return 0;
  }
 
  GYOTO_ERROR("BUG: this point should not be reached.");
  return 0.;

}

void Minkowski::observerTetrad(obskind_t obskind,
			       double const pos[4], double fourvel[4],
			       double screen1[4], double screen2[4], 
			       double screen3[4]) const{
  if (coordKind()!=GYOTO_COORDKIND_SPHERICAL){
    GYOTO_ERROR("In Minkowski::observerTetrad: "
	       "coordinates should be spherical-like");
  }
  if (obskind==GYOTO_OBSKIND_KEPLERIAN){
    double gtt = gmunu(pos,0,0),
      grr      = gmunu(pos,1,1),
      gthth    = gmunu(pos,2,2),
      gpp      = gmunu(pos,3,3);
    double omega = 1./(pow(pos[1],1.5));
    double ut2 = -1/(gtt+gpp*omega*omega);
    if (ut2 <= 0. || grr<=0. || gthth <=0.) {
      GYOTO_ERROR("In Minkowski::observerTetrad: "
		 "bad values");
    }
    double ut = sqrt(ut2);
    double fourv[4]={ut,0.,0.,omega*ut};
    double e3[4] = {0.,-1./sqrt(grr),0.,0.};
    double e2[4] = {0.,0.,-1./sqrt(gthth),0.};
    
    double fact1 = gpp*omega/gtt,
      fact2 = gtt*fact1*fact1+gpp;
    if (fact2 <= 0.) GYOTO_ERROR("In Minkowski::observerTetrad: "
				"bad values");
    double a2 = 1./sqrt(fact2), a1 = -a2*fact1;
    double e1[4] = {-a1,0.,0.,-a2};
    
    for (int ii=0;ii<4;ii++){
      fourvel[ii]=fourv[ii];
      screen1[ii]=e1[ii];
      screen2[ii]=e2[ii];
      screen3[ii]=e3[ii];
    }
  }
  Generic::observerTetrad(obskind,pos,fourvel,screen1,screen2,screen3);
}

void Minkowski::spherical(bool t) {
  coordKind(t?GYOTO_COORDKIND_SPHERICAL:GYOTO_COORDKIND_CARTESIAN);
}

bool Minkowski::spherical() const {
  return coordKind() == GYOTO_COORDKIND_SPHERICAL;
}

int Minkowski::diff(const state_t &xi,
		    state_t &dxdt,
		    double mass) const {
  // Check input
  if (xi.size()<8) GYOTO_ERROR("x should have at least 8 elements");
  if (xi.size() != dxdt.size())
    GYOTO_ERROR("x.size() should be the same as dxdt.size()");

  // If not Keplerian or if null geodesic, use generic implementation
  if (!keplerian_ || !mass)
    return Generic::diff(xi, dxdt, mass);

  // We are computing a Keplerian, time-like geodesic.

  // There is no parallel transport for time-like geodesics!
  if (xi.size() > 8) GYOTO_ERROR("No parallel transport for time-like geodesics");

  // x[4:8] is actually dx[0:4]/dt
  dxdt[0]=xi[4];
  dxdt[1]=xi[5];
  dxdt[2]=xi[6];
  dxdt[3]=xi[7];

  // Now the actual equation of motion: d²x/dt²=-ur/r²

  double t, x, y, z, tdot, xdot, ydot, zdot,
    r, theta, phi, rdot, thetadot, phidot,
    tdotdot, xdotdot, ydotdot, zdotdot,
    rdotdot, thetadotdot, phidotdot, r3, tdot3;
  double sth, cth, sph, cph;

  t=xi[0]; tdot=xi[4];

  // Convert to Cartesian

  switch (coordKind()) {
  case GYOTO_COORDKIND_CARTESIAN:
    x=xi[1];
    y=xi[2];
    z=xi[3];
    xdot=xi[5];
    ydot=xi[6];
    zdot=xi[7];
    r3=pow(x*x+y*y+z*z, 1.5);
    break;
  case GYOTO_COORDKIND_SPHERICAL:
    r=xi[1];
    theta=xi[2];
    phi=xi[3];
    rdot=xi[5];
    thetadot=xi[6];
    phidot=xi[7];
    r3=r*r*r;
    sincos(theta, &sth, &cth);
    sincos(phi, &sph, &cph);
    x=r*sth*cph;
    y=r*sth*sph;
    z=r*cth;
    xdot=rdot*sth*cph+r*thetadot*cth*cph-r*phidot*sth*sph;
    ydot=rdot*sth*sph+r*thetadot*cth*sph+r*phidot*sth*cph;
    zdot=rdot*cth-r*thetadot*sth;
    break;
  default:
    GYOTO_ERROR("unimplemented COORDKIND");
  }

  if (r3==0) return 1;

  // Compute second derivatives according to Newton

  // First tdotdot
  /*
    Newton's law is yields:,
     xi'' = -xi / r³ for 1 <= i <= 3 (1)
    We also have
     xi'  = xidot/tdot
     xi'' = d(xidot/tdot)/dt = d(xidot/tdot)/dtau / tdot
     xi'' = (xidotdot*tdot - tdotdot*xidot) / tdot³
    thus we can rewrite Newton's law (1) as
     xidotdot*tdot - tdotdot*xidot = -xi * tdot³ / r³ for i in 1..3 (2)
    We also know that the norm of the quadri velocity is -1:
     -tdot² + sum(xidot²) = -1    (3)
    Derivating (3), it comes:
     tdot*tdotdot = sum(xidot*xidotdot) (4)
    Multiplying (2) by xidot and summing over 1..3:
     tdot*sum(xidot*xidotdot)-tdotdot*sum(xidot²)=-(tdot³/r³)*sum(xi*xidot)
    Thanks to (4), we can replace sum(xidot*xidotdot) by tdot*tdotdot,
    and then factorize tdotdot on the left-hand side:
     tdotdot*(tdot²-sum(xidot²))=-(tdot³/r³)*sum(xi*xidot)
    We recognize (4) and finally:
     tdotdot=-(tdot³/r³)*sum(xi*xidot)
     */
  tdot3=tdot*tdot*tdot;
  tdotdot=-tdot3*(x*xdot+y*ydot+z*zdot)/r3;

  // Then the rest
  /*
    We use (2) again to get xidotdot:
    xidotdot=(-xi*tdot³/r³+tdotdot*xidot)/tdot
  */
  xdotdot=(-x*tdot3/r3+tdotdot*xdot)/tdot;
  ydotdot=(-y*tdot3/r3+tdotdot*ydot)/tdot;
  zdotdot=(-z*tdot3/r3+tdotdot*zdot)/tdot;


  // Convert back to COORDKIND

  dxdt[4]=tdotdot;
  switch (coordKind()) {
  case GYOTO_COORDKIND_CARTESIAN:
    dxdt[5]=xdotdot;
    dxdt[6]=ydotdot;
    dxdt[7]=zdotdot;
    break;
  case GYOTO_COORDKIND_SPHERICAL:
    rdotdot=(xdotdot*x+ydotdot*y+zdotdot*z
	     +xdot*xdot+ydot*ydot+zdot*zdot
	     -rdot*rdot)/r;
    thetadotdot=(
		 (z*rdotdot-zdotdot*r)
		 -((z*rdot-zdot*r)*(2.*rdot*r*r*r-zdot*z*r*r-z*z*rdot*r)
		   /(r*r*r*r-z*z*r*r))
		 )
      *pow(r*r*r*r-z*z*r*r, -0.5);
    phidotdot=((ydotdot*x-y*xdotdot)*(x*x+y*y)
	       -2.*(ydot*x-y*xdot)*(x*xdot+y*ydot))
      /((x*x+y*y)*(x*x+y*y));
    dxdt[5]=rdotdot;
    dxdt[6]=thetadotdot;
    dxdt[7]=phidotdot;
    break;
  default:
    GYOTO_ERROR("unimplemented COORDKIND");
  }
  return 0;
}