1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
|
/*
Copyright 2017, 2018 Frederic Vincent, Thibaut Paumard
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
// Lorene headers
#include "metric.h"
#include "nbr_spx.h"
#include "utilitaires.h"
#include "graphique.h"
//Gyoto headers
#include "GyotoUtils.h"
#include "GyotoPhoton.h"
#include "GyotoNeutronStarModelAtmosphere.h"
#include "GyotoFactoryMessenger.h"
//Std headers
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
#include <fstream>
#include <string>
#include <cmath>
#include <limits>
#include <cstring>
#include <sstream>
#ifdef GYOTO_USE_CFITSIO
#include <fitsio.h>
#define throwCfitsioError(status) \
{ fits_get_errstatus(status, ermsg); GYOTO_ERROR(ermsg); }
#endif
#define LORENE_UNIT_ACCEL GYOTO_C*GYOTO_C/1e4
using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;
using namespace Lorene;
/// Properties
#include "GyotoProperty.h"
GYOTO_PROPERTY_START(NeutronStarModelAtmosphere,
"Neutron star emitting at its surface.")
GYOTO_PROPERTY_FILENAME(NeutronStarModelAtmosphere, File, file)
GYOTO_PROPERTY_BOOL(NeutronStarModelAtmosphere,
AverageOverAngle, DontAverageOverAngle,
averageOverAngle)
GYOTO_PROPERTY_END(NeutronStarModelAtmosphere, NeutronStar::properties)
void NeutronStarModelAtmosphere::fillProperty(Gyoto::FactoryMessenger *fmp,
Property const &p) const {
if (p.name == "File")
fmp->setParameter("File", (filename_.compare(0,1,"!") ?
filename_ :
filename_.substr(1)) );
else NeutronStar::fillProperty(fmp, p);
}
NeutronStarModelAtmosphere::NeutronStarModelAtmosphere() :
NeutronStar("NeutronStarModelAtmosphere"),
emission_(NULL), surfgrav_(NULL), cosi_(NULL), freq_(NULL),
nnu_(0), ni_(0), nsg_(0), average_over_angle_(0) {
GYOTO_DEBUG << endl;
}
NeutronStarModelAtmosphere::NeutronStarModelAtmosphere(const NeutronStarModelAtmosphere& o) :
NeutronStar(o),
emission_(NULL), surfgrav_(NULL), cosi_(NULL), freq_(NULL),
nnu_(o.nnu_), ni_(o.ni_), nsg_(o.nsg_),
average_over_angle_(o.average_over_angle_)
{
GYOTO_DEBUG << endl;
size_t ncells = 0;
if (o.emission_) {
emission_ = new double[ncells = nnu_ * ni_ * nsg_];
memcpy(emission_, o.emission_, ncells * sizeof(double));
}
if (o.freq_) {
freq_ = new double[ncells = nnu_];
memcpy(freq_, o.freq_, ncells * sizeof(double));
}
if (o.cosi_) {
cosi_ = new double[ncells = ni_];
memcpy(cosi_, o.cosi_, ncells * sizeof(double));
}
if (o.surfgrav_) {
surfgrav_ = new double[ncells = nsg_];
memcpy(surfgrav_, o.surfgrav_, ncells * sizeof(double));
}
}
NeutronStarModelAtmosphere * NeutronStarModelAtmosphere::clone() const {
return new NeutronStarModelAtmosphere(*this); }
NeutronStarModelAtmosphere::~NeutronStarModelAtmosphere() {
GYOTO_DEBUG << endl;
if (emission_) delete [] emission_;
if (surfgrav_) delete [] surfgrav_;
if (cosi_) delete [] cosi_;
if (freq_) delete [] freq_;
}
void NeutronStarModelAtmosphere::setEmission(double * pattern) {
emission_ = pattern;
}
void NeutronStarModelAtmosphere::surfgrav(double * pattern) {
surfgrav_ = pattern;
}
void NeutronStarModelAtmosphere::copyIntensity(double const *const pattern, size_t const naxes[3]) {
GYOTO_DEBUG << endl;
if (emission_) {
GYOTO_DEBUG << "delete [] emission_;" << endl;
delete [] emission_; emission_ = NULL;
}
if (pattern) {
size_t nel;
if (nnu_ != naxes[0]) {
GYOTO_DEBUG <<"nnu_ changed, freeing freq_" << endl;
if (freq_) { delete [] freq_; freq_ = NULL; }
}
if (ni_ != naxes[1]) {
GYOTO_DEBUG <<"ni_ changed, freeing freq_ and cosi_" << endl;
if (freq_) { delete [] freq_; freq_ = NULL; }
if (cosi_) { delete [] cosi_; cosi_= NULL; }
}
if (nsg_ != naxes[2]) {
GYOTO_DEBUG <<"nsg_ changed, freeing freq_, cosi_ and surfgrav_" << endl;
if (freq_) { delete [] freq_; freq_ = NULL; }
if (cosi_) { delete [] cosi_; cosi_= NULL; }
if (surfgrav_) { delete [] surfgrav_; surfgrav_ = NULL; }
}
if (!(nel=(nnu_ = naxes[0]) * (ni_=naxes[1]) * (nsg_=naxes[2])))
GYOTO_ERROR( "dimensions can't be null");
GYOTO_DEBUG << "allocate emission_;" << endl;
emission_ = new double[nel];
GYOTO_DEBUG << "pattern >> emission_" << endl;
memcpy(emission_, pattern, nel*sizeof(double));
}
}
double const * NeutronStarModelAtmosphere::getIntensity() const {
return emission_; }
void NeutronStarModelAtmosphere::getIntensityNaxes( size_t naxes[3] ) const
{ naxes[0] = nnu_; naxes[1] = ni_; naxes[2] = nsg_; }
void NeutronStarModelAtmosphere::copyGridSurfgrav(double const *const sg,
size_t nsg) {
GYOTO_DEBUG << endl;
if (surfgrav_) {
GYOTO_DEBUG << "delete [] surfgrav_;" << endl;
delete [] surfgrav_; surfgrav_ = NULL;
}
if (sg) {
if (!emission_)
GYOTO_ERROR("Please use copyIntensity() before copyGridSurfgrav()");
if (nsg_ != nsg)
GYOTO_ERROR("emission_ and surfgrav_ have inconsistent dimensions");
GYOTO_DEBUG << "allocate surfgrav_;" << endl;
surfgrav_ = new double[nsg_];
GYOTO_DEBUG << "surfgrav >> surfgrav_" << endl;
memcpy(surfgrav_, sg, nsg_*sizeof(double));
}
}
double const * NeutronStarModelAtmosphere::getGridSurfgrav() const {
return surfgrav_; }
void NeutronStarModelAtmosphere::copyGridCosi(double const *const cosi, size_t ni) {
GYOTO_DEBUG << endl;
if (cosi_) {
GYOTO_DEBUG << "delete [] cosi_;" << endl;
delete [] cosi_; cosi_ = NULL;
}
if (cosi) {
if (!emission_)
GYOTO_ERROR("Please use copyIntensity() before copyGridCosi()");
if (ni_ != ni)
GYOTO_ERROR("emission_ and cosi_ have inconsistent dimensions");
GYOTO_DEBUG << "allocate cosi_;" << endl;
cosi_ = new double[ni_];
GYOTO_DEBUG << "cosi >> cosi_" << endl;
memcpy(cosi_, cosi, ni_*sizeof(double));
}
}
double const * NeutronStarModelAtmosphere::getGridCosi() const { return cosi_; }
void NeutronStarModelAtmosphere::copyGridFreq(double const *const freq,
size_t nnu) {
GYOTO_DEBUG << endl;
if (freq_) {
GYOTO_DEBUG << "delete [] freq_;" << endl;
delete [] freq_; freq_ = NULL;
}
if (freq) {
if (!emission_)
GYOTO_ERROR("Please use copyIntensity() before copyGridFreq()");
if (nnu_ != nnu)
GYOTO_ERROR("emission_ and freq_ have inconsistent dimensions");
GYOTO_DEBUG << "allocate freq_;" << endl;
freq_ = new double[nnu_];
GYOTO_DEBUG << "freq >> freq_" << endl;
memcpy(freq_, freq, nnu_*sizeof(double));
}
}
double const * NeutronStarModelAtmosphere::getGridFreq() const { return freq_; }
void NeutronStarModelAtmosphere::averageOverAngle(bool t) {
average_over_angle_=t;}
bool NeutronStarModelAtmosphere::averageOverAngle()const {
return average_over_angle_;}
void NeutronStarModelAtmosphere::file(std::string const &f) {
# ifdef GYOTO_USE_CFITSIO
fitsRead(f);
# else
GYOTO_ERROR("This Gyoto has no FITS i/o");
# endif
}
std::string NeutronStarModelAtmosphere::file() const {
return filename_;
}
#ifdef GYOTO_USE_CFITSIO
void NeutronStarModelAtmosphere::fitsRead(string filename) {
GYOTO_MSG << "NeutronStarModelAtmosphere reading FITS file: " <<
filename << endl;
filename_ = filename;
char* pixfile = const_cast<char*>(filename_.c_str());
fitsfile* fptr = NULL;
int status = 0;
int anynul = 0;
long naxes [] = {1, 1, 1};
long fpixel[] = {1,1,1};
long inc [] = {1,1,1};
char ermsg[31] = ""; // ermsg is used in throwCfitsioError()
GYOTO_DEBUG << "NeutronStarModelAtmosphere::readFile(): opening file" << endl;
if (fits_open_file(&fptr, pixfile, 0, &status)) throwCfitsioError(status) ;
////// FIND MANDATORY EMISSION HDU, READ KWDS & DATA ///////
GYOTO_DEBUG << "NeutronStarModelAtmosphere::readFile(): search emission HDU" << endl;
if (fits_movnam_hdu(fptr, ANY_HDU,
const_cast<char*>("GYOTO NeutronStarModelAtmosphere emission"),
0, &status))
throwCfitsioError(status) ;
GYOTO_DEBUG << "NeutronStarModelAtmosphere::readFile(): get image size" << endl;
if (fits_get_img_size(fptr, 3, naxes, &status)) throwCfitsioError(status) ;
//update nnu_, ni_, nsg_
nnu_ = naxes[0];
ni_ = naxes[1];
nsg_ = naxes[2];
if (emission_) { delete [] emission_; emission_ = NULL; }
emission_ = new double[nnu_ * ni_ * nsg_];
if (debug())
cerr << "NeutronStarModelAtmosphere::readFile(): read emission: "
<< "nnu_=" << nnu_ << ", ni_="<<ni_ << ", nsg_="<<nsg_ << "...";
if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc,
0, emission_,&anynul,&status)) {
GYOTO_DEBUG << " error, trying to free pointer" << endl;
delete [] emission_; emission_=NULL;
throwCfitsioError(status) ;
}
GYOTO_DEBUG << " done." << endl;
double minemission=DBL_MAX, maxemission=DBL_MIN;
for (int myi=0;myi<nnu_ * ni_ * nsg_-1;myi++){
if (emission_[myi]<minemission) minemission=emission_[myi];
if (emission_[myi]>maxemission) maxemission=emission_[myi];
}
//cout << "In NSModelAtm::fitsRead: Min and max emission= " <<
// minemission << " " << maxemission << endl;
////// FIND MANDATORY FREQ HDU ///////
if (fits_movnam_hdu(fptr, ANY_HDU,
const_cast<char*>("GYOTO NeutronStarModelAtmosphere freq"),
0, &status))
throwCfitsioError(status) ;
if (fits_get_img_size(fptr, 1, naxes, &status)) throwCfitsioError(status) ;
if (size_t(naxes[0]) != nnu_)
GYOTO_ERROR("NeutronStarModelAtmosphere::readFile(): freq array not conformable");
if (freq_) { delete [] freq_; freq_ = NULL; }
freq_ = new double[nnu_];
if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc,
0, freq_,&anynul,&status)) {
delete [] freq_; freq_=NULL;
throwCfitsioError(status) ;
}
////// FIND MANDATORY COSI HDU ///////
if (fits_movnam_hdu(fptr, ANY_HDU,
const_cast<char*>("GYOTO NeutronStarModelAtmosphere cosi"),
0, &status))
throwCfitsioError(status) ;
if (fits_get_img_size(fptr, 1, naxes, &status)) throwCfitsioError(status) ;
if (size_t(naxes[0]) != ni_)
GYOTO_ERROR("NeutronStarModelAtmosphere::readFile(): cosi array not conformable");
if (cosi_) { delete [] cosi_; cosi_ = NULL; }
cosi_ = new double[ni_];
if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc,
0, cosi_,&anynul,&status)) {
delete [] cosi_; cosi_=NULL;
throwCfitsioError(status) ;
}
////// FIND MANDATORY SURFGRAV HDU ///////
if (fits_movnam_hdu(fptr, ANY_HDU,
const_cast<char*>("GYOTO NeutronStarModelAtmosphere surfgrav"),
0, &status))
throwCfitsioError(status) ;
if (fits_get_img_size(fptr, 1, naxes, &status)) throwCfitsioError(status) ;
if (size_t(naxes[0]) != nsg_)
GYOTO_ERROR("NeutronStarModelAtmosphere::readFile(): surfgrav array not conformable");
if (surfgrav_) { delete [] surfgrav_; surfgrav_ = NULL; }
surfgrav_ = new double[nsg_];
if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc,
0, surfgrav_,&anynul,&status)) {
delete [] surfgrav_; surfgrav_=NULL;
throwCfitsioError(status) ;
}
////// CLOSING FITS /////////
if (fits_close_file(fptr, &status)) throwCfitsioError(status) ;
fptr = NULL;
}
void NeutronStarModelAtmosphere::fitsWrite(string filename) {
GYOTO_DEBUG_EXPR(emission_);
if (!emission_) GYOTO_ERROR("NeutronStarModelAtmosphere::fitsWrite(filename): nothing to save!");
filename_ = filename;
char* pixfile = const_cast<char*>(filename_.c_str());
fitsfile* fptr = NULL;
int status = 0;
long naxes [] = {long(nnu_), long(ni_), long(nsg_)};
long fpixel[] = {1,1,1};
char * CNULL=NULL;
char ermsg[31] = ""; // ermsg is used in throwCfitsioError()
////// CREATE FILE
GYOTO_DEBUG << "creating file \"" << pixfile << "\"... ";
fits_create_file(&fptr, pixfile, &status);
if (debug()) cerr << "done." << endl;
fits_create_img(fptr, DOUBLE_IMG, 3, naxes, &status);
if (status) throwCfitsioError(status) ;
////// SAVE EMISSION IN PRIMARY HDU ///////
GYOTO_DEBUG << "saving emission_\n";
fits_write_key(fptr, TSTRING,
const_cast<char*>("EXTNAME"),
const_cast<char*>("GYOTO NeutronStarModelAtmosphere emission"),
CNULL, &status);
fits_write_pix(fptr, TDOUBLE, fpixel, nnu_*ni_*nsg_, emission_, &status);
if (status) throwCfitsioError(status) ;
////// SAVE FREQ HDU ///////
if (!freq_) GYOTO_ERROR("NeutronStarModelAtmosphere::fitsWrite(filename): no freq to save!");
GYOTO_DEBUG << "saving freq_\n";
fits_create_img(fptr, DOUBLE_IMG, 1, naxes, &status);
fits_write_key(fptr, TSTRING, const_cast<char*>("EXTNAME"),
const_cast<char*>("GYOTO NeutronStarModelAtmosphere freq"),
CNULL, &status);
fits_write_pix(fptr, TDOUBLE, fpixel, nnu_, freq_, &status);
if (status) throwCfitsioError(status) ;
////// SAVE COSI HDU ///////
if (!cosi_) GYOTO_ERROR("NeutronStarModelAtmosphere::fitsWrite(filename): no cosi to save!");
GYOTO_DEBUG << "saving cosi_\n";
fits_create_img(fptr, DOUBLE_IMG, 1, naxes+1, &status);
fits_write_key(fptr, TSTRING, const_cast<char*>("EXTNAME"),
const_cast<char*>("GYOTO NeutronStarModelAtmosphere cosi"),
CNULL, &status);
fits_write_pix(fptr, TDOUBLE, fpixel, ni_, cosi_, &status);
if (status) throwCfitsioError(status) ;
////// SAVE SURFGRAV HDU ///////
if (!surfgrav_) GYOTO_ERROR("NeutronStarModelAtmosphere::fitsWrite(filename): no surfgrav to save!");
GYOTO_DEBUG << "saving surfgrav_\n";
fits_create_img(fptr, DOUBLE_IMG, 1, naxes+2, &status);
fits_write_key(fptr, TSTRING, const_cast<char*>("EXTNAME"),
const_cast<char*>("GYOTO NeutronStarModelAtmosphere surfgrav"),
CNULL, &status);
fits_write_pix(fptr, TDOUBLE, fpixel, nsg_, surfgrav_, &status);
if (status) throwCfitsioError(status) ;
////// CLOSING FILE ///////
GYOTO_DEBUG << "close FITS file\n";
if (fits_close_file(fptr, &status)) throwCfitsioError(status) ;
fptr = NULL;
}
#endif
void NeutronStarModelAtmosphere::getIndices(size_t i[3], double const co[4],
double cosi, double nu) const {
const Vector& a_i = *(gg_->getAccel_tab()[0]);
double rr=co[1], th=co[2], phi=co[3];
if (rr==0.) GYOTO_ERROR("In NeutronStarModelAtm.C::getIndices r is 0!");
double rsinth = rr*sin(th);
if (rsinth==0.) GYOTO_ERROR("In NeutronStarModelAtm.C::getIndices on z axis!");
double rm1 = 1./rr, rm2 = rm1*rm1, sm1 = 1./sin(th),
sm2 = sm1*sm1;
double a_r = a_i(1).val_point(rr,th,phi),
a_t = rr*a_i(2).val_point(rr,th,phi),
a_p = rr*sin(th)*a_i(3).val_point(rr,th,phi);
if (a_p!=0.) {GYOTO_ERROR("In NeutronStarModelAtm::getIndices: "
"For axisym spacetime phi-compo should be zero");}
const Sym_tensor& g_up_ij = *(gg_->getGamcon_tab()[0]);
double grr=g_up_ij(1,1).val_point(rr,th,phi),
gtt=rm2*g_up_ij(2,2).val_point(rr,th,phi);
double ar = a_r*grr, at = a_t*gtt; //contravariant 3-accel
double accelvecNorm2 = grr*a_r*a_r + gtt*a_t*a_t; // squared norm of accel vector
if (accelvecNorm2<=0.) GYOTO_ERROR("In NeutronStarModelAtmosphere::getIndices"
" accel vector should be spacelike");
double accelvecNorm = sqrt(accelvecNorm2);
double sgloc = accelvecNorm*LORENE_UNIT_ACCEL*100.; // LORENE speaks in SI, the 100 translates to cgs
//cout << "Accel vec compo, gs= " << a_r << " " << a_t << " " << a_p << " " << sgloc << endl;
if (surfgrav_) {
if (nsg_==1){ // Only one value of surfgrav, put some value, won't be used
i[2]=1; // don't put 0, see later why: it would return an error
}else{
if (sgloc >= surfgrav_[nsg_-1]) i[2] = nsg_-1; // emission will be 0
else {
for(i[2]=0; sgloc > surfgrav_[i[2]]; ++i[2]){}
//cout << "In indices sg: " << i[2] << " " << surfgrav_[i[2]-1] << " " << sgloc << " " << surfgrav_[i[2]] << endl;
/*
With this definition:
surfgrav_[i[2]-1] <= sgloc < surfgrav_[i[2]]
The case i[2]=0 (if r<surfgrav_[0]) is dealt
with later on, it returns 0
*/
}
}
} else {
GYOTO_ERROR("In NeutronStarModelAtmosphere::getIndices: surfgrav undefined!");
}
if (cosi_) {
if (cosi >= cosi_[ni_-1]) i[1] = ni_-1;
else {
for(i[1]=0; cosi > cosi_[i[1]]; ++i[1]){}
//cout << "In indices cos: " << i[1] << " " << cosi_[i[1]-1] << " " << cosi << " " << cosi_[i[1]] << endl;
/*
cosi_[i[1]-1] <= cosi < cosi_[i[1]]
*/
}
} else {
GYOTO_ERROR("In NeutronStarModelAtmosphere::getIndices: cosi undefined!");
}
if (freq_) {
if (nu <= freq_[nnu_-1]) i[0] = nnu_-1;
else {
for(i[0]=nnu_-1; nu > freq_[i[0]]; --i[0]){}
//cout << "In indices nu: " << i[0] << " " << freq_[i[0]+1]/GYOTO_eV2Hz << " " << nu/GYOTO_eV2Hz << " " << freq_[i[0]]/GYOTO_eV2Hz << endl;
/*
Caution: freq is ordered decreasingly!
freq_[i[0]+1] <= nu < freq_[i[0]]
*/
}
} else {
GYOTO_ERROR("In NeutronStarModelAtmosphere::getIndices: freq undefined!");
}
}
double NeutronStarModelAtmosphere::emission(double nu, double,
state_t const &cp,
double const co[8]) const{
/*
Important remarks on the precision: the variable GYOTO_T_TOL
defined in GyotoDefs.h is important as it tunes the precision
with which Gyoto will fine the star's surface. GYOTO_T_TOL=1e-4
e.g. leads to an error on r_emission of approx 1e-4 as well.
This for instance leads to small changes of Iobs when varying
the inclination for a non-rotating star (although the emission
should be indep of i). There is another limitation specifically
for photons that hit the star tangentially. These guys should
be integrated with care to find a precise (r_emission,theta_emission),
and thus get a precise photon tangent vector at emission, that in
turn manages the precision of cosi. To ensure this, a good
precaution is to decrease DeltaMaxOverR in the xml, eg to 0.1
to get something very precise. [Tested on August 2017 for a 30*30
map: actually some few pixels even need 0.01 to get the same
value for i=1° and i=90°! This would be really crazy long for
a full map...]
There is a second important limitation: the precision of Lorene.
The metrics given by Michal in May 2017 e.g. lead to a value of
r_star constant with theta to within approx 1e-8.
So to have the most precise calcualtion (to machine prec), take
GYOTO_T_TOL=machine prec, make sure that Lorene works at
machine prec as well, and use a small DeltaMAxOverR. Of course
this is only needed to get crazy high precision (definitely not
a problem to fit observations e.g.)
*/
GYOTO_DEBUG << endl;
//cout << "In emission NSatm, intens test= " << emission_[0] << endl;
const Vector& a_i = *(gg_->getAccel_tab()[0]);
double rr=co[1], th=co[2], phi=co[3];
//cout << "r,th,phi in emiss= " << setprecision(10) << rr << " " << th << " " << phi << endl;
// First, check that we are on the star surface (not obvious, photon
// could be a bit inside, see StandardAstrobj.C). If not, return 0.
// This is important coz if not present, sgloc can be computed inside
// the star and be out of the range computed in the grid, leading to error.
Valeur* ns_surf = gg_->getNssurf_tab()[0];
ns_surf->std_base_scal();
double rstar = ns_surf->val_point(0,0.,th,phi);
//cout << "rstar= " << rstar << endl;
double rtol = 1e-4; // should be such that GYOTO_T_TOL ensures a
// a convergence to rstar better than rtol
if (fabs(rstar-rr)>rtol) return 0.;
if (rr==0.) GYOTO_ERROR("In NeutronStarModelAtm.C::emission r is 0!");
double rsinth = rr*sin(th);
if (rsinth==0.) GYOTO_ERROR("In NeutronStarModelAtm.C::emission on z axis!");
double rm1 = 1./rr, rm2 = rm1*rm1, sm1 = 1./sin(th),
sm2 = sm1*sm1;
// Finding acceleration 4-vector
/*
Let us call a^\alpha the acceleration 4-vector (normal to the surface).
Because we assume circular fluid motion, the covariant
acceleration reads
a_\alpha = - \nabla (ln u_t) = - \partial_\alpha (ln u_t)
Thus, because of stationarity + axisymetry: a_t = a_phi = 0
Thus a^t = g^{tt} a_t + g^{tphi} a_phi = 0 and the same for a^phi.
Thus only a^r and a^theta remain.
*/
double a_r = a_i(1).val_point(rr,th,phi),
a_t = rr*a_i(2).val_point(rr,th,phi),
a_p = rr*sin(th)*a_i(3).val_point(rr,th,phi);
if (a_p!=0.) {GYOTO_ERROR("In NeutronStarModelAtm::emission: "
"For axisym spacetime phi-compo should be zero");}
const Sym_tensor& g_up_ij = *(gg_->getGamcon_tab()[0]);
double grr=g_up_ij(1,1).val_point(rr,th,phi),
gtt=rm2*g_up_ij(2,2).val_point(rr,th,phi);
//gpp=rm2*sm2*g_up_ij(3,3).val_point(rr,th,phi); // here gpp is gamma^{phi,phi} ; it is useless as a_p is zero
double ar = a_r*grr, at = a_t*gtt; //contravariant 3-accel compo
double accelvec[4]={0.,ar,at,0.}; // acceleration 4-vector, normal to surf
//cout << "accel= " << a_r << " " << a_t << " " << a_p << endl;
double accelvecNorm2 = grr*a_r*a_r + gtt*a_t*a_t; // squared norm of accel vector
if (accelvecNorm2<=0.) GYOTO_ERROR("In NeutronStarModelAtmosphere::emission"
" accel vector should be spacelike");
double accelvecNorm = sqrt(accelvecNorm2);
// Surface gravity is that quantity, scaled to cgs units:
double sgloc = accelvecNorm*LORENE_UNIT_ACCEL*100.; // LORENE speaks in SI, the 100 translates to cgs
//cout << "r,rstar,sgloc=" << rr << " " << rstar << " " << sgloc << endl;
//cout << "r, sg, nsg= " << rr << " " << sgloc << " " << nsg_ << endl;
//cout << "accel vector= " << ar << " " << at << endl;
//cout << "photon vector= " << cp[4] << " " << cp[5] << " " << cp[6] << " " << cp[7] << endl;
// Compute angle between photon direction and normal
double np = 1./accelvecNorm*gg_->ScalarProd(&cp[0],accelvec,&cp[4]),
up = gg_->ScalarProd(&cp[0],co+4,&cp[4]);
//cout << "accel and velo= " << accelvec[0] << " " << accelvec[1] << " " << accelvec[2] << " " << accelvec[3] << " " << cp[4] << " " << cp[5] << " " << cp[6] << " " << cp[7] << " " << endl;
//cout << "scalar prods= " << np << " " << up << endl;
double p_r=cp[5]/grr, p_t=cp[6]/gtt;
double myscalprod = 1./accelvecNorm*(grr*a_r*p_r + gtt*a_t*p_t);
//cout << "myscalprod= " << myscalprod << endl;
//cout << "gmunu= " << grr << " " << gtt << endl;
//cout << "prods of ap= " << a_r*p_r << " " << a_t*p_t << endl;
//cout << "parts of scal prod= " << grr*a_r*p_r << " " << gtt*a_t*p_t << endl;
//cout << "ar, pr, arpr= " << a_r << " " << p_r << " " << a_r*p_r << endl;
// cos between unit normal n and tangent to photon p
// is equal -n.p/u.p (u being the emitter's 4-vel);
double cosi = -np/up;
//cout << "cosi= " << cosi << endl;
double tolcos = 0.005;
if (cosi>1.){
if (fabs(cosi-1)>tolcos){
cout << "Bad cosi= " << cosi << endl;
GYOTO_ERROR("In NeutronStarModelAtmosphere: bad cos!");
}
cosi=1.;
}
if (cosi<0.){
// cosi should be >0, the photon cannot come from
// inside the star!
if (fabs(cosi)>tolcos){
cout << "Bad cosi= " << cosi << endl;
//GYOTO_ERROR("In NeutronStarModelAtmosphere: bad cos!");
}
cosi=0.;
}
//cout << "cosi= " << cosi << endl;
// Don't put a "return cosi" here, see later
// Indices of the current closest grid point
size_t ind[3]; // {i_nu, i_cosi, i_surfgrav}
getIndices(ind, co, cosi, nu);
//cout << "sg, isg, nsg= " << sgloc << " " << ind[2] << " " << nsg_ <<endl;
//if (ind[2]==nsg_) return 0.; // 0 emission outside simulation scope
// Error if current surfgrav is not in provided range
if (nsg_>1 && (sgloc<=surfgrav_[0] || sgloc>=surfgrav_[nsg_-1])){
cout << "With surf grav= " << sgloc << endl;
GYOTO_ERROR("In NeutronStarModelAtmosphere: bad value of surface gravity");
}
// No emission outside freq range
if (nu<=freq_[nnu_-1] || nu>=freq_[0]) {
//cout << "bad freq nu= " << nu << " " << freq_[0] << " " << freq_[nnu_-1] << endl;
return 0.;
}
// So here, ind[2] should be >0 and ind[0]<nnu_-1
if (ind[2]==0 || ind[0]==nnu_-1){
GYOTO_ERROR("In NeutronStarModelAtmosphere::emission "
"bad {nu,r} indices");
}
//return acos(cosi)*180./M_PI; // TEST!!! Don't forget to impose redshift to 1
//cout << setprecision(10) << "nu(eV), surfgrav, cosi= " << nu/GYOTO_eV2Hz << " " << sgloc << " " << cosi << endl;
//cout << "indices= " << ind[0] << " " << ind[1] << " " << ind[2] << endl;
double Iem=0.;
size_t inul=ind[0]+1, inuu=ind[0],
isgl=ind[2]-1, isgu=ind[2]; // Correct: inu is freq, ordered decreasingly,
// isg is surfgrav ordered increasingly
if (nsg_==1){
// Only one value of surfgrav, i.e. non-rotating star
// put surfgrav indices to zero, no interpolation in this direction
isgl=0;
isgu=0;
}
// cout << "ind_cosi=, ni= " << ind[1] << " " << ni_ << endl;
//cout << "min max sg= " << surfgrav_[0] << " " << surfgrav_[nsg_-1] << endl;
/*
How emission_ is organized:
[
(nu=0,cos=0,sg=0),(nu=0,cos=0,sg=1),...,(nu=0,cos=0,sg=nsg-1),
(nu=0,cos=1,sg=0),(nu=0,cos=1,sg=1),...,(nu=0,cos=1,sg=nsg-1),
...
(nu=0,cos=ni-1,sg=0),(nu=0,cos=ni-1,sg=1),...,(nu=0,cos=ni-1,sg=nsg-1),
(nu=1,cos=0,sg=0),(nu=1,cos=0,sg=1),...,(nu=1,cos=0,sg=nsg-1),
...
]
*/
if (!average_over_angle_){
if (cosi <= cosi_[0] || cosi >= cosi_[ni_-1]){
// If cosi is out of the cosi_ range, bilinear interpol in nu,sg
size_t icos=ind[1];
//cout << "Bilin cos value unique= " << cosi_[icos] << endl;
double I00 = emission_[inul*ni_*nsg_+icos*nsg_+isgl], // I_{nu,sg}
I01 = emission_[inul*ni_*nsg_+icos*nsg_+isgu],
I10 = emission_[inuu*ni_*nsg_+icos*nsg_+isgl],
I11 = emission_[inuu*ni_*nsg_+icos*nsg_+isgu];
//cout << "bilin dir: " << I00 << " " << I01 << " " << I10 << " " << I11 << endl;
double rationu = (nu-freq_[inul])/(freq_[inuu]-freq_[inul]),
ratiosg = (sgloc-surfgrav_[isgl])/(surfgrav_[isgu]-surfgrav_[isgl]);
if (nsg_==1) ratiosg=0.; // no interpolation in sg
Iem = I00+(I10-I00)*rationu
+(I01-I00)*ratiosg
+(I11-I01-I10+I00)*rationu*ratiosg;
//cout << "I interp= " << Iem << endl;
}else{
// Trilinear interpol
if (ind[1]==0){
GYOTO_ERROR("In NeutronStarModelAtmosphere::emission "
"bad cosi indice");
}
size_t icosl=ind[1]-1, icosu=ind[1];
//cout << "Trilin interpol indices= " << inul << " " << inuu << " " << icosl << " " << icosu << " " << isgl << " " << isgu << endl;
double I000 = emission_[inul*ni_*nsg_+icosl*nsg_+isgl], // I_{nu,cosi,sg}
I100 = emission_[inuu*ni_*nsg_+icosl*nsg_+isgl],
I110 = emission_[inuu*ni_*nsg_+icosu*nsg_+isgl],
I010 = emission_[inul*ni_*nsg_+icosu*nsg_+isgl],
I001 = emission_[inul*ni_*nsg_+icosl*nsg_+isgu],
I101 = emission_[inuu*ni_*nsg_+icosl*nsg_+isgu],
I111 = emission_[inuu*ni_*nsg_+icosu*nsg_+isgu],
I011 = emission_[inul*ni_*nsg_+icosu*nsg_+isgu];
//cout << setprecision(10) << "trilin dir: " << I000 << " " << I100 << " " << I110 << " " << I010 << " " << I001 << " " << I101 << " " << I111 << " " << I011 << endl;
double rationu = (nu-freq_[inul])/(freq_[inuu]-freq_[inul]),
ratioi = (cosi-cosi_[icosl])/(cosi_[icosu]-cosi_[icosl]),
ratiosg = (sgloc-surfgrav_[isgl])/(surfgrav_[isgu]-surfgrav_[isgl]);
if (nsg_==1) ratiosg=0.; // no interpolation in sg
Iem = I000
+ (I100-I000)*rationu
+ (I010-I000)*ratioi
+ (I001-I000)*ratiosg
+ (I110-I010-I100+I000)*rationu*ratioi
+ (I011-I010-I001+I000)*ratioi*ratiosg
+ (I101-I001-I100+I000)*rationu*ratiosg
+ (I111-I011-I101-I110+I100+I001+I010-I000)*rationu*ratioi*ratiosg;
//cout << "I interp= " << Iem << endl;
}
}else{
// Average over cosi values
// with bilinear interpol in nu,sg
double I00=0., I01=0., I10=0., I11=0.;
/* Using trapezoidal rule, I_integ = \int I(mu)*dmu, mu=cos(i)
NB: in Garcia+14, they compute a flux because they don't raytrace,
so they use F = 1/4pi * \int I(i) cos(i) di = 1/2 * \int I(mu) mu dmu,
here we are not interested in the same quantity */
double dcostot = 0.; // will contain \int d\mu (~1 but not exactly)
for (size_t ii=0; ii<ni_-1; ++ii){
double dcos = cosi_[ii+1]-cosi_[ii];
I00 += 0.5*dcos*
(emission_[inul*ni_*nsg_+(ii+1)*nsg_+isgl]
+emission_[inul*ni_*nsg_+ii*nsg_+isgl]);
I01 += 0.5*dcos*
(emission_[inul*ni_*nsg_+(ii+1)*nsg_+isgu]
+emission_[inul*ni_*nsg_+ii*nsg_+isgu]);
I10 += 0.5*dcos*
(emission_[inuu*ni_*nsg_+(ii+1)*nsg_+isgl]
+emission_[inuu*ni_*nsg_+ii*nsg_+isgl]);
I11 += 0.5*dcos*
(emission_[inuu*ni_*nsg_+(ii+1)*nsg_+isgu]
+emission_[inuu*ni_*nsg_+ii*nsg_+isgu]);
dcostot+=dcos;
}
// Normalizing (int d cos(i) is very close to 1 but not exactly 1)
I00/=dcostot;
I01/=dcostot;
I10/=dcostot;
I11/=dcostot;
//cout << "\int dcos, and I bilin avg: " << dcostot << " " << I00 << " " << I01 << " " << I10 << " " << I11 << endl;
double rationu = (nu-freq_[inul])/(freq_[inuu]-freq_[inul]),
ratiosg = (sgloc-surfgrav_[isgl])/(surfgrav_[isgu]-surfgrav_[isgl]);
if (nsg_==1) ratiosg=0.; // no interpolation in sg
Iem = I00+(I10-I00)*rationu
+(I01-I00)*ratiosg
+(I11-I01-I10+I00)*rationu*ratiosg;
//cout << "I interp= " << Iem << endl;
}
//cout << "return= " << Iem << endl;
return Iem/1e3; // 1e3 factor translates from cgs to SI, gyoto speaks in SI
}
|