File: NeutronStarModelAtmosphere.C

package info (click to toggle)
gyoto 2.0.2-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,444 kB
  • sloc: cpp: 42,330; sh: 4,512; python: 3,436; xml: 2,865; makefile: 691; ansic: 346
file content (782 lines) | stat: -rw-r--r-- 30,112 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
/*
  Copyright 2017, 2018 Frederic Vincent, Thibaut Paumard

  This file is part of Gyoto.

  Gyoto is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  Gyoto is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with Gyoto.  If not, see <http://www.gnu.org/licenses/>.
*/

// Lorene headers
#include "metric.h"
#include "nbr_spx.h"
#include "utilitaires.h"
#include "graphique.h"

//Gyoto headers
#include "GyotoUtils.h"
#include "GyotoPhoton.h"
#include "GyotoNeutronStarModelAtmosphere.h"
#include "GyotoFactoryMessenger.h"


//Std headers
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
#include <fstream>
#include <string>
#include <cmath>
#include <limits>
#include <cstring>
#include <sstream>

#ifdef GYOTO_USE_CFITSIO
#include <fitsio.h>
#define throwCfitsioError(status) \
    { fits_get_errstatus(status, ermsg); GYOTO_ERROR(ermsg); }
#endif

#define LORENE_UNIT_ACCEL GYOTO_C*GYOTO_C/1e4

using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;
using namespace Lorene;

/// Properties
#include "GyotoProperty.h"
GYOTO_PROPERTY_START(NeutronStarModelAtmosphere,
		     "Neutron star emitting at its surface.")
GYOTO_PROPERTY_FILENAME(NeutronStarModelAtmosphere, File, file)
GYOTO_PROPERTY_BOOL(NeutronStarModelAtmosphere,
		    AverageOverAngle, DontAverageOverAngle,
		    averageOverAngle)
GYOTO_PROPERTY_END(NeutronStarModelAtmosphere, NeutronStar::properties)

void NeutronStarModelAtmosphere::fillProperty(Gyoto::FactoryMessenger *fmp,
			       Property const &p) const {
  if (p.name == "File")
    fmp->setParameter("File", (filename_.compare(0,1,"!") ?
			       filename_ :
			       filename_.substr(1)) );
  else NeutronStar::fillProperty(fmp, p);
}

NeutronStarModelAtmosphere::NeutronStarModelAtmosphere() :
NeutronStar("NeutronStarModelAtmosphere"),
  emission_(NULL), surfgrav_(NULL), cosi_(NULL), freq_(NULL),
  nnu_(0), ni_(0), nsg_(0), average_over_angle_(0) {
  
  GYOTO_DEBUG << endl;

}

NeutronStarModelAtmosphere::NeutronStarModelAtmosphere(const NeutronStarModelAtmosphere& o) :
  NeutronStar(o),
  emission_(NULL), surfgrav_(NULL), cosi_(NULL), freq_(NULL),
  nnu_(o.nnu_), ni_(o.ni_), nsg_(o.nsg_),
  average_over_angle_(o.average_over_angle_)
{
  GYOTO_DEBUG << endl;
  size_t ncells = 0;
  if (o.emission_) {
    emission_ = new double[ncells = nnu_ * ni_ * nsg_];
    memcpy(emission_, o.emission_, ncells * sizeof(double));
  }
  if (o.freq_) {
    freq_ = new double[ncells = nnu_];
    memcpy(freq_, o.freq_, ncells * sizeof(double));
  }
  if (o.cosi_) {
    cosi_ = new double[ncells = ni_];
    memcpy(cosi_, o.cosi_, ncells * sizeof(double));
  }
  if (o.surfgrav_) {
    surfgrav_ = new double[ncells = nsg_];
    memcpy(surfgrav_, o.surfgrav_, ncells * sizeof(double));
  }

}
NeutronStarModelAtmosphere * NeutronStarModelAtmosphere::clone() const {
  return new NeutronStarModelAtmosphere(*this); }

NeutronStarModelAtmosphere::~NeutronStarModelAtmosphere() {
  GYOTO_DEBUG << endl;
  if (emission_) delete [] emission_;
  if (surfgrav_) delete [] surfgrav_;
  if (cosi_) delete [] cosi_;
  if (freq_) delete [] freq_;
}

void NeutronStarModelAtmosphere::setEmission(double * pattern) {
  emission_ = pattern;
}

void NeutronStarModelAtmosphere::surfgrav(double * pattern) {
  surfgrav_ = pattern;
}

void NeutronStarModelAtmosphere::copyIntensity(double const *const pattern, size_t const naxes[3]) {
  GYOTO_DEBUG << endl;
  if (emission_) {
    GYOTO_DEBUG << "delete [] emission_;" << endl;
    delete [] emission_; emission_ = NULL;
  }
  if (pattern) {
    size_t nel;
    if (nnu_ != naxes[0]) {
      GYOTO_DEBUG <<"nnu_ changed, freeing freq_" << endl;
      if (freq_)  { delete [] freq_; freq_  = NULL; }
    }
    if (ni_ != naxes[1]) {
      GYOTO_DEBUG <<"ni_ changed, freeing freq_ and cosi_" << endl;
      if (freq_)  { delete [] freq_; freq_  = NULL; }
      if (cosi_) { delete [] cosi_; cosi_= NULL; }
    }
    if (nsg_ != naxes[2]) {
      GYOTO_DEBUG <<"nsg_ changed, freeing freq_, cosi_ and surfgrav_" << endl;
      if (freq_)  { delete [] freq_; freq_  = NULL; }
      if (cosi_) { delete [] cosi_; cosi_= NULL; }
      if (surfgrav_)   { delete [] surfgrav_;   surfgrav_  = NULL; }
    }
    if (!(nel=(nnu_ = naxes[0]) * (ni_=naxes[1]) * (nsg_=naxes[2])))
      GYOTO_ERROR( "dimensions can't be null");
    GYOTO_DEBUG << "allocate emission_;" << endl;
    emission_ = new double[nel];
    GYOTO_DEBUG << "pattern >> emission_" << endl;
    memcpy(emission_, pattern, nel*sizeof(double));
  }
}

double const * NeutronStarModelAtmosphere::getIntensity() const {
  return emission_; }
void NeutronStarModelAtmosphere::getIntensityNaxes( size_t naxes[3] ) const
{ naxes[0] = nnu_; naxes[1] = ni_; naxes[2] = nsg_; }

void NeutronStarModelAtmosphere::copyGridSurfgrav(double const *const sg,
						size_t nsg) {
  GYOTO_DEBUG << endl;
  if (surfgrav_) {
    GYOTO_DEBUG << "delete [] surfgrav_;" << endl;
    delete [] surfgrav_; surfgrav_ = NULL;
  }
  if (sg) {
    if (!emission_) 
      GYOTO_ERROR("Please use copyIntensity() before copyGridSurfgrav()");
    if (nsg_ != nsg)
      GYOTO_ERROR("emission_ and surfgrav_ have inconsistent dimensions");
    GYOTO_DEBUG << "allocate surfgrav_;" << endl;
    surfgrav_ = new double[nsg_];
    GYOTO_DEBUG << "surfgrav >> surfgrav_" << endl;
    memcpy(surfgrav_, sg, nsg_*sizeof(double));
  }
}
double const * NeutronStarModelAtmosphere::getGridSurfgrav() const {
  return surfgrav_; }

void NeutronStarModelAtmosphere::copyGridCosi(double const *const cosi, size_t ni) {
  GYOTO_DEBUG << endl;
  if (cosi_) {
    GYOTO_DEBUG << "delete [] cosi_;" << endl;
    delete [] cosi_; cosi_ = NULL;
  }
  if (cosi) {
    if (!emission_) 
      GYOTO_ERROR("Please use copyIntensity() before copyGridCosi()");
    if (ni_ != ni)
      GYOTO_ERROR("emission_ and cosi_ have inconsistent dimensions");
    GYOTO_DEBUG << "allocate cosi_;" << endl;
    cosi_ = new double[ni_];
    GYOTO_DEBUG << "cosi >> cosi_" << endl;
    memcpy(cosi_, cosi, ni_*sizeof(double));
  }
}
double const * NeutronStarModelAtmosphere::getGridCosi() const { return cosi_; }

void NeutronStarModelAtmosphere::copyGridFreq(double const *const freq,
					      size_t nnu) {
  GYOTO_DEBUG << endl;
  if (freq_) {
    GYOTO_DEBUG << "delete [] freq_;" << endl;
    delete [] freq_; freq_ = NULL;
  }
  if (freq) {
    if (!emission_) 
      GYOTO_ERROR("Please use copyIntensity() before copyGridFreq()");
    if (nnu_ != nnu)
      GYOTO_ERROR("emission_ and freq_ have inconsistent dimensions");
    GYOTO_DEBUG << "allocate freq_;" << endl;
    freq_ = new double[nnu_];
    GYOTO_DEBUG << "freq >> freq_" << endl;
    memcpy(freq_, freq, nnu_*sizeof(double));
  }
}
double const * NeutronStarModelAtmosphere::getGridFreq() const { return freq_; }

void NeutronStarModelAtmosphere::averageOverAngle(bool t) {
  average_over_angle_=t;}
bool NeutronStarModelAtmosphere::averageOverAngle()const {
  return average_over_angle_;}

void NeutronStarModelAtmosphere::file(std::string const &f) {
# ifdef GYOTO_USE_CFITSIO
  fitsRead(f);
# else
  GYOTO_ERROR("This Gyoto has no FITS i/o");
# endif
}

std::string NeutronStarModelAtmosphere::file() const {
  return filename_;
}

#ifdef GYOTO_USE_CFITSIO
void NeutronStarModelAtmosphere::fitsRead(string filename) {
  GYOTO_MSG << "NeutronStarModelAtmosphere reading FITS file: " <<
    filename << endl;

  filename_ = filename;
  char*     pixfile   = const_cast<char*>(filename_.c_str());
  fitsfile* fptr      = NULL;
  int       status    = 0;
  int       anynul    = 0;
  long      naxes []  = {1, 1, 1};
  long      fpixel[]  = {1,1,1};
  long      inc   []  = {1,1,1};
  char      ermsg[31] = ""; // ermsg is used in throwCfitsioError()

  GYOTO_DEBUG << "NeutronStarModelAtmosphere::readFile(): opening file" << endl;
  if (fits_open_file(&fptr, pixfile, 0, &status)) throwCfitsioError(status) ;

  ////// FIND MANDATORY EMISSION HDU, READ KWDS & DATA ///////
  GYOTO_DEBUG << "NeutronStarModelAtmosphere::readFile(): search emission HDU" << endl;
  if (fits_movnam_hdu(fptr, ANY_HDU,
		      const_cast<char*>("GYOTO NeutronStarModelAtmosphere emission"),
		      0, &status))
    throwCfitsioError(status) ;
  GYOTO_DEBUG << "NeutronStarModelAtmosphere::readFile(): get image size" << endl;
  if (fits_get_img_size(fptr, 3, naxes, &status)) throwCfitsioError(status) ;

  //update nnu_, ni_, nsg_
  nnu_ = naxes[0]; 
  ni_  = naxes[1];
  nsg_  = naxes[2];

  if (emission_) { delete [] emission_; emission_ = NULL; }
  emission_ = new double[nnu_ * ni_ * nsg_];
  if (debug())
    cerr << "NeutronStarModelAtmosphere::readFile(): read emission: "
	 << "nnu_=" << nnu_ << ", ni_="<<ni_ << ", nsg_="<<nsg_ << "...";
  if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc,
		       0, emission_,&anynul,&status)) {
    GYOTO_DEBUG << " error, trying to free pointer" << endl;
    delete [] emission_; emission_=NULL;
    throwCfitsioError(status) ;
  }
  GYOTO_DEBUG << " done." << endl;

  double minemission=DBL_MAX, maxemission=DBL_MIN;
  for (int myi=0;myi<nnu_ * ni_ * nsg_-1;myi++){
    if (emission_[myi]<minemission) minemission=emission_[myi];
    if (emission_[myi]>maxemission) maxemission=emission_[myi];
  }
  //cout << "In NSModelAtm::fitsRead: Min and max emission= " <<
  //  minemission << " " << maxemission << endl;

  ////// FIND MANDATORY FREQ HDU ///////
  
   if (fits_movnam_hdu(fptr, ANY_HDU,
		       const_cast<char*>("GYOTO NeutronStarModelAtmosphere freq"),
		       0, &status))
     throwCfitsioError(status) ;
   if (fits_get_img_size(fptr, 1, naxes, &status)) throwCfitsioError(status) ;
   if (size_t(naxes[0]) != nnu_)
     GYOTO_ERROR("NeutronStarModelAtmosphere::readFile(): freq array not conformable");
   if (freq_) { delete [] freq_; freq_ = NULL; }
   freq_ = new double[nnu_];
   if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc, 
			0, freq_,&anynul,&status)) {
     delete [] freq_; freq_=NULL;
     throwCfitsioError(status) ;
   }

  ////// FIND MANDATORY COSI HDU ///////
  
   if (fits_movnam_hdu(fptr, ANY_HDU,
		       const_cast<char*>("GYOTO NeutronStarModelAtmosphere cosi"),
		       0, &status))
     throwCfitsioError(status) ;
   if (fits_get_img_size(fptr, 1, naxes, &status)) throwCfitsioError(status) ;
   if (size_t(naxes[0]) != ni_)
     GYOTO_ERROR("NeutronStarModelAtmosphere::readFile(): cosi array not conformable");
   if (cosi_) { delete [] cosi_; cosi_ = NULL; }
   cosi_ = new double[ni_];
   if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc, 
			0, cosi_,&anynul,&status)) {
     delete [] cosi_; cosi_=NULL;
     throwCfitsioError(status) ;
   }

  ////// FIND MANDATORY SURFGRAV HDU ///////
  
   if (fits_movnam_hdu(fptr, ANY_HDU,
		       const_cast<char*>("GYOTO NeutronStarModelAtmosphere surfgrav"),
		       0, &status))
     throwCfitsioError(status) ;
   if (fits_get_img_size(fptr, 1, naxes, &status)) throwCfitsioError(status) ;
   if (size_t(naxes[0]) != nsg_)
     GYOTO_ERROR("NeutronStarModelAtmosphere::readFile(): surfgrav array not conformable");
   if (surfgrav_) { delete [] surfgrav_; surfgrav_ = NULL; }
   surfgrav_ = new double[nsg_];
   if (fits_read_subset(fptr, TDOUBLE, fpixel, naxes, inc, 
			0, surfgrav_,&anynul,&status)) {
     delete [] surfgrav_; surfgrav_=NULL;
     throwCfitsioError(status) ;
   }

   ////// CLOSING FITS /////////

  if (fits_close_file(fptr, &status)) throwCfitsioError(status) ;
  fptr = NULL;
}

void NeutronStarModelAtmosphere::fitsWrite(string filename) {
  GYOTO_DEBUG_EXPR(emission_);
  if (!emission_) GYOTO_ERROR("NeutronStarModelAtmosphere::fitsWrite(filename): nothing to save!");
  filename_ = filename;
  char*     pixfile   = const_cast<char*>(filename_.c_str());
  fitsfile* fptr      = NULL;
  int       status    = 0;
  long      naxes []  = {long(nnu_), long(ni_), long(nsg_)};
  long      fpixel[]  = {1,1,1};
  char * CNULL=NULL;

  char      ermsg[31] = ""; // ermsg is used in throwCfitsioError()

  ////// CREATE FILE
  GYOTO_DEBUG << "creating file \"" << pixfile << "\"... ";
  fits_create_file(&fptr, pixfile, &status);
  if (debug()) cerr << "done." << endl;
  fits_create_img(fptr, DOUBLE_IMG, 3, naxes, &status);
  if (status) throwCfitsioError(status) ;

  ////// SAVE EMISSION IN PRIMARY HDU ///////
  GYOTO_DEBUG << "saving emission_\n";
  fits_write_key(fptr, TSTRING,
		 const_cast<char*>("EXTNAME"),
		 const_cast<char*>("GYOTO NeutronStarModelAtmosphere emission"),
		 CNULL, &status);
  fits_write_pix(fptr, TDOUBLE, fpixel, nnu_*ni_*nsg_, emission_, &status);
  if (status) throwCfitsioError(status) ;

  ////// SAVE FREQ HDU ///////
  if (!freq_) GYOTO_ERROR("NeutronStarModelAtmosphere::fitsWrite(filename): no freq to save!");
  GYOTO_DEBUG << "saving freq_\n";
  fits_create_img(fptr, DOUBLE_IMG, 1, naxes, &status);
  fits_write_key(fptr, TSTRING, const_cast<char*>("EXTNAME"),
		 const_cast<char*>("GYOTO NeutronStarModelAtmosphere freq"),
		 CNULL, &status);
  fits_write_pix(fptr, TDOUBLE, fpixel, nnu_, freq_, &status);
  if (status) throwCfitsioError(status) ;
  
  ////// SAVE COSI HDU ///////
  if (!cosi_) GYOTO_ERROR("NeutronStarModelAtmosphere::fitsWrite(filename): no cosi to save!");
  GYOTO_DEBUG << "saving cosi_\n";
  fits_create_img(fptr, DOUBLE_IMG, 1, naxes+1, &status);
  fits_write_key(fptr, TSTRING, const_cast<char*>("EXTNAME"),
		 const_cast<char*>("GYOTO NeutronStarModelAtmosphere cosi"),
		 CNULL, &status);
  fits_write_pix(fptr, TDOUBLE, fpixel, ni_, cosi_, &status);
  if (status) throwCfitsioError(status) ;
  
  ////// SAVE SURFGRAV HDU ///////
  if (!surfgrav_) GYOTO_ERROR("NeutronStarModelAtmosphere::fitsWrite(filename): no surfgrav to save!");
    GYOTO_DEBUG << "saving surfgrav_\n";
    fits_create_img(fptr, DOUBLE_IMG, 1, naxes+2, &status);
    fits_write_key(fptr, TSTRING, const_cast<char*>("EXTNAME"),
		   const_cast<char*>("GYOTO NeutronStarModelAtmosphere surfgrav"),
		   CNULL, &status);
    fits_write_pix(fptr, TDOUBLE, fpixel, nsg_, surfgrav_, &status);
    if (status) throwCfitsioError(status) ;

  ////// CLOSING FILE ///////
  GYOTO_DEBUG << "close FITS file\n";
  if (fits_close_file(fptr, &status)) throwCfitsioError(status) ;
  fptr = NULL;
}
#endif

void NeutronStarModelAtmosphere::getIndices(size_t i[3], double const co[4], 
				 double cosi, double nu) const {
  const Vector& a_i = *(gg_->getAccel_tab()[0]);
  double rr=co[1], th=co[2], phi=co[3];
  if (rr==0.) GYOTO_ERROR("In NeutronStarModelAtm.C::getIndices r is 0!");
  double rsinth = rr*sin(th);
  if (rsinth==0.) GYOTO_ERROR("In NeutronStarModelAtm.C::getIndices on z axis!");
  double rm1 = 1./rr, rm2 = rm1*rm1, sm1 = 1./sin(th),
    sm2 = sm1*sm1;
  double a_r = a_i(1).val_point(rr,th,phi),
    a_t = rr*a_i(2).val_point(rr,th,phi),
    a_p = rr*sin(th)*a_i(3).val_point(rr,th,phi);
  if (a_p!=0.) {GYOTO_ERROR("In NeutronStarModelAtm::getIndices: "
			   "For axisym spacetime phi-compo should be zero");}
  const Sym_tensor& g_up_ij = *(gg_->getGamcon_tab()[0]);
  double grr=g_up_ij(1,1).val_point(rr,th,phi), 
    gtt=rm2*g_up_ij(2,2).val_point(rr,th,phi);
  double ar = a_r*grr, at = a_t*gtt; //contravariant 3-accel

  double accelvecNorm2 = grr*a_r*a_r + gtt*a_t*a_t; // squared norm of accel vector
  if (accelvecNorm2<=0.) GYOTO_ERROR("In NeutronStarModelAtmosphere::getIndices"
				    " accel vector should be spacelike");
  double accelvecNorm = sqrt(accelvecNorm2);

  double sgloc = accelvecNorm*LORENE_UNIT_ACCEL*100.; // LORENE speaks in SI, the 100 translates to cgs

  //cout << "Accel vec compo, gs= " << a_r << " " << a_t << " " << a_p << " " << sgloc << endl;
  if (surfgrav_) { 
    if (nsg_==1){ // Only one value of surfgrav, put some value, won't be used
      i[2]=1; // don't put 0, see later why: it would return an error
    }else{
      if (sgloc >= surfgrav_[nsg_-1]) i[2] = nsg_-1; // emission will be 0
      else {
	for(i[2]=0; sgloc > surfgrav_[i[2]]; ++i[2]){}
	//cout << "In indices sg: " << i[2] << " " << surfgrav_[i[2]-1] << " " << sgloc << " " << surfgrav_[i[2]] << endl;
	/*
	  With this definition:
	  surfgrav_[i[2]-1] <= sgloc < surfgrav_[i[2]]
	  
	  The case i[2]=0 (if r<surfgrav_[0]) is dealt
	  with later on, it returns 0
	*/
      }
    }
  } else {
    GYOTO_ERROR("In NeutronStarModelAtmosphere::getIndices: surfgrav undefined!");
  }

  if (cosi_) {
    if (cosi >= cosi_[ni_-1]) i[1] = ni_-1;
    else {
      for(i[1]=0; cosi > cosi_[i[1]]; ++i[1]){}
      //cout << "In indices cos: " << i[1] << " " << cosi_[i[1]-1] << " " << cosi << " " << cosi_[i[1]] << endl;
      /*
	cosi_[i[1]-1] <= cosi < cosi_[i[1]]
      */
    }
  } else {
    GYOTO_ERROR("In NeutronStarModelAtmosphere::getIndices: cosi undefined!");
  }

  if (freq_) {
    if (nu <= freq_[nnu_-1]) i[0] = nnu_-1;
    else {
      for(i[0]=nnu_-1; nu > freq_[i[0]]; --i[0]){}
      //cout << "In indices nu: " << i[0] << " " << freq_[i[0]+1]/GYOTO_eV2Hz << " " << nu/GYOTO_eV2Hz << " " << freq_[i[0]]/GYOTO_eV2Hz << endl;
      /*
	Caution: freq is ordered decreasingly!
	freq_[i[0]+1] <= nu < freq_[i[0]]
      */
    }
  } else {
    GYOTO_ERROR("In NeutronStarModelAtmosphere::getIndices: freq undefined!");
  }

}

double NeutronStarModelAtmosphere::emission(double nu, double,
					    state_t const &cp,
					    double const co[8]) const{
  /*
    Important remarks on the precision: the variable GYOTO_T_TOL
    defined in GyotoDefs.h is important as it tunes the precision
    with which Gyoto will fine the star's surface. GYOTO_T_TOL=1e-4
    e.g. leads to an error on r_emission of approx 1e-4 as well.
    This for instance leads to small changes of Iobs when varying
    the inclination for a non-rotating star (although the emission
    should be indep of i). There is another limitation specifically
    for photons that hit the star tangentially. These guys should
    be integrated with care to find a precise (r_emission,theta_emission),
    and thus get a precise photon tangent vector at emission, that in
    turn manages the precision of cosi. To ensure this, a good
    precaution is to decrease DeltaMaxOverR in the xml, eg to 0.1
    to get something very precise. [Tested on August 2017 for a 30*30
    map: actually some few pixels even need 0.01 to get the same
    value for i=1° and i=90°! This would be really crazy long for
    a full map...]

    There is a second important limitation: the precision of Lorene.
    The metrics given by Michal in May 2017 e.g. lead to a value of
    r_star constant with theta to within approx 1e-8. 

    So to have the most precise calcualtion (to machine prec), take
    GYOTO_T_TOL=machine prec, make sure that Lorene works at
    machine prec as well, and use a small DeltaMAxOverR. Of course
    this is only needed to get crazy high precision (definitely not
    a problem to fit observations e.g.)
   */

  GYOTO_DEBUG << endl;
  //cout << "In emission NSatm, intens test= " << emission_[0] << endl;
  const Vector& a_i = *(gg_->getAccel_tab()[0]);
  double rr=co[1], th=co[2], phi=co[3];
  //cout << "r,th,phi in emiss= " << setprecision(10) << rr << " " << th << " " << phi << endl;

  // First, check that we are on the star surface (not obvious, photon
  // could be a bit inside, see StandardAstrobj.C). If not, return 0.
  // This is important coz if not present, sgloc can be computed inside
  // the star and be out of the range computed in the grid, leading to error.
  Valeur* ns_surf = gg_->getNssurf_tab()[0];
  ns_surf->std_base_scal();
  double rstar = ns_surf->val_point(0,0.,th,phi);
  //cout << "rstar= " << rstar << endl;
  double rtol = 1e-4; // should be such that GYOTO_T_TOL ensures a
                      // a convergence to rstar better than rtol
  if (fabs(rstar-rr)>rtol) return 0.;
  
  if (rr==0.) GYOTO_ERROR("In NeutronStarModelAtm.C::emission r is 0!");
  double rsinth = rr*sin(th);
  if (rsinth==0.) GYOTO_ERROR("In NeutronStarModelAtm.C::emission on z axis!");
  double rm1 = 1./rr, rm2 = rm1*rm1, sm1 = 1./sin(th),
    sm2 = sm1*sm1;

  // Finding acceleration 4-vector
  /*
    Let us call a^\alpha the acceleration 4-vector (normal to the surface).
    Because we assume circular fluid motion, the covariant
    acceleration reads
    a_\alpha = - \nabla (ln u_t) = - \partial_\alpha (ln u_t)
    Thus, because of stationarity + axisymetry: a_t = a_phi = 0
    Thus a^t = g^{tt} a_t + g^{tphi} a_phi = 0 and the same for a^phi.
    Thus only a^r and a^theta remain.
   */
  
  double a_r = a_i(1).val_point(rr,th,phi),
    a_t = rr*a_i(2).val_point(rr,th,phi),
    a_p = rr*sin(th)*a_i(3).val_point(rr,th,phi);
  if (a_p!=0.) {GYOTO_ERROR("In NeutronStarModelAtm::emission: "
			   "For axisym spacetime phi-compo should be zero");}
  const Sym_tensor& g_up_ij = *(gg_->getGamcon_tab()[0]);
  double grr=g_up_ij(1,1).val_point(rr,th,phi), 
    gtt=rm2*g_up_ij(2,2).val_point(rr,th,phi);
    //gpp=rm2*sm2*g_up_ij(3,3).val_point(rr,th,phi); // here gpp is gamma^{phi,phi} ; it is useless as a_p is zero
  double ar = a_r*grr, at = a_t*gtt; //contravariant 3-accel compo

  double accelvec[4]={0.,ar,at,0.}; // acceleration 4-vector, normal to surf

  //cout << "accel= " << a_r  << " " << a_t << " " << a_p << endl;

  double accelvecNorm2 = grr*a_r*a_r + gtt*a_t*a_t; // squared norm of accel vector
  if (accelvecNorm2<=0.) GYOTO_ERROR("In NeutronStarModelAtmosphere::emission"
				    " accel vector should be spacelike");
  double accelvecNorm = sqrt(accelvecNorm2);
  // Surface gravity is that quantity, scaled to cgs units:
  double sgloc = accelvecNorm*LORENE_UNIT_ACCEL*100.; // LORENE speaks in SI, the 100 translates to cgs

  //cout << "r,rstar,sgloc=" << rr << " " << rstar << " " << sgloc << endl;
  
  //cout << "r, sg, nsg= " << rr << " " << sgloc << " " << nsg_ << endl; 
  
  //cout << "accel vector= " << ar << " " << at << endl;
  //cout << "photon vector= " << cp[4] << " " << cp[5] << " " << cp[6] << " " << cp[7] << endl;
    
  // Compute angle between photon direction and normal
  double np = 1./accelvecNorm*gg_->ScalarProd(&cp[0],accelvec,&cp[4]),
    up = gg_->ScalarProd(&cp[0],co+4,&cp[4]);
  //cout << "accel and velo= " << accelvec[0] << " " << accelvec[1] << " " << accelvec[2] << " " << accelvec[3] << " " << cp[4] << " " << cp[5] << " " << cp[6] << " " << cp[7] << " " << endl;
  //cout << "scalar prods= " << np << " " << up << endl;
  double p_r=cp[5]/grr, p_t=cp[6]/gtt;
  double myscalprod = 1./accelvecNorm*(grr*a_r*p_r + gtt*a_t*p_t);
  //cout << "myscalprod= " << myscalprod << endl;
  //cout << "gmunu= " << grr << " " << gtt << endl;
  //cout << "prods of ap= " << a_r*p_r << " " << a_t*p_t << endl;
  //cout << "parts of scal prod= " << grr*a_r*p_r << " " << gtt*a_t*p_t << endl;
  //cout << "ar, pr, arpr= " << a_r << " " << p_r << " " << a_r*p_r << endl;

  // cos between unit normal n and tangent to photon p
  // is equal -n.p/u.p (u being the emitter's 4-vel);
  double cosi = -np/up;
  //cout << "cosi= " << cosi << endl;
  double tolcos = 0.005;
  if (cosi>1.){
    if (fabs(cosi-1)>tolcos){
      cout << "Bad cosi= " << cosi << endl;
      GYOTO_ERROR("In NeutronStarModelAtmosphere: bad cos!");
    }
    cosi=1.;
  }
  if (cosi<0.){
    // cosi should be >0, the photon cannot come from
    // inside the star!
    if (fabs(cosi)>tolcos){
      cout << "Bad cosi= " << cosi << endl;
      //GYOTO_ERROR("In NeutronStarModelAtmosphere: bad cos!");
    }
    cosi=0.;
  }
  //cout << "cosi= " << cosi << endl;
  // Don't put a "return cosi" here, see later

  // Indices of the current closest grid point
  size_t ind[3]; // {i_nu, i_cosi, i_surfgrav}
  getIndices(ind, co, cosi, nu);

  //cout << "sg, isg, nsg= " << sgloc << " " << ind[2] << " " << nsg_ <<endl;

  //if (ind[2]==nsg_) return 0.; // 0 emission outside simulation scope

  // Error if current surfgrav is not in provided range
  if (nsg_>1 && (sgloc<=surfgrav_[0] || sgloc>=surfgrav_[nsg_-1])){
    cout << "With surf grav= " << sgloc << endl;
    GYOTO_ERROR("In NeutronStarModelAtmosphere: bad value of surface gravity");
  }
  // No emission outside freq range
  if (nu<=freq_[nnu_-1] || nu>=freq_[0]) {
    //cout << "bad freq nu= " << nu << " " << freq_[0] << " " << freq_[nnu_-1] << endl;
    return 0.;
  }
  
  // So here, ind[2] should be >0 and ind[0]<nnu_-1
  if (ind[2]==0 || ind[0]==nnu_-1){
    GYOTO_ERROR("In NeutronStarModelAtmosphere::emission "
	       "bad {nu,r} indices");
  }

  //return acos(cosi)*180./M_PI; // TEST!!! Don't forget to impose redshift to 1

  //cout << setprecision(10) << "nu(eV), surfgrav, cosi= " << nu/GYOTO_eV2Hz << " " << sgloc << " " << cosi << endl;
  //cout << "indices= " << ind[0] << " " << ind[1] << " " << ind[2] << endl;
  double Iem=0.;
  size_t inul=ind[0]+1, inuu=ind[0], 
    isgl=ind[2]-1, isgu=ind[2]; // Correct: inu is freq, ordered decreasingly,
                              // isg is surfgrav ordered increasingly

  if (nsg_==1){
    // Only one value of surfgrav, i.e. non-rotating star
    // put surfgrav indices to zero, no interpolation in this direction
    isgl=0;
    isgu=0;
  }

  //  cout << "ind_cosi=, ni= " << ind[1] << " " << ni_ << endl;
  //cout << "min max sg= " << surfgrav_[0] << " " << surfgrav_[nsg_-1] << endl;

  /* 
     How emission_ is organized:

     [
     (nu=0,cos=0,sg=0),(nu=0,cos=0,sg=1),...,(nu=0,cos=0,sg=nsg-1),
     (nu=0,cos=1,sg=0),(nu=0,cos=1,sg=1),...,(nu=0,cos=1,sg=nsg-1),
     ...
     (nu=0,cos=ni-1,sg=0),(nu=0,cos=ni-1,sg=1),...,(nu=0,cos=ni-1,sg=nsg-1),
     (nu=1,cos=0,sg=0),(nu=1,cos=0,sg=1),...,(nu=1,cos=0,sg=nsg-1),
     ...
     ]

   */
  if (!average_over_angle_){
    if (cosi <= cosi_[0] || cosi >= cosi_[ni_-1]){
      // If cosi is out of the cosi_ range, bilinear interpol in nu,sg
      size_t icos=ind[1];
      //cout << "Bilin cos value unique= " << cosi_[icos] << endl;
      double I00 = emission_[inul*ni_*nsg_+icos*nsg_+isgl], // I_{nu,sg}
	I01 = emission_[inul*ni_*nsg_+icos*nsg_+isgu],
	I10 = emission_[inuu*ni_*nsg_+icos*nsg_+isgl],
	I11 = emission_[inuu*ni_*nsg_+icos*nsg_+isgu];
      //cout << "bilin dir: " << I00 << " " << I01 << " " << I10 << " " << I11 << endl;
      double rationu = (nu-freq_[inul])/(freq_[inuu]-freq_[inul]),
	ratiosg = (sgloc-surfgrav_[isgl])/(surfgrav_[isgu]-surfgrav_[isgl]);
      if (nsg_==1) ratiosg=0.; // no interpolation in sg
      Iem = I00+(I10-I00)*rationu
	+(I01-I00)*ratiosg
	+(I11-I01-I10+I00)*rationu*ratiosg;
      //cout << "I interp= " << Iem << endl;
    }else{
      // Trilinear interpol
      if (ind[1]==0){
	GYOTO_ERROR("In NeutronStarModelAtmosphere::emission "
		   "bad cosi indice");
      }
      size_t icosl=ind[1]-1, icosu=ind[1];
      //cout << "Trilin interpol indices= " << inul << " " << inuu << " " << icosl << " " << icosu << " " << isgl << " " << isgu << endl;
      double I000 = emission_[inul*ni_*nsg_+icosl*nsg_+isgl], // I_{nu,cosi,sg}
	I100 = emission_[inuu*ni_*nsg_+icosl*nsg_+isgl],
	I110 = emission_[inuu*ni_*nsg_+icosu*nsg_+isgl], 
	I010 = emission_[inul*ni_*nsg_+icosu*nsg_+isgl],
	I001 = emission_[inul*ni_*nsg_+icosl*nsg_+isgu], 
	I101 = emission_[inuu*ni_*nsg_+icosl*nsg_+isgu],
	I111 = emission_[inuu*ni_*nsg_+icosu*nsg_+isgu],
	I011 = emission_[inul*ni_*nsg_+icosu*nsg_+isgu];
      //cout << setprecision(10) << "trilin dir: " << I000 << " " << I100 << " " << I110 << " " << I010 << " " << I001 << " " << I101 << " " << I111 << " " << I011 << endl;
      double rationu = (nu-freq_[inul])/(freq_[inuu]-freq_[inul]),
	ratioi = (cosi-cosi_[icosl])/(cosi_[icosu]-cosi_[icosl]),
	ratiosg = (sgloc-surfgrav_[isgl])/(surfgrav_[isgu]-surfgrav_[isgl]);
      if (nsg_==1) ratiosg=0.; // no interpolation in sg
      Iem = I000
	+ (I100-I000)*rationu
	+ (I010-I000)*ratioi
	+ (I001-I000)*ratiosg
	+ (I110-I010-I100+I000)*rationu*ratioi
	+ (I011-I010-I001+I000)*ratioi*ratiosg
	+ (I101-I001-I100+I000)*rationu*ratiosg
	+ (I111-I011-I101-I110+I100+I001+I010-I000)*rationu*ratioi*ratiosg;
      //cout << "I interp= " << Iem << endl;
    }
  }else{
    // Average over cosi values
    // with bilinear interpol in nu,sg
    double I00=0., I01=0., I10=0., I11=0.;
    /* Using trapezoidal rule, I_integ = \int I(mu)*dmu, mu=cos(i)
       NB: in Garcia+14, they compute a flux because they don't raytrace,
       so they use F = 1/4pi * \int I(i) cos(i) di = 1/2 * \int I(mu) mu dmu,
       here we are not interested in the same quantity */
    double dcostot = 0.; // will contain \int d\mu (~1 but not exactly)
    for (size_t ii=0; ii<ni_-1; ++ii){
      double dcos = cosi_[ii+1]-cosi_[ii];
      I00 += 0.5*dcos*
	(emission_[inul*ni_*nsg_+(ii+1)*nsg_+isgl]
	 +emission_[inul*ni_*nsg_+ii*nsg_+isgl]);
      I01 += 0.5*dcos*
	(emission_[inul*ni_*nsg_+(ii+1)*nsg_+isgu]
	 +emission_[inul*ni_*nsg_+ii*nsg_+isgu]);
      I10 += 0.5*dcos*
	(emission_[inuu*ni_*nsg_+(ii+1)*nsg_+isgl]
	 +emission_[inuu*ni_*nsg_+ii*nsg_+isgl]);
      I11 += 0.5*dcos*
	(emission_[inuu*ni_*nsg_+(ii+1)*nsg_+isgu]
	 +emission_[inuu*ni_*nsg_+ii*nsg_+isgu]);
      dcostot+=dcos;
      
    } 

    // Normalizing (int d cos(i) is very close to 1 but not exactly 1)
    I00/=dcostot;
    I01/=dcostot;
    I10/=dcostot;
    I11/=dcostot;

    //cout << "\int dcos, and I bilin avg: " << dcostot << " " << I00 << " " << I01 << " " << I10 << " " << I11 << endl;

    double rationu = (nu-freq_[inul])/(freq_[inuu]-freq_[inul]),
      ratiosg = (sgloc-surfgrav_[isgl])/(surfgrav_[isgu]-surfgrav_[isgl]);
    if (nsg_==1) ratiosg=0.; // no interpolation in sg
    Iem = I00+(I10-I00)*rationu
      +(I01-I00)*ratiosg
      +(I11-I01-I10+I00)*rationu*ratiosg;
    //cout << "I interp= " << Iem << endl;
  }
  //cout << "return= " << Iem << endl;
  return Iem/1e3; // 1e3 factor translates from cgs to SI, gyoto speaks in SI

}