1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
/*
Copyright 2019, 2020 Frederic Vincent, Thibaut Paumard, Nicolas Aimar
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#include "GyotoUtils.h"
#include "GyotoPlasmoid.h"
#include "GyotoPhoton.h"
#include "GyotoWorldline.h"
#include "GyotoFactoryMessenger.h"
#include <iostream>
#include <cmath>
#include <string>
#include <cstdlib>
#include <float.h>
#include <sstream>
#include <string.h>
#ifdef GYOTO_USE_CFITSIO
#define throwCfitsioError(status) \
{ fits_get_errstatus(status, ermsg); GYOTO_ERROR(ermsg); }
#endif
using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;
/// Properties
#include "GyotoProperty.h"
GYOTO_PROPERTY_START(Plasmoid, "Synchrotron-emitting orbiting plasmoid heated by magnetic reconnection")
GYOTO_PROPERTY_VECTOR_DOUBLE(Plasmoid, InitPosition, initPosition,
"(t,r,theta,phi) initial position of plasmoid")
GYOTO_PROPERTY_VECTOR_DOUBLE(Plasmoid, InitVelocity, initVelocity,
"(dr/dt,dtheta/dt,dphi/dt) initial 3-velocity "
"of plasmoid")
GYOTO_PROPERTY_DOUBLE(Plasmoid, RadiusMax, radiusMax,
"Maximun radius of the Plasmoid")
GYOTO_PROPERTY_END(Plasmoid, UniformSphere::properties)
Plasmoid::Plasmoid() :
FitsRW(),
UniformSphere("Plasmoid"),
flag_("None"),
posSet_(false),
posIni_(NULL),
fourveldt_(NULL),
radiusMax_(1.),
varyRadius_("None"),
filename_("None"),
jnu_array_(NULL),
anu_array_(NULL),
freq_array_(NULL),
t_inj_(1.)
{
kind_="Plasmoid";
# ifdef GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << "done." << endl;
# endif
posIni_= new double[4];
fourveldt_= new double[4];
}
Plasmoid::Plasmoid(const Plasmoid& orig) :
FitsRW(orig),
UniformSphere(orig),
flag_(orig.flag_),
posSet_(orig.posSet_),
posIni_(NULL),
fourveldt_(NULL),
radiusMax_(orig.radiusMax_),
varyRadius_(orig.varyRadius_),
filename_(orig.filename_),
jnu_array_(NULL),
anu_array_(NULL),
freq_array_(NULL),
t_inj_(orig.t_inj_)
{
if(orig.posIni_){
posIni_= new double[4];
memcpy(posIni_,orig.posIni_, 4*sizeof(double));
}
if(orig.fourveldt_){
fourveldt_= new double[4];
memcpy(fourveldt_,orig.fourveldt_, 4*sizeof(double));
}
size_t ncells=0;
size_t nnu=FitsRW::nnu(), nt=FitsRW::nt();
ncells=nnu*nt;
if (orig.jnu_array_){
jnu_array_ = new double[ncells];
memcpy(jnu_array_,orig.jnu_array_, ncells*sizeof(double));
}
if (orig.anu_array_){
anu_array_ = new double[ncells];
memcpy(anu_array_,orig.anu_array_, ncells*sizeof(double));
}
if (orig.freq_array_){
freq_array_ = new double[nnu];
memcpy(freq_array_,orig.freq_array_, nnu*sizeof(double));
}
}
Plasmoid* Plasmoid::clone() const { return new Plasmoid(*this); }
Plasmoid::~Plasmoid() {
if (debug()) cerr << "DEBUG: Plasmoid::~Plasmoid()\n";
if (jnu_array_) delete [] jnu_array_;
if (anu_array_) delete [] anu_array_;
if (freq_array_) delete [] freq_array_;
}
string Plasmoid::className() const { return string("Plasmoid"); }
string Plasmoid::className_l() const { return string("Plasmoid"); }
void Plasmoid::radiativeQ(double Inu[], // output
double Taunu[], // output
double const nu_ems[], size_t nbnu, // input
double dsem,
state_t const &coord_ph,
double const coord_obj[8]) const {
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
# endif
if (filename_=="None")
GYOTO_ERROR("In Plamsoid RadiativeQ : filename_ not defined, please use file(string)");
double tcur=coord_ph[0]*GYOTO_G_OVER_C_SQUARE*gg_->mass()/GYOTO_C/60.; // in min
double t0 = posIni_[0]*GYOTO_G_OVER_C_SQUARE*gg_->mass()/GYOTO_C/60.; // t0 in min
// Defining jnus, anus
double jnu[nbnu];
double anu[nbnu];
for (size_t ii=0; ii<nbnu; ++ii){
// Initializing to <0 value to create errors if not updated
// [ exp(-anu*ds) will explose ]
jnu[ii]=-1.;
anu[ii]=-1.;
}
// COMPUTE VALUES IN FUNCTION OF PHASE
if (tcur<=t0){ // HEATING PHASE
for (size_t ii=0; ii<nbnu; ++ii){
jnu[ii]=0;
anu[ii]=0;
}
}
else{ // COOLING PHASE
double tt=(tcur-t0)*60.; // in sec
for (size_t ii=0; ii<nbnu; ++ii){
jnu[ii]=FitsRW::interpolate(nu_ems[ii], tt, jnu_array_, freq_array_);
anu[ii]=FitsRW::interpolate(nu_ems[ii], tt, anu_array_, freq_array_);
}
}
// RETURNING TOTAL INTENSITY AND TRANSMISSION
for (size_t ii=0; ii<nbnu; ++ii){
double jnu_tot = jnu[ii], anu_tot = anu[ii];
// expm1 is a precise implementation of exp(x)-1
double em1=std::expm1(-anu_tot * dsem * gg_->unitLength());
Taunu[ii] = em1+1.;
Inu[ii] = anu_tot == 0. ? jnu_tot * dsem * gg_->unitLength() :
-jnu_tot / anu_tot * em1;
if (Inu[ii]<0.)
GYOTO_ERROR("In Plasmoid::radiativeQ: Inu<0");
if (Inu[ii]!=Inu[ii] or Taunu[ii]!=Taunu[ii])
GYOTO_ERROR("In Plasmoid::radiativeQ: Inu or Taunu is nan");
if (Inu[ii]==Inu[ii]+1. or Taunu[ii]==Taunu[ii]+1.)
GYOTO_ERROR("In Plasmoid::radiativeQ: Inu or Taunu is infinite");
}
}
void Plasmoid::motionType(std::string const type){
if (type=="Helical" || type=="Equatorial")
{
flag_=type;
}
else
GYOTO_ERROR("In Plasmoid::motonType: motion not recognized, please enter a valid motion type (Helical or Equatorial)");
}
SmartPointer<Metric::Generic> Plasmoid::metric() const { return gg_; }
void Plasmoid::metric(SmartPointer<Metric::Generic> gg) {
UniformSphere::metric(gg);
gg_=gg;
}
void Plasmoid::initPosition(std::vector<double> const &v) {
posIni_[0] = v[0];
posIni_[1] = v[1];
posIni_[2] = v[2];
posIni_[3] = v[3];
posSet_=true;
}
std::vector<double> Plasmoid::initPosition() const {
std::vector<double> v (4, 0.);
v[0] = posIni_[0];
v[1] = posIni_[1];
v[2] = posIni_[2];
v[3] = posIni_[3];
return v;
}
void Plasmoid::initVelocity(std::vector<double> const &v) {
if (!posSet_)
GYOTO_ERROR("In Plasmoid::initVelocity initial Position not defined");
fourveldt_[1] = v[0];
fourveldt_[2] = v[1];
fourveldt_[3] = v[2];
fourveldt_[0] = 1.;
double sum = 0;
double g[4][4];
gg_->gmunu(g, posIni_);
for (int i=0;i<4;++i) {
for (int j=0;j<4;++j) {
sum+=g[i][j]*fourveldt_[i]*fourveldt_[j];
}
}
if (sum>=0)
GYOTO_ERROR("In Plasmoid::initVelocity Initial Velocity over C");
}
std::vector<double> Plasmoid::initVelocity() const {
std::vector<double> v (3, 0.);
v[0] = fourveldt_[1];
v[1] = fourveldt_[2];
v[2] = fourveldt_[3];
return v;
}
void Plasmoid::initCoord(std::vector<double> const &v) {
posIni_[0] = v[0];
posIni_[1] = v[1];
posIni_[2] = v[2];
posIni_[3] = v[3];
fourveldt_[0] = v[4];
fourveldt_[1] = v[5];
fourveldt_[2] = v[6];
fourveldt_[3] = v[7];
}
std::vector<double> Plasmoid::initCoord() const {
std::vector<double> v (8, 0.);
v[0] = posIni_[0];
v[1] = posIni_[1];
v[2] = posIni_[2];
v[3] = posIni_[3];
v[4] = fourveldt_[0];
v[5] = fourveldt_[1];
v[6] = fourveldt_[2];
v[7] = fourveldt_[3];
return v;
}
void Plasmoid::radiusMax(double rr) {
if (rr<0.2)
GYOTO_ERROR("In Plasmoid::radiusMax radiusMax<0.2 (minimum value)");
radiusMax_=rr;
}
double Plasmoid::radiusMax() const {
return radiusMax_;
}
void Plasmoid::Radius(std::string vary) {
if (vary=="Constant" || vary=="Varying") varyRadius_=vary;
else
GYOTO_ERROR("In Plasmoid::Radius operation on radius not recognized, please enter a valid operation (Constant or Varying)");
}
void Plasmoid::getCartesian(double const * const dates, size_t const n_dates,
double * const x, double * const y, double * const z,
double * const xprime, double * const yprime, double * const zprime){
// this yields the position of the center of the UnifSphere
// at time t
// fourveldt_ is the initial 3-velocity dxi/dt
// vel is the 4-velocity dxnu/dtau
if (n_dates!=1)
GYOTO_ERROR("In Plasmoid::getCartesian n_dates!=1");
if (flag_=="None")
GYOTO_ERROR("In Plasmoid::getCartesian Motion not defined; motionType('Helical' or 'Equatorial'");
double tt=dates[0];
double r, theta, phi; // spherical coordinates
double vel[4];
if (flag_=="Helical") // Helical ejection
{
r = posIni_[1]+fourveldt_[1]*(tt-posIni_[0]);
theta = posIni_[2];
phi = posIni_[3] + posIni_[1]*posIni_[1]*fourveldt_[3]/fourveldt_[1]*(pow(posIni_[1],-1.)-pow(r,-1.)); // result of integrale of vphi over time
//cout << "t, r, theta, phi = " << tt << ", " << r << ", " << theta << ", " << phi << endl;
}
else // Equatorial motion (Keplerian orbit)
{
if (posIni_[2]!=M_PI/2.)
cout << "Warning input theta value incompatible with 'Equatorial' motion. Theta fixed to pi/2." << endl;
getVelocity(posIni_, vel);
r = posIni_[1];
theta = M_PI/2.;
phi = posIni_[3] + vel[3]/vel[0]*(tt-posIni_[0]);
}
// Convertion into cartesian coordinates
x[0] = r*sin(theta)*cos(phi);
y[0] = r*sin(theta)*sin(phi);
z[0] = r*cos(theta);
if (xprime!=NULL && yprime!=NULL && zprime!=NULL)
{
xprime[0] = r*sin(theta)*sin(phi)*vel[2];
yprime[0] = -r*sin(theta)*cos(phi)*vel[2];
zprime[0] = 0.;
}
}
void Plasmoid::getVelocity(double const pos[4], double vel[4]){
if (!gg_)
GYOTO_ERROR("In Plasmoid::getVelocity Metric not set");
if (flag_=="None")
GYOTO_ERROR("In Plasmoid::getVelocity Motion not defined; motionType('Helical' or 'Equatorial'");
if (flag_=="Helical") // Helical case
{
vel[0] = 1.;
vel[1] = fourveldt_[1];
vel[2] = 0.;
vel[3] = fourveldt_[3]*pow(posIni_[1]/pos[1],2.); // conservation of the Newtonian angular momentum [Ball et al. 2020]
gg_->normalizeFourVel(pos, vel);
}
else // Equatorial case
{
gg_->circularVelocity(pos, vel);
}
}
int Plasmoid::Impact(Photon* ph, size_t index, Properties *data){
// Overload function of StandardAstrobj::Impact
// This function update the radius of the plasmoid
// which increase linearly during the injection phase
// before calling the StandardAstrobj function
double radiusMin = 0.2;
double t0 = posIni_[0]*GYOTO_G_OVER_C_SQUARE*gg_->mass()/GYOTO_C/60.; // t0 in min
size_t sz = ph -> parallelTransport()?16:8;
state_t p1(sz);
ph->getCoord(index, p1);
double tcur = p1[0]*GYOTO_G_OVER_C_SQUARE*gg_->mass()/GYOTO_C/60.; //tcur in min
if (varyRadius_== "Varying")
{
if (tcur<=t0) radius(radiusMin);
else if (tcur<=t0+t_inj_) radius(radiusMin+(radiusMax_-radiusMin)*(tcur-t0)/t_inj_);
else radius(radiusMax_);
}
else if (varyRadius_== "Constant") radius(radiusMax_);
else{
GYOTO_ERROR("In Plasmoid::Impact operation on radius not recognized. Use Radius('Constant' or 'Varying')");
}
return Standard::Impact(ph, index, data);
}
void Plasmoid::file(std::string const &f) {
# ifdef GYOTO_USE_CFITSIO
fitsRead(f);
# else
GYOTO_ERROR("This Gyoto has no FITS i/o");
# endif
}
#ifdef GYOTO_USE_CFITSIO
vector<size_t> Plasmoid::fitsRead(string filename) {
// Remove first char if it is "!"
if (filename.substr(0,1)=="!")
filename.erase(0,1);
GYOTO_MSG << "Plasmoid reading FITS file: " << filename << endl;
filename_ = filename;
char* pixfile = const_cast<char*>(filename_.c_str());
fitsfile* fptr = NULL;
int status = 0;
double tmpd;
char ermsg[31] = ""; // ermsg is used in throwCfitsioError()
GYOTO_DEBUG << "Plasmoid::fitsRead: opening file" << endl;
if (fits_open_file(&fptr, pixfile, 0, &status)) throwCfitsioError(status);
////// READ FITS KEYWORDS COMMON TO ALL TABLES ///////
// These are: tmin, tmax, numin, numax
string extname = "GYOTO FitsRW KEYS";
fits_movnam_hdu(fptr, ANY_HDU, const_cast<char*>(extname.c_str()), 0, &status);
GYOTO_DEBUG << "FitsRW::fitsRead(): read tmin_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO FitsRW tmin", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else FitsRW::tmin(tmpd); // tmin_ found
GYOTO_DEBUG << "FitsRW::fitsRead(): read tmax_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO FitsRW tmax", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else FitsRW::tmax(tmpd); // tmax_ found
GYOTO_DEBUG << "FitsRW::fitsRead(): read numin_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO FitsRW numin", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else FitsRW::numin(tmpd); // numin_ found
GYOTO_DEBUG << "FitsRW::fitsRead(): read numax_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO FitsRW numax", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else FitsRW::numax(tmpd); // rmax_ found
GYOTO_DEBUG << "FitsRW::fitsRead(): read t_inj" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO FitsRW t_inj", &tmpd,
NULL, &status);
if (status){
throwCfitsioError(status) ;
}
else t_inj_=tmpd; // t_inj_ found
// READ EXTENSIONS
vector<size_t> naxes_jnu = FitsRW::fitsReadHDU(fptr,"GYOTO FitsRW Jnu",
jnu_array_);
vector<size_t> naxes_anu = FitsRW::fitsReadHDU(fptr,"GYOTO FitsRW Anu",
anu_array_);
if (naxes_jnu[0]!=naxes_anu[0] || naxes_jnu[1]!=naxes_anu[1])
throwError("In Plasmoid: jnu_array_ and anu_array_ dimensions "
"do not agree");
// freq array
vector<size_t> naxes_freq = FitsRW::fitsReadHDU(fptr,"GYOTO FitsRW FREQUENCY",
freq_array_);
if (naxes_freq[0]!=naxes_jnu[0])
GYOTO_ERROR("In Plasmoid: nnu differ from jnu_array_ and freq_array");
/*cout << "jnu read= " << endl;
for (int ii=0;ii<60;ii++) cerr << jnu_array_[ii] << " " ;
cout << endl;*/
FitsRW::nnu(naxes_jnu[0]);
FitsRW::nt(naxes_jnu[1]);
return naxes_anu;
}
#endif
|