1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
|
/*
Copyright 2011-2014, 2016, 2018-2020 Frederic Vincent & Thibaut Paumard
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
// Lorene headers
#include "star_rot.h"
#include "eos.h"
#include "utilitaires.h"
#include "graphique.h"
#include "nbr_spx.h"
#include "unites.h"
using namespace Lorene;
#include "GyotoUtils.h"
#include "GyotoRotStar3_1.h"
#include "GyotoError.h"
#include "GyotoFactoryMessenger.h"
#include "GyotoProperty.h"
#include <iostream>
#include <cmath>
#include <fstream>
#include <iomanip>
#include <cstdlib>
#include <cstring>
#include <ctime>
using namespace Gyoto;
using namespace Gyoto::Metric;
GYOTO_PROPERTY_START(RotStar3_1)
GYOTO_PROPERTY_BOOL(RotStar3_1, GenericIntegrator, SpecificIntegrator,
genericIntegrator)
GYOTO_PROPERTY_FILENAME(RotStar3_1, File, file)
GYOTO_PROPERTY_END(RotStar3_1, Generic::properties)
// Lorene Metrics are not thread-safe
GYOTO_PROPERTY_THREAD_UNSAFE(RotStar3_1)
RotStar3_1::RotStar3_1() :
Generic(GYOTO_COORDKIND_SPHERICAL, "RotStar3_1"),
filename_(NULL),
star_(NULL),
integ_kind_(1)
{}
RotStar3_1::RotStar3_1(const RotStar3_1& o) :
Generic(o),
filename_(NULL),
star_(NULL),
integ_kind_(o.integ_kind_)
{
kind("RotStar3_1");
fileName(o.fileName());
}
RotStar3_1* RotStar3_1::clone() const {
return new RotStar3_1(*this);
}
RotStar3_1::~RotStar3_1()
{
if (star_) {
const Map& mp=star_ -> get_mp();
const Mg3d* mg=mp.get_mg();
const Map* mpp=∓
delete star_;
delete mpp;
delete mg;
}
if (filename_) delete [] filename_;
if (debug()) cout << "RotStar3_1 Destruction" << endl;
}
void RotStar3_1::file(std::string const &fname) {
cerr << "Setting file name to '" << fname << "'" << endl;
fileName(fname.c_str());
}
std::string RotStar3_1::file() const {
if (!filename_) return "";
return filename_;
}
void RotStar3_1::fileName(char const * lorene_res) {
if (filename_) { delete[] filename_; filename_=NULL; }
if (star_) {
const Map& mp=star_ -> get_mp();
const Mg3d* mg=mp.get_mg();
const Map* mpp=∓
delete star_; star_=NULL;
delete mpp;
delete mg;
}
if (!lorene_res) return;
filename_ = new char[strlen(lorene_res)+1];
strcpy(filename_,lorene_res);
FILE* resfile=fopen(lorene_res,"r");
if (!resfile) GYOTO_ERROR(string("No such file or directory: ")+lorene_res);
Mg3d* mg = new Mg3d(resfile);
Map_et* mps = new Map_et(*mg,resfile);
Eos* p_eos = Eos::eos_from_file(resfile);
star_ = new Lorene::Star_rot(*mps,*p_eos,resfile);
star_ -> equation_of_state();
star_ -> update_metric();
star_ -> hydro_euler();
tellListeners();
}
char const * RotStar3_1::fileName() const { return filename_; }
void RotStar3_1::integKind(int ik) { integ_kind_ = ik; }
int RotStar3_1::integKind() const { return integ_kind_; }
bool RotStar3_1::genericIntegrator() const {return !integ_kind_;}
void RotStar3_1::genericIntegrator(bool t) {integ_kind_=!t;}
int RotStar3_1::diff(state_t const &coord, state_t &res, double /* mass */) const
{
//4-DIMENSIONAL INTEGRATION
//NB: this diff is only called by Generic::RK4
//if (debug()) cout << "In 4D RotStar diff [8]..." << endl;
//clock_t time1, time2;
//double diftime, clocks = CLOCKS_PER_SEC;
//time1 = clock();
double rr=coord[1],r2=rr*rr,th=coord[2],sinth2=sin(th)*sin(th),ph=coord[3];
//LAPSE
const Scalar & NNscal=star_ -> get_nn();
double NN=NNscal.val_point(rr,th,ph), N2=NN*NN;
double N_r=NNscal.dsdr().val_point(rr,th,ph);
double N_th=NNscal.dsdt().val_point(rr,th,ph);
//SHIFT (OMEGA)
const Scalar & omega_scal=star_ -> get_nphi();//NB: avoid using star_ -> get_beta(), it is very time-consuming
double omega=omega_scal.val_point(rr,th,ph), omega2=omega*omega;
double omega_r=omega_scal.dsdr().val_point(rr,th,ph);
double omega_th=omega_scal.dsdt().val_point(rr,th,ph);
//METRIC POTENTIALS
const Scalar & A2scal=star_ -> get_a_car();
const Scalar & B2scal=star_ -> get_b_car();
double A2=A2scal.val_point(rr,th,ph), B2=B2scal.val_point(rr,th,ph);
double A2_r=A2scal.dsdr().val_point(rr,th,ph), B2_r=B2scal.dsdr().val_point(rr,th,ph);
double A2_th=A2scal.dsdt().val_point(rr,th,ph), B2_th=B2scal.dsdt().val_point(rr,th,ph);
/* time2 = clock();
diftime = time2 - time1;
if (debug()) cout << "Time elapsed in temp 4D diff (in sec)= " << setprecision(GYOTO_PREC) << setw(GYOTO_WIDTH) << diftime/clocks << endl;*/
//METRIC COEF
double gtt=-1./N2, grr=1./A2, gthth=1./(A2*r2), gpp=1./(B2*r2*sinth2)-omega2/N2, gtp=-omega/N2;
double g_ttr=-2.*NN*N_r+B2_r*omega2*r2*sinth2+2.*omega*omega_r*B2*r2*sinth2+2.*rr*B2*omega2*sinth2, g_ttth=-2.*NN*N_th+B2_th*omega2*r2*sinth2+2.*omega*omega_th*B2*r2*sinth2+2.*cos(th)*sin(th)*r2*B2*omega2;
double g_rrr=A2_r, g_rrth=A2_th;
double g_ththr=r2*A2_r+2.*rr*A2, g_ththth=r2*A2_th;
double g_ppr=sinth2*(r2*B2_r+2.*rr*B2), g_ppth=r2*(sinth2*B2_th+2.*cos(th)*sin(th)*B2);
double g_tpr=-omega_r*B2*r2*sinth2-omega*B2_r*r2*sinth2-2.*rr*omega*B2*sinth2, g_tpth=-omega_th*B2*r2*sinth2-omega*B2_th*r2*sinth2-2.*cos(th)*sin(th)*omega*B2*r2;
//4D CHRISTOFFELS in stationnary axisym spacetime
double ch001=1./2.*gtt*g_ttr+1./2.*gtp*g_tpr, ch002=1./2.*gtt*g_ttth+1./2.*gtp*g_tpth, ch031=1./2.*gtt*g_tpr+1./2.*gtp*g_ppr, ch032=1./2.*gtt*g_tpth+1./2.*gtp*g_ppth, ch331=1./2.*gpp*g_ppr+1./2.*gtp*g_tpr, ch332=1./2.*gpp*g_ppth+1./2.*gtp*g_tpth, ch301=1./2.*gpp*g_tpr+1./2.*gtp*g_ttr, ch302=1./2.*gpp*g_tpth+1./2.*gtp*g_ttth, ch122=-1./2.*grr*g_ththr, ch133=-1./2.*grr*g_ppr, ch100=-1./2.*grr*g_ttr, ch111=1./2.*grr*g_rrr, ch112=1./2.*grr*g_rrth, ch103=-1./2.*grr*g_tpr, ch200=-1./2.*gthth*g_ttth, ch211=-1./2.*gthth*g_rrth, ch233=-1./2.*gthth*g_ppth, ch222=1./2.*gthth*g_ththth, ch221=1./2.*gthth*g_ththr, ch203=-1./2.*gthth*g_tpth;
//RESULT: Derivatives
res[0]=coord[4];
res[1]=coord[5];
res[2]=coord[6];
res[3]=coord[7];
//From the 4D equation of geodesics:
res[4]=-2.*ch001*coord[4]*coord[5]-2.*ch002*coord[4]*coord[6]-2.*ch031*coord[7]*coord[5] - 2.*ch032*coord[7]*coord[6];//added 2011-02-27 ch032 term forgotten! to be checked
res[5]=-ch111*coord[5]*coord[5]-ch122*coord[6]*coord[6]-ch133*coord[7]*coord[7]-ch100*coord[4]*coord[4]-2.*ch112*coord[5]*coord[6]-2.*ch103*coord[4]*coord[7];
res[6]=-ch211*coord[5]*coord[5]-ch222*coord[6]*coord[6]-ch233*coord[7]*coord[7]-ch200*coord[4]*coord[4]-2.*ch221*coord[5]*coord[6]-2.*ch203*coord[4]*coord[7];
res[7]=-2.*ch301*coord[4]*coord[5]-2.*ch302*coord[4]*coord[6]-2.*ch331*coord[7]*coord[5]-2.*ch332*coord[7]*coord[6];
/* time2 = clock();
diftime = time2 - time1;
if (debug()) cout << "TOTAL Time elapsed in 4D diff (in sec)= " << setprecision(GYOTO_PREC) << setw(GYOTO_WIDTH) << diftime/clocks << endl;*/
return 0;
}
int RotStar3_1::diff(const double y[6], double res[6], int) const
{
//3+1 INTEGRATION
//NB: this diff is only called by RotStar::RK4
//NBB: here t=theta, not time!
//if (debug()) cout << "In 3+1 D RotStar::diff" << endl;
// clock_t time1, time2;
//double diftime, clocks = CLOCKS_PER_SEC;
//time1 = clock();
//NB: all the computations used here are detailed in my 3+1 notes.
//NB: Lorene coordinates are spherical-like
//Variables: y=[r,theta,phi,Vr,Vtheta,Vphi] see definitions 3+1 geod paper
double rr=y[0], r2=rr*rr, th=y[1], sinth2=sin(th)*sin(th), phi=y[2];
/*
Important remark! [actually it is not used because the metric coef are known in function of A, B, N... ; but interesting to keep this in mind]
Lorene gcon and gcov function return metric coef expressed in the orthonormal spherical tetrad d/dr, 1/r d/dtheta, 1/(r*sin(theta)) d/dphi
There's thus a change of basis to come back to the natural basis of spherical coordinates.
*/
//LAPSE
const Scalar & NNscal=star_ -> get_nn();
double NN=NNscal.val_point(rr,th,phi);//, NN2=NN*NN;
if (NN == 0.) GYOTO_ERROR("In RotStar3_1.C: NN==0!!");
double Nr=NNscal.dsdr().val_point(rr,th,phi);
double Nt=NNscal.dsdt().val_point(rr,th,phi);
//SHIFT (OMEGA)
const Scalar & omega_scal=star_ -> get_nphi();
double omega=omega_scal.val_point(rr,th,phi);
double omega_r=omega_scal.dsdr().val_point(rr,th,phi);
double omega_t=omega_scal.dsdt().val_point(rr,th,phi);
//METRIC POTENTIALS
const Scalar & A2scal=star_ -> get_a_car();
const Scalar & B2scal=star_ -> get_b_car();
double A2=A2scal.val_point(rr,th,phi), B2=B2scal.val_point(rr,th,phi);
double A2_r=A2scal.dsdr().val_point(rr,th,phi), B2_r=B2scal.dsdr().val_point(rr,th,phi);
double A2_th=A2scal.dsdt().val_point(rr,th,phi),B2_th=B2scal.dsdt().val_point(rr,th,phi);
/* time2 = clock();
diftime = time2 - time1;
if (debug()) cout << "Time elapsed in 3+1 diff (in sec)= " << setprecision(GYOTO_PREC) << setw(GYOTO_WIDTH) << diftime/clocks << endl;*/
//METRIC COEF
double grr=1./A2, gtt=1./(A2*r2), gpp=1./(B2*r2*sinth2), g_rrr=A2_r, g_rrt=A2_th, g_ttr=r2*A2_r+2.*rr*A2, g_ttt=r2*A2_th, g_ppr=r2*sinth2*B2_r+2.*rr*B2*sinth2, g_ppt=r2*sinth2*B2_th+2.*sin(th)*cos(th)*r2*B2;
/* //Change of basis [Not used]
gtt_=1./r2*gtt_;gpp_=1./(r2*sinth2)*gpp_;//natural basis contrav metric
g_ttr_=2.*rr*g_tt_+r2*g_ttr;g_ttt_=r2*g_ttt_;g_ppr_=sinth2*(2.*rr*g_pp_+r2*g_ppr_);g_ppt_=r2*(2.*cos(th)*sin(th)*g_pp_+sinth2*g_ppt_);//natural basis derived covar metric (NB: the cov metric ceof that appear here must be in the orthonormal basis)
*/
//EXTRINSIC CURVATURE
double Krp=-1./(2.*NN)*B2*r2*sinth2*omega_r;
double Ktp=-1./(2.*NN)*B2*r2*sinth2*omega_t;
//3-CHRISTOFFELS
double Grrr=1./2.*grr*g_rrr,
Grrt=1./2.*grr*g_rrt,
Gttr=1./2.*gtt*g_ttr,
Gttt=1./2.*gtt*g_ttt,
Gppr=1./2.*gpp*g_ppr,
Gptp=1./2.*gpp*g_ppt,
Grtt=-1./2.*grr*g_ttr,
Grpp=-1./2.*grr*g_ppr,
Gtrr=-1./2.*gtt*g_rrt,
Gtpp=-1./2.*gtt*g_ppt;//these are the only non-0 Christo
/* OBSOLETE VERSION */
// //Christoffel terms (xdot^j+beta^j)(xdot^k+beta^k)Gamma^i_jk in geodesic eq.:
// double Christo_r=rdot*rdot*Grrr+2.*rdot*thdot*Grrt+thdot*thdot*Grtt+(phidot-omega)*(phidot-omega)*Grpp,
// Christo_th=2.*rdot*thdot*Gttr+thdot*thdot*Gttt+rdot*rdot*Gtrr+(phidot-omega)*(phidot-omega)*Gtpp,
// Christo_ph=2.*rdot*(phidot-omega)*Gppr+2.*thdot*(phidot-omega)*Gptp;
// double kappa=1./NN2*(rdot*Nr+thdot*Nt)-2./NN2*rdot*(phidot-omega)*Krp-2./NN2*thdot*(phidot-omega)*Ktp;
// //RESULT: derivatives (see geodesic equation in 3+1)
// res[0]=rdot;
// res[1]=thdot;
// res[2]=phidot;
// res[3]=kappa*NN*rdot-NN*grr*Nr+1./NN*(Nr*rdot+Nt*thdot)*rdot+2.*NN*grr*(phidot-omega)*Krp-Christo_r;//-Grtt*thdot*thdot-Grpp*phidot*phidot;
// res[4]=kappa*NN*thdot-NN*gtt*Nt+1./NN*(Nr*rdot+Nt*thdot)*thdot+2.*NN*gtt*(phidot-omega)*Ktp-Christo_th;//-2.*Gttr*rdot*thdot-Gtpp*phidot*phidot;
// res[5]=kappa*NN*(phidot-omega)+1./NN*(Nr*rdot+Nt*thdot)*(phidot-omega)+2.*rdot*omega_r+2.*thdot*omega_t+2.*NN*gpp*(rdot*Krp+thdot*Ktp)-Christo_ph;//-2.*Gppr*rdot*phidot-2.*Gptp*thdot*phidot;
// /* NEW VERSION JULY 2011 */
double Vr = y[3], Vth = y[4], Vph = y[5];
double Christo_r=Vr*Vr*Grrr+2.*Grrt*Vr*Vth+Grtt*Vth*Vth+Grpp*Vph*Vph,
Christo_th=Gtrr*Vr*Vr+2.*Gttr*Vr*Vth+Gttt*Vth*Vth+Gtpp*Vph*Vph,
Christo_ph=2.*Gppr*Vr*Vph+2.*Gptp*Vth*Vph;
//See 3+1 equation of geodesics
double prefact=1./NN*Vr*Nr+1./NN*Vth*Nt-2.*Krp*Vr*Vph-2.*Ktp*Vth*Vph;
double Vrdot = NN*(Vr*prefact+2.*grr*Krp*Vph-Christo_r)-grr*Nr,
Vthdot = NN*(Vth*prefact+2.*gtt*Ktp*Vph-Christo_th)-gtt*Nt,
Vphdot = NN*(Vph*prefact+2.*gpp*(Krp*Vr+Ktp*Vth)-Christo_ph)
+Vr*omega_r+Vth*omega_t; //NB: dot = wrt coordinate time t
res[0]=NN*Vr; //dr/dt
res[1]=NN*Vth; //dtheta/dt
res[2]=NN*Vph+omega; //dphi/dt
res[3]=Vrdot; //dVr/dt
res[4]=Vthdot; //dVtheta/dt
res[5]=Vphdot; //dVphi/dt
/* time2 = clock();
diftime = time2 - time1;
if (debug()) cout << "TOTAL Time elapsed in 3+1 diff (in sec)= " << setprecision(GYOTO_PREC) << setw(GYOTO_WIDTH) << diftime/clocks << endl;*/
return 0;
}
int RotStar3_1::myrk4(const double coorin[6], double h, double res[6]) const
{
//if (debug()) cout << "In RotStar::rk4" << endl;
//Here the integration must be 3+1:
if (!integ_kind_) GYOTO_ERROR("In RotStar3_1::myrk4: Impossible case");
double k1[6], k2[6], k3[6], k4[6], coor_plus_halfk1[6], sixth_k1[6],
coor_plus_halfk2[6], third_k2[6], coor_plus_k3[6], third_k3[6], sixth_k4[6];
if(diff(coorin,k1,1)) return 1;
for (int i=0;i<6;i++) {
k1[i]=h*k1[i];
coor_plus_halfk1[i]=coorin[i]+0.5*k1[i];
sixth_k1[i]=1./6.*k1[i];
}
if(diff(coor_plus_halfk1,k2,1)) return 1;
for (int i=0;i<6;i++) {
k2[i]=h*k2[i];
coor_plus_halfk2[i]=coorin[i]+0.5*k2[i];
third_k2[i]=1./3.*k2[i];
}
if(diff(coor_plus_halfk2,k3,1)) return 1;
for (int i=0;i<6;i++) {
k3[i]=h*k3[i];
coor_plus_k3[i]=coorin[i]+k3[i];
third_k3[i]=1./3.*k3[i];
}
if(diff(coor_plus_k3,k4,1)) return 1;
for (int i=0;i<6;i++) {
k4[i]=h*k4[i];
sixth_k4[i]=1./6.*k4[i];
}
for (int i=0;i<6;i++) {
res[i]=coorin[i]+sixth_k1[i]+third_k2[i]+third_k3[i]+sixth_k4[i];
}
return 0;
}
//int RotStar3_1::myrk4_adaptive(const double coord[8], double lastnorm, double normref, double coordnew[8], double h0, double& h1, int &) const
int RotStar3_1::myrk4_adaptive(const double coord[6], double, double normref, double coordnew[6], double cst[2], double& tdot_used, double h0, double& h1, double h1max, double& hused) const
{
// if (debug()) cout << "In Rotstar::adaptive [6]" << endl;
double delta0[6];
double delta0min=1e-15;
double dcoord[6];
double eps=0.0001;
double S=0.9;
double errmin=1e-6;
// double factnorm=2.;
double sigh1=1.;
h1max=deltaMax(coord, h1max);
/*if (debug()) cout << "RotStar.C: coord in rk=";
for (int ii=0;ii<8;ii++) if (debug()) cout << coord[ii] << " " ;
if (debug()) cout << endl;*/
diff(coord,dcoord,1);
for (int i = 0;i<6;i++) {
delta0[i]=delta0min+eps*(fabs(h0*dcoord[i]));
//if (debug()) cout << "Rot: delta0[i]=" << delta0[i] << endl;
}
double hbis=0.5*h0;
double coordhalf[6];
double coord2[6];
double delta1[6];
double err;
int count=0;
// double newnorm;
while (1){
count++;
//if (debug()) cout << "count in rk Rot= " << count << endl;
if (count > 100){
GYOTO_ERROR("RotStar: bad rk");
}
err=0.;
myrk4(coord,h0,coordnew);
myrk4(coord,hbis,coordhalf);
myrk4(coordhalf,hbis,coord2);
double coordnewbis[6], coordhalfbis[6], coord2bis[6], tdot_unused;
int normalize=1;
/*
NB: for the time being (2011-03-11), normalize=1 imposes to update phprime and tdot to insure conservation of cst of motion;
In order to insure norm conservation, there is an other flag in Normalize4v: consnorm, to be put to the desired value
Caution: be sure it is really needed before putting consnorm to 1, it slows down A LOT the computation
*/
if (normalize){
Normalize4v(coordnew,coordnewbis,cst,tdot_used);
Normalize4v(coordhalf,coordhalfbis,cst,tdot_unused);
Normalize4v(coord2,coord2bis,cst,tdot_unused);
for (int ii=0;ii<6;ii++){
coordnew[ii]=coordnewbis[ii];
coordhalf[ii]=coordhalfbis[ii];
coord2[ii]=coord2bis[ii];
}
}else{
if (fabs(normref)<fabs(normref+1.)){ // NULL GEODESIC
if (tdot_used<=0.) {//NB: default value of tdot_used has correct sign
tdot_used=-1.;//-1 or +1 is chosen by hand ; the norm is proportionnal to tdot_used^2 and is supposed to be =0, so the actual value of tdot_used doesn't matter
}else{
tdot_used=1.;
}
}else{ // TIMELIKE GEODESIC
double rprime=coordnew[3], thprime=coordnew[4], phprime=coordnew[5];
double pos[4]={0.,coordnew[0],coordnew[1],coordnew[2]};
double g_tt=gmunu(pos,0,0), g_tp=gmunu(pos,0,3), g_rr=gmunu(pos,1,1), g_thth=gmunu(pos,2,2), g_pp=gmunu(pos,3,3);
// if (debug()) cout << "time integ" << endl;
double ds2=g_tt+2.*g_tp*phprime+g_rr*rprime*rprime+g_thth*thprime*thprime+g_pp*phprime*phprime;
if (ds2>0) GYOTO_ERROR("In RotStar3_1.C: impossible to compute timelike norm!");
if (tdot_used<=0.){//NB: default value of tdot_used has correct sign
tdot_used=-sqrt(-1./ds2);
}else{
tdot_used=sqrt(-1./ds2);
}
}
}
for (int i = 0;i<6;i++){
delta1[i]=coord2[i]-coordnew[i];
if (err<fabs(delta1[i]/delta0[i])) err=fabs(delta1[i]/delta0[i]);
}
if (err>1) {
h0=S*h0*pow(err,-0.25);
hbis=0.5*h0;
}else{
h1=(err > errmin ? S*h0*pow(err,-0.2) : 4.*h0);//pour éviter les explosions
if (h1<0.) sigh1=-1.;//why sigh1 and fabs(h1)? because otherwise if h1<0 (possible here if backwards integration), h1 is < delta_min_, so h1 is always set to delta_min_...
if (fabs(h1)<delta_min_) h1=sigh1*delta_min_;
if (fabs(h1)>h1max) h1=sigh1*h1max;
hused=h0;
break;
}
}
return 0;
}
int RotStar3_1::myrk4_adaptive(Worldline* line, state_t const &coord,
double lastnorm, double normref,
state_t &coordnew, double h0,
double& h1, double h1max) const
{
// if (debug()) cout << "In Rotstar::adaptive [8]" << endl;
if (coord[1] < 2.5) {//inside rotating star -> a ameliorer
if (debug()) cout << "In RotStar3_1.C: Particle has reached the rotating star. Stopping integration." << endl;
return 1;
}
if (!integ_kind_) {
/*
To use 4D integration
Here, the integration is performed by the most general Generic::myrk4 + Generic::diff functions that only call the christoffels (basic geodesic equation).
The function christoffel being defined here in RotStar3_1, it is the 4D-christo computed thanks to 3+1 quantities that are used.
*/
if (Generic::myrk4_adaptive(line,coord,lastnorm,normref,coordnew,h0,h1,h1max)) {
return 1;
}else{
return 0;
}
}
//Below: 3+1 integration
//Variables used: [r,theta,phi,Vr,Vtheta,Vphi] for definition see 3+1 geod paper
double rr=coord[1],th=coord[2],ph=coord[3],tdot=coord[4],rdot=coord[5],thdot=coord[6],phdot=coord[7],rprime=rdot/tdot,thprime=thdot/tdot,phprime=phdot/tdot;
const Scalar & NNscal=star_ -> get_nn();
double NN=NNscal.val_point(rr,th,ph);//, NN2=NN*NN;
if (NN == 0.) GYOTO_ERROR("In RotStar3_1.C: NN==0!!");
const Scalar & omega_scal=star_ -> get_nphi();
double omega=omega_scal.val_point(rr,th,ph);
double Vr = 1./NN*rprime, Vth=1./NN*thprime, Vph=1./NN*(phprime-omega);
double g_tt=gmunu(coord.data(),0,0), g_tp=gmunu(coord.data(),0,3), g_pp=gmunu(coord.data(),3,3);
double cst_p_t=g_tt*tdot+g_tp*phdot, cst_p_ph=g_pp*phdot+g_tp*tdot;//Cst of motion because the vectors d/dt and d/dphi are Killing
//if (debug()) cout << "Rot: cst= " << cst_p_t << " " << cst_p_ph << endl;
double cst[2]={cst_p_t,cst_p_ph};
//cout << "3+1 Cst of motion= " << cst_p_t << " " << cst_p_ph << endl;
double coor[6]={rr,th,ph,Vr,Vth,Vph};
double coornew[6];
double hused=1000.;
if (tdot<0. && h0>0.) h0*=-1.;//to integrate backwards if tdot<0
double tdot_used=tdot;
/*if (tdot<=0.){
tdot_used=-1000.;
}else{
tdot_used=1000.;
}//tdot_used thus has the correct sign*/
if (myrk4_adaptive(coor,lastnorm,normref,coornew,cst,tdot_used,h0,h1,delta_max_,hused)) return 1;
// if (debug()) cout << "tdot_used in rk-8= " << tdot_used << endl;
//phdot=coornew[5]*tdot_used;rdot=coornew[3]*tdot_used;thdot=coornew[4]*tdot_used;
NN=NNscal.val_point(coornew[0],coornew[1],coornew[2]);
omega=omega_scal.val_point(coornew[0],coornew[1],coornew[2]);
phdot=(NN*coornew[5]+omega)*tdot_used;rdot=NN*coornew[3]*tdot_used;thdot=NN*coornew[4]*tdot_used;
coordnew[0]=coord[0]+hused;coordnew[1]=coornew[0];coordnew[2]=coornew[1];coordnew[3]=coornew[2];coordnew[4]=tdot_used;coordnew[5]=rdot;coordnew[6]=thdot;coordnew[7]=phdot;
// if (debug()) cout << "Rot: norm at end rk-8= " << ScalarProd(coordnew,coordnew+4,coordnew+4) << endl;
return 0;
}
void RotStar3_1::Normalize4v(const double coordin[6], double coordout[6], const double cst[2], double& tdot_used) const{
//Here coordin=[r,theta,phi,Vr,Vtheta,Vphi]
double posin[4]={0.,coordin[0],coordin[1],coordin[2]};//posin={t,rr,th,ph} with t=anything (g_munu are independent of t), {rr,th,ph}=cf coordin
double g_tt=gmunu(posin,0,0), g_rr=gmunu(posin,1,1), g_thth=gmunu(posin,2,2), g_tp=gmunu(posin,0,3), g_pp=gmunu(posin,3,3), cst_p_t=cst[0], cst_p_ph=cst[1];
double phdot,phprime;
//double phprime_init=coordin[5],dphpr=0.01;
const Scalar & NNscal=star_ -> get_nn();
double NN=NNscal.val_point(coordin[0],coordin[1],coordin[2]);//, NN2=NN*NN;
if (NN == 0.) GYOTO_ERROR("In RotStar3_1.C: NN==0!!");
const Scalar & omega_scal=star_ -> get_nphi();
double omega=omega_scal.val_point(coordin[0],coordin[1],coordin[2]);
double phprime_init=NN*coordin[5]+omega,dphpr=0.01;
// Changing phdot and tdot (thus phprime) to insure conservation of cst of motion
if (g_tt != 0. && (g_tt*g_pp != g_tp*g_tp)){
phdot=(cst_p_ph - g_tp/g_tt*cst_p_t)/(g_pp-g_tp*g_tp/g_tt); tdot_used=(cst_p_t - g_tp*phdot)/g_tt; phprime=phdot/tdot_used;//cf constants of motion
// if (debug()) cout << "tdot use in Normalize= " << tdot_used << endl;
}else{
GYOTO_ERROR("RotStar3_1.C: special case metric coef=0 to handle in Normalize4v...");
}
if (fabs(phprime-phprime_init)>dphpr*fabs(phprime_init)){
if (verbose() >= GYOTO_SEVERE_VERBOSITY)
cerr << "WARNING (severe):" << endl
<< "Too big change in phprime: " << phprime_init << " " << phprime << endl;
}
/*double fourvel[4]={tdot_used,NN*coordin[3]*tdot_used,NN*coordin[4]*tdot_used,phprime*tdot_used}; //4-velocity with correct value of tdot and phdot
cout << "DEBUT AFFICHE" << endl;
cout << "Vr= " << coordin[3] << " " << NN << " " << tdot_used << " " << NN*coordin[3]*tdot_used << endl;
cout << "fourvel= " ;
for (int ii=0;ii<4;ii++) cout << fourvel[ii] << " " ;
cout << endl;
cout << "-------> tdot= " << tdot_used << endl;
double normaffich=ScalarProd(posin,fourvel,fourvel);
cout << "cst motion in Normalize= " << normaffich << " " << cst_p_t << " " << cst_p_ph << endl;
if (fabs(normaffich)>1000. || normaffich!=normaffich) GYOTO_ERROR("testrotstar --");
*/
// double rprime=coordin[3], thprime=coordin[4];
double rprime=NN*coordin[3], thprime=NN*coordin[4];
double rprime_new=rprime, thprime_new=thprime;
int consnorm=0;
if (consnorm){
// Changing rprime and thprime to insure norm conservation
double norminit=tdot_used*tdot_used*(g_tt+2.*g_tp*phprime+g_rr*rprime*rprime+g_thth*thprime*thprime+g_pp*phprime*phprime);//ScalarProd(tempvec,tempvec+4,tempvec+4);//
double normref;
if (fabs(norminit)<fabs(norminit+1.)){
normref=0.;
}else{
normref=-1.;
}
double aa=tdot_used*tdot_used*(g_tt+2.*g_tp*phprime+g_pp*phprime*phprime), bb=tdot_used*tdot_used*g_rr, cc=tdot_used*tdot_used*g_thth;
//Aim: find X and Y so that a+b*X^2+c*Y^2=0 (or -1), then rprime_new=X, thprime_new=Y (NB: phprime was already changed above, so its value is fixed, that's why it's put in the cst 'a')
//if (debug()) cout << "aa, bb, cc= " << aa << " " << bb << " " << cc << endl;
//if (debug()) cout << "rdot, thdot ini= " << rdot << " " << thdot << endl;
double fact=.001;//allows changes of order 0.1% of original value (don't put it too big!! or the corrected rprime and thprime will depend a lot on the chosen nstep -- no convergence towards a given value when nstep grows...)
int nstep=100;//nstep search steps on both sides of initial rdot (or thdot) value ; search interval between 2 trials = fact*[init value]/nstep = dr/nstep (or dth/nstep)
double dth=fabs(fact*thprime), dr=fabs(fact*rprime), newnorm, lastnorm=norminit, rp, thp, intth=dth/double(nstep), intr=dr/double(nstep);
// cout << "Norm init= "<<norminit<<endl;
for (int ii=-nstep/2;ii<=nstep/2;ii++){ // ii = -dr/2,-dr/2+dr/nstep,...,dr/2
for (int jj=-nstep/2;jj<=nstep/2;jj++){
rp=rprime+ii*intr;
thp=thprime+jj*intth;
newnorm=aa+bb*rp*rp+cc*thp*thp;
// cout << "New norm= " << newnorm << endl;
if (fabs(newnorm-normref)<fabs(lastnorm-normref)){
rprime_new=rp;thprime_new=thp;lastnorm=newnorm;
}
}
}
} // end if consnorm
//cout << "New norm= " << norm_new << endl;
//coordout[0]=coordin[0];coordout[1]=coordin[1];coordout[2]=coordin[2];coordout[3]=rprime_new;coordout[4]=thprime_new;coordout[5]=phprime;
coordout[0]=coordin[0];coordout[1]=coordin[1];coordout[2]=coordin[2];coordout[3]=1./NN*rprime_new;coordout[4]=1./NN*thprime_new;coordout[5]=1./NN*(phprime-omega);
}
double RotStar3_1::gmunu(const double * pos, int mu, int nu) const
{
/*
4-metric coefficients
cf Eric's Rotating Stars Notes Eq. 2.32
*/
//if (debug()) cout << "In gmunu Rot" << endl;
double rr=pos[1],r2=rr*rr,th=pos[2],sinth2=sin(th)*sin(th),ph=pos[3];
const Scalar & NNtemp=star_ -> get_nn();
double NN=NNtemp.val_point(rr,th,ph), N2=NN*NN;
const Scalar & omega_scal=star_ -> get_nphi();
double omega=omega_scal.val_point(rr,th,ph);
double B2=(star_ -> get_b_car()).val_point(rr,th,ph);
double A2=(star_ -> get_a_car()).val_point(rr,th,ph);
double g_tt=(B2*r2*sinth2*omega*omega-N2), g_tp=-omega*B2*r2*sinth2, g_rr=A2,
g_thth=A2*r2, g_pp=B2*r2*sinth2;
//DEBUG!!!! flat metric ***************
//g_tt=-1.;g_tp=0.;g_rr=1.;g_thth=r2;g_pp=r2*sinth2;
//*************************************
if ((mu==0) && (nu==0)) return g_tt;
if ((mu==1) && (nu==1)) return g_rr;
if ((mu==2) && (nu==2)) return g_thth;
if ((mu==3) && (nu==3)) return g_pp;
if (((mu==0) && (nu==3)) || ((mu==3) && (nu==0))) return g_tp;
return 0.;
}
//double RotStar3_1::christoffel(const double coord[8], const int alpha, const int mu,
// const int nu) const
double RotStar3_1::christoffel(const double coord[8], const int alpha,
const int mu, const int nu) const
{
/*
The computation of the christo is easy since we know the expression of gmunu as a function of 3+1 quantities, and since Lorene allows to perform derivatives on quantities. So gmunu,sigma is computable.
*/
//if (debug()) cout << "In RotStar::christo" << endl;
//GYOTO_ERROR("RotStar3_1::christoffel: Not implemented yet");
//24/05/10: stationary axisymmetric version
double rr=coord[1],r2=rr*rr,th=coord[2],sinth2=sin(th)*sin(th),ph=coord[3];
const Scalar & NNscal=star_ -> get_nn();
double NN=NNscal.val_point(rr,th,ph), N2=NN*NN;
const Scalar & NNrscal = NNscal.dsdr();
const Scalar & NNthscal = NNscal.dsdt();
double N_r=NNrscal.val_point(rr,th,ph);
double N_th=NNthscal.val_point(rr,th,ph);
const Scalar & omega_scal=star_ -> get_nphi();
double omega=omega_scal.val_point(rr,th,ph), omega2=omega*omega;
double omega_r=omega_scal.dsdr().val_point(rr,th,ph);
double omega_th=omega_scal.dsdt().val_point(rr,th,ph);
const Scalar & A2scal=star_ -> get_a_car();
const Scalar & B2scal=star_ -> get_b_car();
const Scalar & A2rscal = A2scal.dsdr();
const Scalar & A2thscal = A2scal.dsdt();
const Scalar & B2rscal = B2scal.dsdr();
const Scalar & B2thscal = B2scal.dsdt();
double B2=B2scal.val_point(rr,th,ph);
double A2=A2scal.val_point(rr,th,ph);
double A2_r=A2rscal.val_point(rr,th,ph);
double A2_th=A2thscal.val_point(rr,th,ph);
double B2_r=B2rscal.val_point(rr,th,ph);
double B2_th=B2thscal.val_point(rr,th,ph);
double gtt=-1./N2, grr=1./A2, gthth=1./(A2*r2), gpp=1./(B2*r2*sinth2)-omega2/N2, gtp=-omega/N2;
double g_ttr=-2.*NN*N_r+B2_r*omega2*r2*sinth2+2.*omega*omega_r*B2*r2*sinth2+2.*rr*B2*omega2*sinth2, g_ttth=-2.*NN*N_th+B2_th*omega2*r2*sinth2+2.*omega*omega_th*B2*r2*sinth2+2.*cos(th)*sin(th)*r2*B2*omega2;
double g_rrr=A2_r, g_rrth=A2_th;
double g_ththr=r2*A2_r+2.*rr*A2, g_ththth=r2*A2_th;
double g_ppr=sinth2*(r2*B2_r+2.*rr*B2), g_ppth=r2*(sinth2*B2_th+2.*cos(th)*sin(th)*B2);
double g_tpr=-omega_r*B2*r2*sinth2-omega*B2_r*r2*sinth2-2.*rr*omega*B2*sinth2, g_tpth=-omega_th*B2*r2*sinth2-omega*B2_th*r2*sinth2-2.*cos(th)*sin(th)*omega*B2*r2;
// if (debug()) cout << "at r t p= " << rr << " " << th << " " << ph << endl;
//if (debug()) cout << "gthth, g_ppr= " << gthth << " " << g_ppr << endl;
//32 non-0 christo
if ((alpha==0 && mu==0 && nu==1) || (alpha==0 && mu==1 && nu==0))
return 1./2.*gtt*g_ttr+1./2.*gtp*g_tpr;
if ((alpha==0 && mu==0 && nu==2) || (alpha==0 && mu==2 && nu==0))
return 1./2.*gtt*g_ttth+1./2.*gtp*g_tpth;
if ((alpha==0 && mu==3 && nu==1) || (alpha==0 && mu==1 && nu==3))
return 1./2.*gtt*g_tpr+1./2.*gtp*g_ppr;
if ((alpha==0 && mu==3 && nu==2) || (alpha==0 && mu==2 && nu==3))
return 1./2.*gtt*g_tpth+1./2.*gtp*g_ppth;
if ((alpha==3 && mu==3 && nu==1) || (alpha==3 && mu==1 && nu==3))
return 1./2.*gpp*g_ppr+1./2.*gtp*g_tpr;
if ((alpha==3 && mu==3 && nu==2) || (alpha==3 && mu==2 && nu==3))
return 1./2.*gpp*g_ppth+1./2.*gtp*g_tpth;
if ((alpha==3 && mu==0 && nu==1) || (alpha==3 && mu==1 && nu==0))
return 1./2.*gpp*g_tpr+1./2.*gtp*g_ttr;
if ((alpha==3 && mu==0 && nu==2) || (alpha==3 && mu==2 && nu==0))
return 1./2.*gpp*g_tpth+1./2.*gtp*g_ttth;
if (alpha==1 && mu==2 && nu==2)
return -1./2.*grr*g_ththr;
if (alpha==1 && mu==3 && nu==3)
return -1./2.*grr*g_ppr;
if (alpha==1 && mu==0 && nu==0)
return -1./2.*grr*g_ttr;
if (alpha==1 && mu==1 && nu==1)
return 1./2.*grr*g_rrr;
if ((alpha==1 && mu==1 && nu==2) || (alpha==1 && mu==2 && nu==1))
return 1./2.*grr*g_rrth;
if ((alpha==1 && mu==0 && nu==3) || (alpha==1 && mu==3 && nu==0))
return -1./2.*grr*g_tpr;
if (alpha==2 && mu==0 && nu==0)
return -1./2.*gthth*g_ttth;
if (alpha==2 && mu==1 && nu==1)
return -1./2.*gthth*g_rrth;
if (alpha==2 && mu==3 && nu==3)
return -1./2.*gthth*g_ppth;
if (alpha==2 && mu==2 && nu==2)
return 1./2.*gthth*g_ththth;
if ((alpha==2 && mu==2 && nu==1) || (alpha==2 && mu==1 && nu==2))
return 1./2.*gthth*g_ththr;
if ((alpha==2 && mu==0 && nu==3) || (alpha==2 && mu==3 && nu==0))
return -1./2.*gthth*g_tpth;
return 0.;//all other christo are 0
}
double RotStar3_1::ScalarProd(const double pos[4],
const double u1[4], const double u2[4]) const {
//cout << "in RotStar ScalarProd" << endl;
if (debug())
cout << "u1,u2 in Scal= " ;
for (int ii=0;ii<4;ii++) {
if (debug())
cout << u1[ii] << " " << u2[ii] << " ";
}
if (debug())
cout << endl;
double g_tt=gmunu(pos,0,0), g_tp=gmunu(pos,0,3), g_rr=gmunu(pos,1,1), g_thth=gmunu(pos,2,2), g_pp=gmunu(pos,3,3);
//if (debug())
//cout << "metrics in rotstar scalar prod= " << g_tt << " " << g_rr << " " << g_thth << " " << g_pp << " " << g_tp << endl;
//cout << "norm sub-terms in rotstar scalar prod= " << g_tt*u1[0]*u2[0] << " " <<g_rr*u1[1]*u2[1]<< " " <<g_thth*u1[2]*u2[2]<< " " <<g_pp*u1[3]*u2[3]<< " " <<g_tp*u1[0]*u2[3]<< " " <<g_tp*u1[3]*u2[0]<<endl;
return g_tt*u1[0]*u2[0]+g_rr*u1[1]*u2[1]+g_thth*u1[2]*u2[2]+g_pp*u1[3]*u2[3]+g_tp*u1[0]*u2[3]+g_tp*u1[3]*u2[0];
}
int RotStar3_1::setParameter(string name, string content, string unit){
if (name=="IntegKind") {
GYOTO_WARNING << "IntegKind is deprecated, please use "
"<GenericIntegrator/> or <SpecificIntegrator/> instead\n";
integKind(atoi(content.c_str()));
} else return Generic::setParameter(name, content, unit);
return 0;
}
|