File: RotStar3_1.C

package info (click to toggle)
gyoto 2.0.2-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,444 kB
  • sloc: cpp: 42,330; sh: 4,512; python: 3,436; xml: 2,865; makefile: 691; ansic: 346
file content (792 lines) | stat: -rw-r--r-- 32,067 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
/*
    Copyright 2011-2014, 2016, 2018-2020 Frederic Vincent & Thibaut Paumard

    This file is part of Gyoto.

    Gyoto is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Gyoto is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Gyoto.  If not, see <http://www.gnu.org/licenses/>.
 */

// Lorene headers
#include "star_rot.h"
#include "eos.h"
#include "utilitaires.h"
#include "graphique.h"
#include "nbr_spx.h"
#include "unites.h"

using namespace Lorene;

#include "GyotoUtils.h"
#include "GyotoRotStar3_1.h"
#include "GyotoError.h"
#include "GyotoFactoryMessenger.h"
#include "GyotoProperty.h"

#include <iostream>
#include <cmath>
#include <fstream>
#include <iomanip>
#include <cstdlib>
#include <cstring>
#include <ctime>

using namespace Gyoto;
using namespace Gyoto::Metric;

GYOTO_PROPERTY_START(RotStar3_1)
GYOTO_PROPERTY_BOOL(RotStar3_1, GenericIntegrator, SpecificIntegrator,
		    genericIntegrator)
GYOTO_PROPERTY_FILENAME(RotStar3_1, File, file)
GYOTO_PROPERTY_END(RotStar3_1, Generic::properties)

// Lorene Metrics are not thread-safe
GYOTO_PROPERTY_THREAD_UNSAFE(RotStar3_1)

RotStar3_1::RotStar3_1() : 
Generic(GYOTO_COORDKIND_SPHERICAL, "RotStar3_1"),
  filename_(NULL),
  star_(NULL),
  integ_kind_(1)
{}

RotStar3_1::RotStar3_1(const RotStar3_1& o) : 
  Generic(o),
  filename_(NULL),
  star_(NULL),
  integ_kind_(o.integ_kind_)
{
  kind("RotStar3_1");
  fileName(o.fileName());
}

RotStar3_1* RotStar3_1::clone() const {
  return new RotStar3_1(*this);
}

RotStar3_1::~RotStar3_1() 
{
  if (star_) {
    const Map& mp=star_ -> get_mp();
    const Mg3d* mg=mp.get_mg();
    const Map* mpp=&mp;
    delete star_;
    delete mpp;
    delete mg;
  }
  
  if (filename_) delete [] filename_;

  if (debug()) cout << "RotStar3_1 Destruction" << endl;
}

void RotStar3_1::file(std::string const &fname) {
  cerr << "Setting file name to '" << fname << "'" << endl;
  fileName(fname.c_str());
}

std::string RotStar3_1::file() const {
  if (!filename_) return "";
  return filename_;
}

void RotStar3_1::fileName(char const * lorene_res) {
  if (filename_) { delete[] filename_; filename_=NULL; }
  if (star_) {
    const Map& mp=star_ -> get_mp();
    const Mg3d* mg=mp.get_mg();
    const Map* mpp=&mp;
    delete star_; star_=NULL;
    delete mpp;
    delete mg;
  }
  if (!lorene_res) return;

  filename_ = new char[strlen(lorene_res)+1];
  strcpy(filename_,lorene_res);
  FILE* resfile=fopen(lorene_res,"r");
  if (!resfile) GYOTO_ERROR(string("No such file or directory: ")+lorene_res);
  Mg3d* mg = new Mg3d(resfile);
  Map_et* mps = new Map_et(*mg,resfile);
  Eos* p_eos = Eos::eos_from_file(resfile);
  star_ = new Lorene::Star_rot(*mps,*p_eos,resfile);
  star_ -> equation_of_state();
  star_ -> update_metric();
  star_ -> hydro_euler();

  tellListeners();
}

char const * RotStar3_1::fileName() const { return filename_; }

void RotStar3_1::integKind(int ik) { integ_kind_ = ik; }
int RotStar3_1::integKind() const { return integ_kind_; }

bool RotStar3_1::genericIntegrator() const {return !integ_kind_;}
void RotStar3_1::genericIntegrator(bool t) {integ_kind_=!t;}

int RotStar3_1::diff(state_t const &coord, state_t &res, double /* mass */) const
{
  //4-DIMENSIONAL INTEGRATION
  //NB: this diff is only called by Generic::RK4

  //if (debug()) cout << "In 4D RotStar diff [8]..." << endl;
  //clock_t time1, time2;
  //double diftime, clocks = CLOCKS_PER_SEC;
  //time1 = clock();

  double rr=coord[1],r2=rr*rr,th=coord[2],sinth2=sin(th)*sin(th),ph=coord[3];
  //LAPSE
  const Scalar & NNscal=star_ -> get_nn();
  double NN=NNscal.val_point(rr,th,ph), N2=NN*NN;
  double N_r=NNscal.dsdr().val_point(rr,th,ph);
  double N_th=NNscal.dsdt().val_point(rr,th,ph);

  //SHIFT (OMEGA)
  const Scalar & omega_scal=star_ -> get_nphi();//NB: avoid using star_ -> get_beta(), it is very time-consuming
  double omega=omega_scal.val_point(rr,th,ph), omega2=omega*omega;
  double omega_r=omega_scal.dsdr().val_point(rr,th,ph);
  double omega_th=omega_scal.dsdt().val_point(rr,th,ph);

  //METRIC POTENTIALS
  const Scalar & A2scal=star_ -> get_a_car();
  const Scalar & B2scal=star_ -> get_b_car();
  double A2=A2scal.val_point(rr,th,ph), B2=B2scal.val_point(rr,th,ph);
  double A2_r=A2scal.dsdr().val_point(rr,th,ph), B2_r=B2scal.dsdr().val_point(rr,th,ph);
  double A2_th=A2scal.dsdt().val_point(rr,th,ph), B2_th=B2scal.dsdt().val_point(rr,th,ph);

  /*  time2 = clock();
  diftime = time2 - time1;
  if (debug()) cout << "Time elapsed in temp 4D diff (in sec)= " << setprecision(GYOTO_PREC) << setw(GYOTO_WIDTH) << diftime/clocks << endl;*/

  //METRIC COEF
  double gtt=-1./N2, grr=1./A2, gthth=1./(A2*r2), gpp=1./(B2*r2*sinth2)-omega2/N2, gtp=-omega/N2;
  double g_ttr=-2.*NN*N_r+B2_r*omega2*r2*sinth2+2.*omega*omega_r*B2*r2*sinth2+2.*rr*B2*omega2*sinth2, g_ttth=-2.*NN*N_th+B2_th*omega2*r2*sinth2+2.*omega*omega_th*B2*r2*sinth2+2.*cos(th)*sin(th)*r2*B2*omega2;
  double g_rrr=A2_r, g_rrth=A2_th;
  double g_ththr=r2*A2_r+2.*rr*A2, g_ththth=r2*A2_th;
  double g_ppr=sinth2*(r2*B2_r+2.*rr*B2), g_ppth=r2*(sinth2*B2_th+2.*cos(th)*sin(th)*B2);
  double g_tpr=-omega_r*B2*r2*sinth2-omega*B2_r*r2*sinth2-2.*rr*omega*B2*sinth2, g_tpth=-omega_th*B2*r2*sinth2-omega*B2_th*r2*sinth2-2.*cos(th)*sin(th)*omega*B2*r2;

  //4D CHRISTOFFELS in stationnary axisym spacetime
  double ch001=1./2.*gtt*g_ttr+1./2.*gtp*g_tpr, ch002=1./2.*gtt*g_ttth+1./2.*gtp*g_tpth, ch031=1./2.*gtt*g_tpr+1./2.*gtp*g_ppr, ch032=1./2.*gtt*g_tpth+1./2.*gtp*g_ppth, ch331=1./2.*gpp*g_ppr+1./2.*gtp*g_tpr, ch332=1./2.*gpp*g_ppth+1./2.*gtp*g_tpth, ch301=1./2.*gpp*g_tpr+1./2.*gtp*g_ttr, ch302=1./2.*gpp*g_tpth+1./2.*gtp*g_ttth, ch122=-1./2.*grr*g_ththr, ch133=-1./2.*grr*g_ppr, ch100=-1./2.*grr*g_ttr, ch111=1./2.*grr*g_rrr, ch112=1./2.*grr*g_rrth, ch103=-1./2.*grr*g_tpr, ch200=-1./2.*gthth*g_ttth, ch211=-1./2.*gthth*g_rrth, ch233=-1./2.*gthth*g_ppth, ch222=1./2.*gthth*g_ththth, ch221=1./2.*gthth*g_ththr, ch203=-1./2.*gthth*g_tpth;

  //RESULT: Derivatives
  res[0]=coord[4];
  res[1]=coord[5];
  res[2]=coord[6];
  res[3]=coord[7];
        //From the 4D equation of geodesics:
  res[4]=-2.*ch001*coord[4]*coord[5]-2.*ch002*coord[4]*coord[6]-2.*ch031*coord[7]*coord[5] - 2.*ch032*coord[7]*coord[6];//added 2011-02-27 ch032 term forgotten! to be checked
  res[5]=-ch111*coord[5]*coord[5]-ch122*coord[6]*coord[6]-ch133*coord[7]*coord[7]-ch100*coord[4]*coord[4]-2.*ch112*coord[5]*coord[6]-2.*ch103*coord[4]*coord[7];
  res[6]=-ch211*coord[5]*coord[5]-ch222*coord[6]*coord[6]-ch233*coord[7]*coord[7]-ch200*coord[4]*coord[4]-2.*ch221*coord[5]*coord[6]-2.*ch203*coord[4]*coord[7];
  res[7]=-2.*ch301*coord[4]*coord[5]-2.*ch302*coord[4]*coord[6]-2.*ch331*coord[7]*coord[5]-2.*ch332*coord[7]*coord[6];

  /*  time2 = clock();
  diftime = time2 - time1;
  if (debug()) cout << "TOTAL Time elapsed in 4D diff (in sec)= " << setprecision(GYOTO_PREC) << setw(GYOTO_WIDTH) << diftime/clocks << endl;*/

  return 0;
  
}

int RotStar3_1::diff(const double y[6], double res[6], int) const
{
  //3+1 INTEGRATION
  //NB: this diff is only called by RotStar::RK4
  //NBB: here t=theta, not time!

  //if (debug()) cout << "In 3+1 D RotStar::diff" << endl;
  // clock_t time1, time2;
  //double diftime, clocks = CLOCKS_PER_SEC;
  //time1 = clock();
  //NB: all the computations used here are detailed in my 3+1 notes.

  //NB: Lorene coordinates are spherical-like
  //Variables: y=[r,theta,phi,Vr,Vtheta,Vphi] see definitions 3+1 geod paper
  double rr=y[0], r2=rr*rr, th=y[1], sinth2=sin(th)*sin(th), phi=y[2];
  /*
    Important remark! [actually it is not used because the metric coef are known in function of A, B, N... ; but interesting to keep this in mind]
    Lorene gcon and gcov function return metric coef expressed in the orthonormal spherical tetrad d/dr, 1/r d/dtheta, 1/(r*sin(theta)) d/dphi
    There's thus a change of basis to come back to the natural basis of spherical coordinates.
   */

  //LAPSE
  const Scalar & NNscal=star_ -> get_nn();
  double NN=NNscal.val_point(rr,th,phi);//, NN2=NN*NN;
  if (NN == 0.) GYOTO_ERROR("In RotStar3_1.C: NN==0!!");
  double Nr=NNscal.dsdr().val_point(rr,th,phi);
  double Nt=NNscal.dsdt().val_point(rr,th,phi);

  //SHIFT (OMEGA)
  const Scalar & omega_scal=star_ -> get_nphi();
  double omega=omega_scal.val_point(rr,th,phi);
  double omega_r=omega_scal.dsdr().val_point(rr,th,phi);
  double omega_t=omega_scal.dsdt().val_point(rr,th,phi);

  //METRIC POTENTIALS
  const Scalar & A2scal=star_ -> get_a_car();
  const Scalar & B2scal=star_ -> get_b_car();
  double A2=A2scal.val_point(rr,th,phi), B2=B2scal.val_point(rr,th,phi);
  double A2_r=A2scal.dsdr().val_point(rr,th,phi), B2_r=B2scal.dsdr().val_point(rr,th,phi);
  double A2_th=A2scal.dsdt().val_point(rr,th,phi),B2_th=B2scal.dsdt().val_point(rr,th,phi);

  /*  time2 = clock();
  diftime = time2 - time1;
  if (debug()) cout << "Time elapsed in 3+1 diff (in sec)= " << setprecision(GYOTO_PREC) << setw(GYOTO_WIDTH) << diftime/clocks << endl;*/

  //METRIC COEF
  double grr=1./A2, gtt=1./(A2*r2), gpp=1./(B2*r2*sinth2), g_rrr=A2_r, g_rrt=A2_th, g_ttr=r2*A2_r+2.*rr*A2, g_ttt=r2*A2_th, g_ppr=r2*sinth2*B2_r+2.*rr*B2*sinth2, g_ppt=r2*sinth2*B2_th+2.*sin(th)*cos(th)*r2*B2;
  
  /* //Change of basis [Not used]
  gtt_=1./r2*gtt_;gpp_=1./(r2*sinth2)*gpp_;//natural basis contrav metric
  g_ttr_=2.*rr*g_tt_+r2*g_ttr;g_ttt_=r2*g_ttt_;g_ppr_=sinth2*(2.*rr*g_pp_+r2*g_ppr_);g_ppt_=r2*(2.*cos(th)*sin(th)*g_pp_+sinth2*g_ppt_);//natural basis derived covar metric (NB: the cov metric ceof that appear here must be in the orthonormal basis)
  */

  //EXTRINSIC CURVATURE
  double Krp=-1./(2.*NN)*B2*r2*sinth2*omega_r;
  double Ktp=-1./(2.*NN)*B2*r2*sinth2*omega_t;

  //3-CHRISTOFFELS
  double Grrr=1./2.*grr*g_rrr,
    Grrt=1./2.*grr*g_rrt,
    Gttr=1./2.*gtt*g_ttr,
    Gttt=1./2.*gtt*g_ttt,
    Gppr=1./2.*gpp*g_ppr,
    Gptp=1./2.*gpp*g_ppt,
    Grtt=-1./2.*grr*g_ttr,
    Grpp=-1./2.*grr*g_ppr,
    Gtrr=-1./2.*gtt*g_rrt,
    Gtpp=-1./2.*gtt*g_ppt;//these are the only non-0 Christo

  /* OBSOLETE VERSION */
//   //Christoffel terms (xdot^j+beta^j)(xdot^k+beta^k)Gamma^i_jk in geodesic eq.:
//   double Christo_r=rdot*rdot*Grrr+2.*rdot*thdot*Grrt+thdot*thdot*Grtt+(phidot-omega)*(phidot-omega)*Grpp, 
//     Christo_th=2.*rdot*thdot*Gttr+thdot*thdot*Gttt+rdot*rdot*Gtrr+(phidot-omega)*(phidot-omega)*Gtpp,
//     Christo_ph=2.*rdot*(phidot-omega)*Gppr+2.*thdot*(phidot-omega)*Gptp;
//   double kappa=1./NN2*(rdot*Nr+thdot*Nt)-2./NN2*rdot*(phidot-omega)*Krp-2./NN2*thdot*(phidot-omega)*Ktp;

//   //RESULT: derivatives (see geodesic equation in 3+1)
//   res[0]=rdot;
//   res[1]=thdot;
//   res[2]=phidot;
//   res[3]=kappa*NN*rdot-NN*grr*Nr+1./NN*(Nr*rdot+Nt*thdot)*rdot+2.*NN*grr*(phidot-omega)*Krp-Christo_r;//-Grtt*thdot*thdot-Grpp*phidot*phidot;
//   res[4]=kappa*NN*thdot-NN*gtt*Nt+1./NN*(Nr*rdot+Nt*thdot)*thdot+2.*NN*gtt*(phidot-omega)*Ktp-Christo_th;//-2.*Gttr*rdot*thdot-Gtpp*phidot*phidot;
//   res[5]=kappa*NN*(phidot-omega)+1./NN*(Nr*rdot+Nt*thdot)*(phidot-omega)+2.*rdot*omega_r+2.*thdot*omega_t+2.*NN*gpp*(rdot*Krp+thdot*Ktp)-Christo_ph;//-2.*Gppr*rdot*phidot-2.*Gptp*thdot*phidot;

//   /* NEW VERSION JULY 2011 */

  double Vr = y[3], Vth = y[4], Vph = y[5];
  double Christo_r=Vr*Vr*Grrr+2.*Grrt*Vr*Vth+Grtt*Vth*Vth+Grpp*Vph*Vph,
    Christo_th=Gtrr*Vr*Vr+2.*Gttr*Vr*Vth+Gttt*Vth*Vth+Gtpp*Vph*Vph,
    Christo_ph=2.*Gppr*Vr*Vph+2.*Gptp*Vth*Vph;

  //See 3+1 equation of geodesics
  double prefact=1./NN*Vr*Nr+1./NN*Vth*Nt-2.*Krp*Vr*Vph-2.*Ktp*Vth*Vph;
  double Vrdot = NN*(Vr*prefact+2.*grr*Krp*Vph-Christo_r)-grr*Nr,
    Vthdot = NN*(Vth*prefact+2.*gtt*Ktp*Vph-Christo_th)-gtt*Nt,
    Vphdot = NN*(Vph*prefact+2.*gpp*(Krp*Vr+Ktp*Vth)-Christo_ph)
    +Vr*omega_r+Vth*omega_t; //NB: dot = wrt coordinate time t
    
    
  res[0]=NN*Vr; //dr/dt
  res[1]=NN*Vth; //dtheta/dt
  res[2]=NN*Vph+omega; //dphi/dt
  res[3]=Vrdot; //dVr/dt
  res[4]=Vthdot; //dVtheta/dt
  res[5]=Vphdot; //dVphi/dt

  
  /*  time2 = clock();
  diftime = time2 - time1;
  if (debug()) cout << "TOTAL Time elapsed in 3+1 diff (in sec)= " << setprecision(GYOTO_PREC) << setw(GYOTO_WIDTH) << diftime/clocks << endl;*/
  
  return 0;
}


int RotStar3_1::myrk4(const double coorin[6], double h, double res[6]) const
{
  //if (debug()) cout << "In RotStar::rk4" << endl;

  //Here the integration must be 3+1:
  if (!integ_kind_) GYOTO_ERROR("In RotStar3_1::myrk4: Impossible case");
  
  double k1[6], k2[6], k3[6], k4[6], coor_plus_halfk1[6], sixth_k1[6], 
    coor_plus_halfk2[6], third_k2[6], coor_plus_k3[6], third_k3[6], sixth_k4[6]; 

  if(diff(coorin,k1,1)) return 1;
	  
  for (int i=0;i<6;i++) {
    k1[i]=h*k1[i];
    coor_plus_halfk1[i]=coorin[i]+0.5*k1[i];
    sixth_k1[i]=1./6.*k1[i];
  }

  if(diff(coor_plus_halfk1,k2,1)) return 1;
  
  for (int i=0;i<6;i++) {
    k2[i]=h*k2[i];
    coor_plus_halfk2[i]=coorin[i]+0.5*k2[i];
    third_k2[i]=1./3.*k2[i];
  }

  if(diff(coor_plus_halfk2,k3,1)) return 1;

  for (int i=0;i<6;i++) {
    k3[i]=h*k3[i];
    coor_plus_k3[i]=coorin[i]+k3[i];
    third_k3[i]=1./3.*k3[i];
  }

  if(diff(coor_plus_k3,k4,1)) return 1;

  for (int i=0;i<6;i++) {
    k4[i]=h*k4[i];
    sixth_k4[i]=1./6.*k4[i];
  }

  for (int i=0;i<6;i++) {
    res[i]=coorin[i]+sixth_k1[i]+third_k2[i]+third_k3[i]+sixth_k4[i];
  }
  
  return 0;
}

//int RotStar3_1::myrk4_adaptive(const double coord[8], double lastnorm, double normref, double coordnew[8], double h0, double& h1, int &) const
int RotStar3_1::myrk4_adaptive(const double coord[6], double, double normref, double coordnew[6], double cst[2], double& tdot_used, double h0, double& h1, double h1max, double& hused) const
{

  // if (debug()) cout << "In Rotstar::adaptive [6]" << endl;

  double delta0[6];
  double delta0min=1e-15;
  double dcoord[6];
  double eps=0.0001;
  double S=0.9;
  double errmin=1e-6;
  // double factnorm=2.;
  double sigh1=1.;

  h1max=deltaMax(coord, h1max);

  /*if (debug()) cout << "RotStar.C: coord in rk=";
  for (int ii=0;ii<8;ii++) if (debug()) cout << coord[ii] << " " ;
  if (debug()) cout << endl;*/

  diff(coord,dcoord,1);

  for (int i = 0;i<6;i++) {
    delta0[i]=delta0min+eps*(fabs(h0*dcoord[i]));
    //if (debug()) cout << "Rot: delta0[i]=" << delta0[i] << endl;
  }

  double hbis=0.5*h0;
  double coordhalf[6];
  double coord2[6];
  double delta1[6];
  
  double err;
  int count=0;
  //  double newnorm;

  while (1){
    count++;
    //if (debug()) cout << "count in rk Rot= " << count << endl;
    if (count > 100){
      GYOTO_ERROR("RotStar: bad rk");
    }
    err=0.;
    myrk4(coord,h0,coordnew);
    myrk4(coord,hbis,coordhalf);
    myrk4(coordhalf,hbis,coord2);

    double coordnewbis[6], coordhalfbis[6], coord2bis[6], tdot_unused;

    int normalize=1;
    /*
      NB: for the time being (2011-03-11), normalize=1 imposes to update phprime and tdot to insure conservation of cst of motion;
      In order to insure norm conservation, there is an other flag in Normalize4v: consnorm, to be put to the desired value
      Caution: be sure it is really needed before putting consnorm to 1, it slows down A LOT the computation
     */

    if (normalize){
      Normalize4v(coordnew,coordnewbis,cst,tdot_used);
      Normalize4v(coordhalf,coordhalfbis,cst,tdot_unused);
      Normalize4v(coord2,coord2bis,cst,tdot_unused);

      for (int ii=0;ii<6;ii++){
	coordnew[ii]=coordnewbis[ii];
	coordhalf[ii]=coordhalfbis[ii];
	coord2[ii]=coord2bis[ii];
      }
      
    }else{

      if (fabs(normref)<fabs(normref+1.)){ // NULL GEODESIC
	if (tdot_used<=0.) {//NB: default value of tdot_used has correct sign
	  tdot_used=-1.;//-1 or +1 is chosen by hand ; the norm is proportionnal to tdot_used^2 and is supposed to be =0, so the actual value of tdot_used doesn't matter
	}else{
	  tdot_used=1.;
	}
      }else{ // TIMELIKE GEODESIC
	double rprime=coordnew[3], thprime=coordnew[4], phprime=coordnew[5];
	double pos[4]={0.,coordnew[0],coordnew[1],coordnew[2]};
	double g_tt=gmunu(pos,0,0), g_tp=gmunu(pos,0,3), g_rr=gmunu(pos,1,1), g_thth=gmunu(pos,2,2), g_pp=gmunu(pos,3,3);
	//	if (debug()) cout << "time integ" << endl;
	double ds2=g_tt+2.*g_tp*phprime+g_rr*rprime*rprime+g_thth*thprime*thprime+g_pp*phprime*phprime;
	if (ds2>0) GYOTO_ERROR("In RotStar3_1.C: impossible to compute timelike norm!");
	if (tdot_used<=0.){//NB: default value of tdot_used has correct sign
	  tdot_used=-sqrt(-1./ds2);
	}else{
	  tdot_used=sqrt(-1./ds2);
	}
	
      }
    }


    
    for (int i = 0;i<6;i++){
      delta1[i]=coord2[i]-coordnew[i];
      if (err<fabs(delta1[i]/delta0[i])) err=fabs(delta1[i]/delta0[i]);
    }

    if (err>1) {
      h0=S*h0*pow(err,-0.25);
      hbis=0.5*h0;
    }else{
      h1=(err > errmin ? S*h0*pow(err,-0.2) : 4.*h0);//pour éviter les explosions
      if (h1<0.) sigh1=-1.;//why sigh1 and fabs(h1)? because otherwise if h1<0 (possible here if backwards integration), h1 is < delta_min_, so h1 is always set to delta_min_...
      if (fabs(h1)<delta_min_) h1=sigh1*delta_min_;
      if (fabs(h1)>h1max) h1=sigh1*h1max;
      hused=h0;

      break;
    }
  }

  return 0;
}

int RotStar3_1::myrk4_adaptive(Worldline* line, state_t const &coord, 
			       double lastnorm, double normref, 
			       state_t &coordnew, double h0, 
			       double& h1, double h1max) const
{
  //  if (debug()) cout << "In Rotstar::adaptive [8]" << endl;
  if (coord[1] < 2.5) {//inside rotating star -> a ameliorer
    if (debug()) cout << "In RotStar3_1.C: Particle has reached the rotating star. Stopping integration." << endl;
    return 1;
  }
  
  if (!integ_kind_) {
    /*
      To use 4D integration
      Here, the integration is performed by the most general Generic::myrk4 + Generic::diff functions that only call the christoffels (basic geodesic equation).
      The function christoffel being defined here in RotStar3_1, it is the 4D-christo computed thanks to 3+1 quantities that are used.
    */

    if (Generic::myrk4_adaptive(line,coord,lastnorm,normref,coordnew,h0,h1,h1max)) {
      return 1;
    }else{
      return 0;
    }
  }

  //Below: 3+1 integration
  //Variables used: [r,theta,phi,Vr,Vtheta,Vphi] for definition see 3+1 geod paper

  double rr=coord[1],th=coord[2],ph=coord[3],tdot=coord[4],rdot=coord[5],thdot=coord[6],phdot=coord[7],rprime=rdot/tdot,thprime=thdot/tdot,phprime=phdot/tdot;

  const Scalar & NNscal=star_ -> get_nn();
  double NN=NNscal.val_point(rr,th,ph);//, NN2=NN*NN;
  if (NN == 0.) GYOTO_ERROR("In RotStar3_1.C: NN==0!!");
  const Scalar & omega_scal=star_ -> get_nphi();
  double omega=omega_scal.val_point(rr,th,ph);
  
  double Vr = 1./NN*rprime, Vth=1./NN*thprime, Vph=1./NN*(phprime-omega);

  double g_tt=gmunu(coord.data(),0,0), g_tp=gmunu(coord.data(),0,3), g_pp=gmunu(coord.data(),3,3);
  double cst_p_t=g_tt*tdot+g_tp*phdot, cst_p_ph=g_pp*phdot+g_tp*tdot;//Cst of motion because the vectors d/dt and d/dphi are Killing
  //if (debug()) cout << "Rot: cst= " << cst_p_t << " " << cst_p_ph << endl;
  double cst[2]={cst_p_t,cst_p_ph};
  //cout << "3+1 Cst of motion= " << cst_p_t << " " << cst_p_ph << endl;
  double coor[6]={rr,th,ph,Vr,Vth,Vph};
 
  double coornew[6];
  double hused=1000.;

  if (tdot<0. && h0>0.) h0*=-1.;//to integrate backwards if tdot<0

  double tdot_used=tdot;
  /*if (tdot<=0.){
    tdot_used=-1000.;
  }else{
    tdot_used=1000.;
    }//tdot_used thus has the correct sign*/

  if (myrk4_adaptive(coor,lastnorm,normref,coornew,cst,tdot_used,h0,h1,delta_max_,hused)) return 1;
  //  if (debug()) cout << "tdot_used in rk-8= " << tdot_used << endl;
  
  //phdot=coornew[5]*tdot_used;rdot=coornew[3]*tdot_used;thdot=coornew[4]*tdot_used;
  
  NN=NNscal.val_point(coornew[0],coornew[1],coornew[2]);
  omega=omega_scal.val_point(coornew[0],coornew[1],coornew[2]);
  phdot=(NN*coornew[5]+omega)*tdot_used;rdot=NN*coornew[3]*tdot_used;thdot=NN*coornew[4]*tdot_used;

  coordnew[0]=coord[0]+hused;coordnew[1]=coornew[0];coordnew[2]=coornew[1];coordnew[3]=coornew[2];coordnew[4]=tdot_used;coordnew[5]=rdot;coordnew[6]=thdot;coordnew[7]=phdot;
  //  if (debug()) cout << "Rot: norm at end rk-8= " << ScalarProd(coordnew,coordnew+4,coordnew+4) << endl;

  return 0;
}

void RotStar3_1::Normalize4v(const double coordin[6], double coordout[6], const double cst[2], double& tdot_used) const{
  
  //Here coordin=[r,theta,phi,Vr,Vtheta,Vphi]

  double posin[4]={0.,coordin[0],coordin[1],coordin[2]};//posin={t,rr,th,ph} with t=anything (g_munu are independent of t), {rr,th,ph}=cf coordin
  double g_tt=gmunu(posin,0,0), g_rr=gmunu(posin,1,1), g_thth=gmunu(posin,2,2), g_tp=gmunu(posin,0,3), g_pp=gmunu(posin,3,3), cst_p_t=cst[0], cst_p_ph=cst[1];
  double phdot,phprime;
  //double phprime_init=coordin[5],dphpr=0.01;
  const Scalar & NNscal=star_ -> get_nn();
  double NN=NNscal.val_point(coordin[0],coordin[1],coordin[2]);//, NN2=NN*NN;
  if (NN == 0.) GYOTO_ERROR("In RotStar3_1.C: NN==0!!");
  const Scalar & omega_scal=star_ -> get_nphi();
  double omega=omega_scal.val_point(coordin[0],coordin[1],coordin[2]);
  double phprime_init=NN*coordin[5]+omega,dphpr=0.01;

  // Changing phdot and tdot (thus phprime) to insure conservation of cst of motion
  if (g_tt != 0. && (g_tt*g_pp != g_tp*g_tp)){
    phdot=(cst_p_ph - g_tp/g_tt*cst_p_t)/(g_pp-g_tp*g_tp/g_tt); tdot_used=(cst_p_t - g_tp*phdot)/g_tt; phprime=phdot/tdot_used;//cf constants of motion
    //    if (debug()) cout << "tdot use in Normalize= " << tdot_used << endl;
  }else{
    GYOTO_ERROR("RotStar3_1.C: special case metric coef=0 to handle in Normalize4v...");
  }
  if (fabs(phprime-phprime_init)>dphpr*fabs(phprime_init)){
    if (verbose() >= GYOTO_SEVERE_VERBOSITY)
      cerr << "WARNING (severe):" << endl
	   << "Too big change in phprime: " << phprime_init << " " << phprime << endl;
  }
  
  /*double fourvel[4]={tdot_used,NN*coordin[3]*tdot_used,NN*coordin[4]*tdot_used,phprime*tdot_used}; //4-velocity with correct value of tdot and phdot
  cout << "DEBUT AFFICHE" << endl;
  cout << "Vr= " << coordin[3] << " " << NN << " " << tdot_used << " " << NN*coordin[3]*tdot_used << endl;
  cout << "fourvel= " ;
  for (int ii=0;ii<4;ii++) cout << fourvel[ii] << " " ;
  cout << endl;
  cout << "-------> tdot= " << tdot_used << endl;
  double normaffich=ScalarProd(posin,fourvel,fourvel);
  cout << "cst motion in Normalize= " << normaffich << " " << cst_p_t << " " << cst_p_ph << endl;
  if (fabs(normaffich)>1000. || normaffich!=normaffich) GYOTO_ERROR("testrotstar --");
  */
  //  double rprime=coordin[3], thprime=coordin[4];
  double rprime=NN*coordin[3], thprime=NN*coordin[4];
  double rprime_new=rprime, thprime_new=thprime;
  int consnorm=0;
  if (consnorm){
    // Changing rprime and thprime to insure norm conservation
    
    double norminit=tdot_used*tdot_used*(g_tt+2.*g_tp*phprime+g_rr*rprime*rprime+g_thth*thprime*thprime+g_pp*phprime*phprime);//ScalarProd(tempvec,tempvec+4,tempvec+4);//
    double normref;
    if (fabs(norminit)<fabs(norminit+1.)){
      normref=0.;
    }else{
      normref=-1.;
    }
    
    double aa=tdot_used*tdot_used*(g_tt+2.*g_tp*phprime+g_pp*phprime*phprime), bb=tdot_used*tdot_used*g_rr, cc=tdot_used*tdot_used*g_thth;
    //Aim: find X and Y so that a+b*X^2+c*Y^2=0 (or -1), then rprime_new=X, thprime_new=Y (NB: phprime was already changed above, so its value is fixed, that's why it's put in the cst 'a')
    
    //if (debug()) cout << "aa, bb, cc= " << aa << " " << bb << " " << cc << endl;
    //if (debug()) cout << "rdot, thdot ini= " << rdot << " " << thdot << endl;
    
    
    
    double fact=.001;//allows changes of order 0.1% of original value (don't put it too big!! or the corrected rprime and thprime will depend a lot on the chosen nstep -- no convergence towards a given value when nstep grows...)
    int nstep=100;//nstep search steps on both sides of initial rdot (or thdot) value ; search interval between 2 trials = fact*[init value]/nstep = dr/nstep (or dth/nstep)
    double dth=fabs(fact*thprime), dr=fabs(fact*rprime), newnorm, lastnorm=norminit, rp, thp, intth=dth/double(nstep), intr=dr/double(nstep);
    
    // cout << "Norm init= "<<norminit<<endl;
    
    for (int ii=-nstep/2;ii<=nstep/2;ii++){ // ii = -dr/2,-dr/2+dr/nstep,...,dr/2
      for (int jj=-nstep/2;jj<=nstep/2;jj++){
	rp=rprime+ii*intr;
	thp=thprime+jj*intth;
	newnorm=aa+bb*rp*rp+cc*thp*thp;
	//  cout << "New norm= " << newnorm << endl;
	if (fabs(newnorm-normref)<fabs(lastnorm-normref)){
	  rprime_new=rp;thprime_new=thp;lastnorm=newnorm;
	}
      }
    }
  } // end if consnorm
  
  //cout << "New norm= " << norm_new << endl;
  //coordout[0]=coordin[0];coordout[1]=coordin[1];coordout[2]=coordin[2];coordout[3]=rprime_new;coordout[4]=thprime_new;coordout[5]=phprime;
  coordout[0]=coordin[0];coordout[1]=coordin[1];coordout[2]=coordin[2];coordout[3]=1./NN*rprime_new;coordout[4]=1./NN*thprime_new;coordout[5]=1./NN*(phprime-omega);

}

double RotStar3_1::gmunu(const double * pos, int mu, int nu) const
{
  /*
    4-metric coefficients
    cf Eric's Rotating Stars Notes Eq. 2.32
  */
  
  //if (debug()) cout << "In gmunu Rot" << endl;
  double rr=pos[1],r2=rr*rr,th=pos[2],sinth2=sin(th)*sin(th),ph=pos[3];
  const Scalar & NNtemp=star_ -> get_nn();
  double NN=NNtemp.val_point(rr,th,ph), N2=NN*NN;
  const Scalar & omega_scal=star_ -> get_nphi();
  double omega=omega_scal.val_point(rr,th,ph);
  double B2=(star_ -> get_b_car()).val_point(rr,th,ph);
  double A2=(star_ -> get_a_car()).val_point(rr,th,ph);
  double g_tt=(B2*r2*sinth2*omega*omega-N2), g_tp=-omega*B2*r2*sinth2, g_rr=A2, 
    g_thth=A2*r2, g_pp=B2*r2*sinth2;

  //DEBUG!!!! flat metric ***************
  //g_tt=-1.;g_tp=0.;g_rr=1.;g_thth=r2;g_pp=r2*sinth2;
  //*************************************

  if ((mu==0) && (nu==0)) return g_tt;
  if ((mu==1) && (nu==1)) return g_rr;
  if ((mu==2) && (nu==2)) return g_thth;
  if ((mu==3) && (nu==3)) return g_pp;
  if (((mu==0) && (nu==3)) || ((mu==3) && (nu==0))) return g_tp;

  return 0.;
}

//double RotStar3_1::christoffel(const double coord[8], const int alpha, const int mu, 
//		       const int nu) const
double RotStar3_1::christoffel(const double coord[8], const int alpha, 
			       const int mu, const int nu) const
{
  /*
    The computation of the christo is easy since we know the expression of gmunu as a function of 3+1 quantities, and since Lorene allows to perform derivatives on quantities. So gmunu,sigma is computable. 
   */

  //if (debug()) cout << "In RotStar::christo" << endl;
  //GYOTO_ERROR("RotStar3_1::christoffel: Not implemented yet");

  //24/05/10: stationary axisymmetric version

  double rr=coord[1],r2=rr*rr,th=coord[2],sinth2=sin(th)*sin(th),ph=coord[3];

  const Scalar & NNscal=star_ -> get_nn();
  double NN=NNscal.val_point(rr,th,ph), N2=NN*NN;
  const Scalar & NNrscal = NNscal.dsdr();
  const Scalar & NNthscal = NNscal.dsdt();
  double N_r=NNrscal.val_point(rr,th,ph);
  double N_th=NNthscal.val_point(rr,th,ph);
  const Scalar & omega_scal=star_ -> get_nphi();
  double omega=omega_scal.val_point(rr,th,ph), omega2=omega*omega;
  double omega_r=omega_scal.dsdr().val_point(rr,th,ph);
  double omega_th=omega_scal.dsdt().val_point(rr,th,ph);
  const Scalar & A2scal=star_ -> get_a_car();
  const Scalar & B2scal=star_ -> get_b_car();
  const Scalar & A2rscal = A2scal.dsdr();
  const Scalar & A2thscal = A2scal.dsdt(); 
  const Scalar & B2rscal = B2scal.dsdr();
  const Scalar & B2thscal = B2scal.dsdt(); 
  double B2=B2scal.val_point(rr,th,ph);
  double A2=A2scal.val_point(rr,th,ph);
  double A2_r=A2rscal.val_point(rr,th,ph);
  double A2_th=A2thscal.val_point(rr,th,ph);
  double B2_r=B2rscal.val_point(rr,th,ph);
  double B2_th=B2thscal.val_point(rr,th,ph);

  double gtt=-1./N2, grr=1./A2, gthth=1./(A2*r2), gpp=1./(B2*r2*sinth2)-omega2/N2, gtp=-omega/N2;
  double g_ttr=-2.*NN*N_r+B2_r*omega2*r2*sinth2+2.*omega*omega_r*B2*r2*sinth2+2.*rr*B2*omega2*sinth2, g_ttth=-2.*NN*N_th+B2_th*omega2*r2*sinth2+2.*omega*omega_th*B2*r2*sinth2+2.*cos(th)*sin(th)*r2*B2*omega2;
  double g_rrr=A2_r, g_rrth=A2_th;
  double g_ththr=r2*A2_r+2.*rr*A2, g_ththth=r2*A2_th;
  double g_ppr=sinth2*(r2*B2_r+2.*rr*B2), g_ppth=r2*(sinth2*B2_th+2.*cos(th)*sin(th)*B2);
  double g_tpr=-omega_r*B2*r2*sinth2-omega*B2_r*r2*sinth2-2.*rr*omega*B2*sinth2, g_tpth=-omega_th*B2*r2*sinth2-omega*B2_th*r2*sinth2-2.*cos(th)*sin(th)*omega*B2*r2;

  //  if (debug()) cout << "at r t p= " << rr << " " << th << " " << ph << endl;
  //if (debug()) cout << "gthth, g_ppr= " << gthth << " " << g_ppr << endl;

  //32 non-0 christo
    if ((alpha==0 && mu==0 && nu==1) || (alpha==0 && mu==1 && nu==0)) 
      return 1./2.*gtt*g_ttr+1./2.*gtp*g_tpr;
    if ((alpha==0 && mu==0 && nu==2) || (alpha==0 && mu==2 && nu==0)) 
      return 1./2.*gtt*g_ttth+1./2.*gtp*g_tpth;
    if ((alpha==0 && mu==3 && nu==1) || (alpha==0 && mu==1 && nu==3)) 
      return 1./2.*gtt*g_tpr+1./2.*gtp*g_ppr;
    if ((alpha==0 && mu==3 && nu==2) || (alpha==0 && mu==2 && nu==3)) 
      return 1./2.*gtt*g_tpth+1./2.*gtp*g_ppth;
    if ((alpha==3 && mu==3 && nu==1) || (alpha==3 && mu==1 && nu==3)) 
      return 1./2.*gpp*g_ppr+1./2.*gtp*g_tpr;
    if ((alpha==3 && mu==3 && nu==2) || (alpha==3 && mu==2 && nu==3)) 
      return 1./2.*gpp*g_ppth+1./2.*gtp*g_tpth;
    if ((alpha==3 && mu==0 && nu==1) || (alpha==3 && mu==1 && nu==0)) 
      return 1./2.*gpp*g_tpr+1./2.*gtp*g_ttr;
    if ((alpha==3 && mu==0 && nu==2) || (alpha==3 && mu==2 && nu==0)) 
      return 1./2.*gpp*g_tpth+1./2.*gtp*g_ttth;
    if (alpha==1 && mu==2 && nu==2) 
      return -1./2.*grr*g_ththr;
    if (alpha==1 && mu==3 && nu==3) 
      return -1./2.*grr*g_ppr;
    if (alpha==1 && mu==0 && nu==0) 
      return -1./2.*grr*g_ttr;
    if (alpha==1 && mu==1 && nu==1) 
      return 1./2.*grr*g_rrr;
    if ((alpha==1 && mu==1 && nu==2) || (alpha==1 && mu==2 && nu==1)) 
      return 1./2.*grr*g_rrth;
    if ((alpha==1 && mu==0 && nu==3) || (alpha==1 && mu==3 && nu==0)) 
      return -1./2.*grr*g_tpr;
    if (alpha==2 && mu==0 && nu==0) 
      return -1./2.*gthth*g_ttth;
    if (alpha==2 && mu==1 && nu==1) 
      return -1./2.*gthth*g_rrth;
    if (alpha==2 && mu==3 && nu==3) 
      return -1./2.*gthth*g_ppth;
    if (alpha==2 && mu==2 && nu==2) 
      return 1./2.*gthth*g_ththth;
    if ((alpha==2 && mu==2 && nu==1) || (alpha==2 && mu==1 && nu==2)) 
      return 1./2.*gthth*g_ththr;
    if ((alpha==2 && mu==0 && nu==3) || (alpha==2 && mu==3 && nu==0)) 
      return -1./2.*gthth*g_tpth;

    return 0.;//all other christo are 0

}

double RotStar3_1::ScalarProd(const double pos[4],
			  const double u1[4], const double u2[4]) const {
  //cout << "in RotStar ScalarProd" << endl;
  if (debug()) 
    cout << "u1,u2 in Scal= " ;
  for (int ii=0;ii<4;ii++) {
    if (debug()) 
      cout << u1[ii] << " " << u2[ii] << " ";
  }
  if (debug()) 
    cout << endl;
  double g_tt=gmunu(pos,0,0), g_tp=gmunu(pos,0,3), g_rr=gmunu(pos,1,1), g_thth=gmunu(pos,2,2), g_pp=gmunu(pos,3,3);
  //if (debug()) 
 
  //cout << "metrics in rotstar scalar prod= " << g_tt << " " << g_rr << " " << g_thth << " " << g_pp << " " << g_tp << endl;
  //cout << "norm sub-terms in rotstar scalar prod= " << g_tt*u1[0]*u2[0] << " " <<g_rr*u1[1]*u2[1]<< " " <<g_thth*u1[2]*u2[2]<< " " <<g_pp*u1[3]*u2[3]<< " " <<g_tp*u1[0]*u2[3]<< " " <<g_tp*u1[3]*u2[0]<<endl;
  return g_tt*u1[0]*u2[0]+g_rr*u1[1]*u2[1]+g_thth*u1[2]*u2[2]+g_pp*u1[3]*u2[3]+g_tp*u1[0]*u2[3]+g_tp*u1[3]*u2[0];
}

int RotStar3_1::setParameter(string name, string content, string unit){
  if      (name=="IntegKind") {
    GYOTO_WARNING << "IntegKind is deprecated, please use "
      "<GenericIntegrator/> or <SpecificIntegrator/> instead\n";
    integKind(atoi(content.c_str()));
  } else return Generic::setParameter(name, content, unit);
  return 0;
}