1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
/*
Copyright 2011, 2012, 2014, 2015, 2017, 2018 Thibaut Paumard & Frederic Vincent
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
// GYOTO HEADERS
#include "GyotoUtils.h"
#include "GyotoStandardAstrobj.h"
#include "GyotoMetric.h"
#include "GyotoPhoton.h"
#include "GyotoRegister.h"
#include "GyotoFactoryMessenger.h"
#include "GyotoProperty.h"
// SYSTEM HEADERS
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <string>
#include <cstring>
#include <float.h>
#include <cmath>
#include <sstream>
// NAMESPACES
using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;
GYOTO_PROPERTY_START(Gyoto::Astrobj::Standard,
"Gyoto::Astrobj whose shape is defined by a scalar function.")
GYOTO_PROPERTY_DOUBLE(Standard, SafetyValue, safetyValue,
"Value of the function below which to look more carefully.")
GYOTO_PROPERTY_DOUBLE(Standard, DeltaInObj, deltaInObj,
"Value of the constant integration step "
"inside the astrobj (geometrical units)")
GYOTO_PROPERTY_END(Standard, Generic::properties)
Standard::Standard(string kin) :
Generic(kin),
critical_value_(DBL_MIN), safety_value_(DBL_MAX),
delta_inobj_(0.05)
{
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
# endif
}
Standard::Standard() :
Generic(),
critical_value_(DBL_MIN), safety_value_(DBL_MAX),
delta_inobj_(0.05)
{
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
# endif
}
Standard::Standard(double radmax) :
Generic(radmax),
critical_value_(DBL_MIN), safety_value_(DBL_MAX)
{
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
# endif
}
Standard::Standard(const Standard& orig) :
Generic(orig), Functor::Double_constDoubleArray(orig),
critical_value_(orig.critical_value_), safety_value_(orig.safety_value_),
delta_inobj_(orig.delta_inobj_)
{
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
# endif
}
Standard::~Standard() {
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
# endif
}
int Standard::Impact(Photon* ph, size_t index, Properties *data){
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG_EXPR(kind());
# endif
size_t sz = ph -> parallelTransport()?16:8;
state_t p1(sz), p2(sz);
ph->getCoord(index, p1);
ph->getCoord(index+1, p2);
double tmin, minval;
if (gg_ -> coordKind() == GYOTO_COORDKIND_SPHERICAL){
//Allows theta and phi to be in the correct range
ph->checkPhiTheta(&p1[0]);
ph->checkPhiTheta(&p2[0]);
}
double t1 = p1[0], t2=p2[0];
double val1=(*this)(&p1[0]), val2=(*this)(&p2[0]);
if (val1 > critical_value_) {
if (val2 > critical_value_) {
if ( val1 > safety_value_ && val2 > safety_value_) {
if (val1 < val2) {
minval = val1; tmin = t1;
} else {
minval = val2; tmin = t2;
}
} else
minval = ph -> findMin(this, p1[0], p2[0], tmin, critical_value_) ;
if (minval>critical_value_) {
if (data) {
/* EmissionTime */
if (data->time) *data->time=tmin;
/* MinDistance */
if ((data->distance) && (*(data->distance)>minval) )
*data->distance=minval;
/* FirstMinDist */
if (data->first_dmin) {
if (!data->first_dmin_found) {
if (*(data->first_dmin)>minval) *(data->first_dmin)=minval;
else data->first_dmin_found=1;
}
}
}
return 0;
}
ph -> findValue(this, critical_value_, tmin, t2);
} else tmin=t2;
ph -> findValue(this, critical_value_, tmin, t1);
} else if (val2 > critical_value_)
ph -> findValue(this, critical_value_, t1, t2);
state_t cph(sz);
ph -> getCoord(t2, cph);
double coh[8] = {cph[0], cph[1], cph[2], cph[3]};
getVelocity(coh, coh+4);
bool current_is_inside = true; // by construction, t2 is always inside
double delta=giveDelta(&cph[0]);
double dt;
double coh_next[8];
state_t cph_next(sz);
bool next_is_inside;
while (cph[0]>t1){
// Warning: Impact must not extend the Worldline!
// never call get Coord with anything outside [t1, t2].
ph -> getCoord(max(cph[0] - delta, t1), cph_next);
memcpy(coh_next, &cph_next[0], 4*sizeof(cph_next[0]));
getVelocity(coh_next, coh_next+4);
next_is_inside = ((*this)(coh_next) <= critical_value_);
if (current_is_inside) {
if (next_is_inside) {
// Both points are inside
dt = cph[0]-cph_next[0];
} else {
// Late point in object, early outside
// Find date of surface crossing and update dt.
double t_out = cph_next[0];
ph -> findValue(this, critical_value_, cph[0], t_out);
dt = cph[0] - t_out;
}
} else {
if (next_is_inside) {
// Early point in object, late point outside
// Place cph and coh inside, near surface; update dt
double t_out = cph[0];
ph -> findValue(this, critical_value_, cph_next[0], t_out);
ph -> getCoord(t_out, cph);
memcpy(coh, &cph[0], 4*sizeof(cph_next[0]));
getVelocity(coh, coh+4);
dt = cph[0]-cph_next[0];
} else {
// Two points outside
dt = 0.;
}
}
// dt == 0 means the two points are outside
if (dt != 0.)
processHitQuantities(ph, cph, coh, dt, data);
// Copy next to current
cph = cph_next;
memcpy(coh, coh_next, 8*sizeof(coh[0]));
current_is_inside = next_is_inside;
}
return 1;
}
void Standard::safetyValue(double val) {safety_value_ = val; }
double Standard::safetyValue() const { return safety_value_; }
double Standard::deltaInObj() const { return delta_inobj_; }
void Standard::deltaInObj(double val) { delta_inobj_ = val; }
double Standard::giveDelta(double *) { return deltaInObj(); }
|