1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
|
/*
Copyright 2017-2019 Frederic Vincent & Thibaut Paumard
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#include "GyotoPhoton.h"
#include "GyotoThickDisk.h"
#include "GyotoProperty.h"
#include "GyotoUtils.h"
#include "GyotoFactoryMessenger.h"
#include "GyotoKerrBL.h"
#include "GyotoKerrKS.h"
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
#include <fstream>
#include <string>
#include <cmath>
#include <limits>
#include <string>
#include <random>
using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;
GYOTO_PROPERTY_START(ThickDisk)
GYOTO_PROPERTY_DOUBLE(ThickDisk, ThickDiskZGaussianSigma,
thickDiskZGaussianSigma,"The standard deviation "
"of the Gaussian G modulating the density "
"with altitude z out of the equatorial plane, "
"divided by the cylindrical radius. So "
"G(z) = exp(-z^2 / 2*(rcyl*thickDiskZGaussianSigma_)^2)")
GYOTO_PROPERTY_DOUBLE(ThickDisk, ThickDiskInnerRadius, thickDiskInnerRadius)
GYOTO_PROPERTY_BOOL(ThickDisk, UseSelfAbsorption, NoUseSelfAbsorption,
useSelfAbsorption)
// GYOTO_PROPERTY_BOOL(ThickDisk,
// AngleAveraged, NoAngleAveraged,
// angleAveraged)
GYOTO_PROPERTY_VECTOR_DOUBLE(ThickDisk, VeloParam, veloParam,
"The two coef alpha and beta such that "
"u^r = u^r_circ + (1-alpha)*(u^r_rad - u^r_circ)"
" and similarly for Omega and beta.")
GYOTO_PROPERTY_DOUBLE_UNIT(ThickDisk,
NumberDensityAtInnerRadius,
numberDensityAtInnerRadius)
GYOTO_PROPERTY_DOUBLE(ThickDisk, DensitySlope, densitySlope)
GYOTO_PROPERTY_DOUBLE(ThickDisk,
TemperatureAtInnerRadius,
temperatureAtInnerRadius)
GYOTO_PROPERTY_DOUBLE(ThickDisk, TemperatureSlope, temperatureSlope)
GYOTO_PROPERTY_DOUBLE(ThickDisk, MagnetizationParameter,
magnetizationParameter)
GYOTO_PROPERTY_END(ThickDisk, Standard::properties)
// Global variable to put to 1 to use the formalism
// of Vos+22 to which we compare Gyoto in the polarization paper.
// For debugging/code comparison only.
// For standard use, put it to 0 to use Gyoto formalism.
#define USE_IPOLE_FORMALISM 0
// ACCESSORS
void ThickDisk::thickDiskZGaussianSigma(double sig) {
thickDiskZGaussianSigma_=sig;}
double ThickDisk::thickDiskZGaussianSigma() const {
return thickDiskZGaussianSigma_;}
void ThickDisk::thickDiskInnerRadius(double hh) {thickDiskInnerRadius_=hh;}
double ThickDisk::thickDiskInnerRadius()const{return thickDiskInnerRadius_;}
bool ThickDisk::useSelfAbsorption() const {return use_selfabsorption_;}
void ThickDisk::useSelfAbsorption(bool abs) {use_selfabsorption_=abs;}
void ThickDisk::veloParam(std::vector<double> const &v) {
size_t nn = v.size();
if (nn!=2)
GYOTO_ERROR("In ThickDisk: choose exactly 2 velocity parameters");
alpha_veloparam_ = v[0];
beta_veloparam_ = v[1];
if (alpha_veloparam_<0. || alpha_veloparam_>1.
|| beta_veloparam_<0. || beta_veloparam_>1.){
GYOTO_ERROR("In ThickDisk: velocity parameters should be "
"between 0 and 1!");
}
}
std::vector<double> ThickDisk::veloParam() const {
std::vector<double> v(2, 0.);
v[0] = alpha_veloparam_;
v[1] = beta_veloparam_;
return v;
}
// bool ThickDisk::angleAveraged() const
// {return angle_averaged_;}
// void ThickDisk::angleAveraged(bool ang)
// {
// angle_averaged_=ang;
// spectrumThermalSynch_->angle_averaged(ang);
// }
double ThickDisk::numberDensityAtInnerRadius() const {
// Converts internal cgs central enthalpy to SI
double dens=numberDensityAtInnerRadius_cgs_;
# ifdef HAVE_UDUNITS
dens = Units::Converter("cm-3", "m-3")(dens);
# else
GYOTO_WARNING << "Units ignored, please recompile Gyoto with --with-udunits"
<< endl ;
# endif
return dens; }
double ThickDisk::numberDensityAtInnerRadius(string const &unit) const
{
double dens = numberDensityAtInnerRadius();
if (unit != "") {
# ifdef HAVE_UDUNITS
dens = Units::Converter("m-3", unit)(dens);
# else
GYOTO_WARNING << "Units ignored, please recompile Gyoto with --with-udunits"
<< endl ;
# endif
}
return dens;
}
void ThickDisk::numberDensityAtInnerRadius(double dens) {
# ifdef HAVE_UDUNITS
dens = Units::Converter("m-3", "cm-3")(dens);
# else
GYOTO_WARNING << "Units ignored, please recompile Gyoto with --with-udunits"
<< endl ;
# endif
numberDensityAtInnerRadius_cgs_=dens;
}
void ThickDisk::numberDensityAtInnerRadius(double dens, string const &unit) {
if (unit != "") {
# ifdef HAVE_UDUNITS
dens = Units::Converter(unit, "m-3")(dens);
# else
GYOTO_WARNING << "Units ignored, please recompile Gyoto with --with-udunits"
<< endl ;
# endif
}
numberDensityAtInnerRadius(dens);
}
void ThickDisk::densitySlope(double ss) {densitySlope_=ss;}
double ThickDisk::densitySlope()const{return densitySlope_;}
void ThickDisk::temperatureAtInnerRadius(double tt) {temperatureAtInnerRadius_=tt;}
double ThickDisk::temperatureAtInnerRadius()const{return temperatureAtInnerRadius_;}
void ThickDisk::temperatureSlope(double ss) {temperatureSlope_=ss;}
double ThickDisk::temperatureSlope()const{return temperatureSlope_;}
void ThickDisk::magnetizationParameter(double rr) {
magnetizationParameter_=rr;}
double ThickDisk::magnetizationParameter()const{
return magnetizationParameter_;}
//
ThickDisk::ThickDisk() :
Standard("ThickDisk"),
thickDiskInnerRadius_(2.),
thickDiskZGaussianSigma_(1.),
use_selfabsorption_(1),
alpha_veloparam_(1.),
beta_veloparam_(1.),
numberDensityAtInnerRadius_cgs_(1.), temperatureAtInnerRadius_(1e10),
temperatureSlope_(1.),
densitySlope_(2.),
magnetizationParameter_(1.),
magneticConfig_("None")
{
GYOTO_DEBUG << endl;
spectrumThermalSynch_ = new Spectrum::ThermalSynchrotron();
if (USE_IPOLE_FORMALISM!=0 and USE_IPOLE_FORMALISM!=1){
GYOTO_ERROR("Bad value of USE_IPOLE_FORMALISM should be 0 or 1!");
}
}
ThickDisk::ThickDisk(const ThickDisk& o) :
Standard(o),
thickDiskInnerRadius_(o.thickDiskInnerRadius_),
thickDiskZGaussianSigma_(o.thickDiskZGaussianSigma_),
use_selfabsorption_(o.use_selfabsorption_),
alpha_veloparam_(o.alpha_veloparam_),
beta_veloparam_(o.beta_veloparam_),
numberDensityAtInnerRadius_cgs_(o.numberDensityAtInnerRadius_cgs_),
temperatureAtInnerRadius_(o.temperatureAtInnerRadius_),
temperatureSlope_(o.temperatureSlope_),
densitySlope_(o.densitySlope_),
magnetizationParameter_(o.magnetizationParameter_),
spectrumThermalSynch_(NULL),
magneticConfig_(o.magneticConfig_)
{
GYOTO_DEBUG << endl;
if (gg_) gg_->hook(this);
if (o.spectrumThermalSynch_()) spectrumThermalSynch_=o.spectrumThermalSynch_->clone();
if (USE_IPOLE_FORMALISM!=0 and USE_IPOLE_FORMALISM!=1){
GYOTO_ERROR("Bad value of USE_IPOLE_FORMALISM should be 0 or 1!");
}
}
ThickDisk* ThickDisk::clone() const
{ return new ThickDisk(*this); }
ThickDisk::~ThickDisk() {
GYOTO_DEBUG << endl;
if (gg_) gg_->unhook(this);
}
void ThickDisk::radiativeQ(double Inu[], // output
double Taunu[], // output
double const nu_ems[], size_t nbnu, // input
double dsem,
state_t const &coord_ph,
double const coord_obj[8]) const {
double rr, rcyl, theta, zz=0.;
switch (gg_->coordKind()) {
case GYOTO_COORDKIND_SPHERICAL:
rr = coord_ph[1];
rcyl = coord_ph[1]*sin(coord_ph[2]);
theta = coord_ph[2];
zz = coord_ph[1]*cos(coord_ph[2]);
break;
case GYOTO_COORDKIND_CARTESIAN:
rcyl = pow(coord_ph[1]*coord_ph[1]+coord_ph[2]*coord_ph[2], 0.5);
rr = sqrt(coord_ph[1]*coord_ph[1]+coord_ph[2]*coord_ph[2]
+coord_ph[3]*coord_ph[3]);
theta = acos(coord_ph[3]/rr);
zz = coord_ph[3];
break;
default:
GYOTO_ERROR("In ThickDisk::radiativeQ(): Unknown coordinate system kind");
}
if (rr<thickDiskInnerRadius_) {
GYOTO_WARNING << "ThickDisk should typically have an inner radius at the "
"horizon, here r<rin!" << endl;
}
double number_density = numberDensityAtInnerRadius_cgs_
*pow(thickDiskInnerRadius_/rr, densitySlope_);
//*(thickDiskInnerRadius_*thickDiskInnerRadius_)/(rr*rr);
//*pow(thickDiskInnerRadius_/rr,3.);
//cout << "nb density before expo= " << number_density << endl;
double zsigma = thickDiskZGaussianSigma_*rcyl;
double expofact_zscaling = exp(-zz*zz/(2.*zsigma*zsigma)); // simple Gaussian modulation around z=0; RIAF model (Broderick+11) use zsigma=rcyl
//cout << "ne before expo= " << rr << " " <<thickDiskInnerRadius_ << " " << numberDensityAtInnerRadius_cgs_ << " " << number_density << endl;
number_density *= expofact_zscaling;
//cout << "z/r fact, dens= " << expofact_zscaling << " " << number_density << endl;
//cout << "ThickDisk r, z, rho= " << rcyl << " " << zz << " " << number_density << endl;
double temperature = temperatureAtInnerRadius_
*pow(thickDiskInnerRadius_/rr, temperatureSlope_);
//*pow(thickDiskInnerRadius_/rr, 2.);
//cout << "params in disk= " << thickDiskInnerRadius_ << " " << densitySlope_<< " " << temperatureSlope_ << " " << temperatureAtInnerRadius_ << " " << thickDiskZGaussianSigma_ << " " << magneticConfig_ << " " << endl;
//throwError("test disk");
double r0 = 4., phi0 = 0., phi = coord_ph[3],
sigr = 2., sigp = M_PI/4.; // spin0: r0=9; spin08: r0=4
double gaussr = 1./(sqrt(2.*M_PI)*sigr)
* exp(-0.5*(rcyl-r0)*(rcyl-r0)/(sigr*sigr));
double dphi = fabs(phi-phi0), dphibis = fabs(phi-2.*M_PI-phi0);
if (dphi > dphibis){
dphi = dphibis;
}
double gaussp = 1./(sqrt(2.*M_PI)*sigp)
* exp(-0.5*dphi*dphi/(sigp*sigp));
double gauss2d = gaussr*gaussp;
double T0 = 1.6e11; // this is to be tuned: 4e11 too small, 6e11 looks good
double DeltaTemperature = T0*gauss2d;
//temperature+=DeltaTemperature;
double thetae = GYOTO_BOLTZMANN_CGS*temperature
/(GYOTO_ELECTRON_MASS_CGS*GYOTO_C2_CGS);
double BB = sqrt(4.*M_PI*magnetizationParameter_
*GYOTO_PROTON_MASS_CGS * GYOTO_C_CGS * GYOTO_C_CGS
*number_density);
/*if (zz<0.1){
cout << "at r rcyl z= " << rr << " " << rcyl << " " << zz << endl;
cout << "ne,T,B= " << number_density << " " << temperature << " " << BB << endl;
cout << "beta= " << 8.*M_PI*number_density*GYOTO_BOLTZMANN_CGS*temperature/(BB*BB) << endl;
}*/
double B0 = 100.; // for ne_inner=5.5e4, B_inner=10.2G; B0=50 too small, B0=100 looks good
double DeltaB = B0*gauss2d;
//BB += DeltaB;
//if (fabs(coord_ph[1]*cos(coord_ph[2]))<0.5)
//cout << "thickdisk stuff= " << coord_ph[1] << " " << zz << " " << number_density << " " << BB << " " << thetae << endl;
// // Random generator: mersenne_twister_engine seeded with rd()
// std::random_device rd;
// std::mt19937 generator(rd());
// // Define a real uniform distribution within some bounds
// std::uniform_real_distribution<double> distribution(0.9,1.1);
// double randnb = distribution(generator); // draw a random number
//cout << "IN DISK r, z, ne, B= " << coord_ph[1] << " " << zz << " " << number_density << " " << BB << endl;
//GYOTO_ERROR("testjet");
double nu0 = GYOTO_ELEMENTARY_CHARGE_CGS*BB
/(2.*M_PI*GYOTO_ELECTRON_MASS_CGS*GYOTO_C_CGS); // cyclotron freq
//cout << "jet stuff= " << coord_ph[1] << " " << coord_ph[2] << " " << zz << " " << rcyljetbase << " " << rcyl << " " << number_density << " " << thetae << " " << temperatureSlope_ << " " << nu0 << endl;
// Emission and absorption synchrotron coefs
double jnu_synch[nbnu], anu_synch[nbnu];
for (size_t ii=0; ii<nbnu; ++ii){
// Initializing to <0 value to create errors if not updated
jnu_synch[ii]=-1.;
anu_synch[ii]=-1.;
}
// THERMAL SYNCHROTRON
spectrumThermalSynch_->temperature(temperature);
spectrumThermalSynch_->numberdensityCGS(number_density);
spectrumThermalSynch_->angle_averaged(1.); // impose angle-averaging
spectrumThermalSynch_->angle_B_pem(M_PI/2.); // so we don't care about angle
spectrumThermalSynch_->cyclotron_freq(nu0);
double besselK2 = bessk(2, 1./thetae);
spectrumThermalSynch_->besselK2(besselK2);
//cout << "for anu jnu: " << coord_ph[1] << " " << zz << " " << temperature << " " << number_density << " " << nu0 << " " << thetae << " " << besselK2 << endl;
//cout << "nu passed to synchro= " << nu_ems[0] << endl;
//if (number_density==0.) {
if (number_density<numberDensityAtInnerRadius_cgs_/1e10) { // CHECK THAT
// Can happen due to strongly-killing z-expo factor
// if zsigma is small. Then leads to 0/0 in synchro stuff. TBC
for (size_t ii=0; ii<nbnu; ++ii){
jnu_synch[ii]=0.;
anu_synch[ii]=0.;
}
}else{
spectrumThermalSynch_->radiativeQ(jnu_synch,anu_synch,
nu_ems,nbnu);
}
// RETURNING TOTAL INTENSITY AND TRANSMISSION
for (size_t ii=0; ii<nbnu; ++ii){
double jnu_tot = jnu_synch[ii],
anu_tot = anu_synch[ii];
//if (rcyl<1.5 && fabs(zz)<0.01) jnu_tot=3e-15; // TEST!!
//cout << "in disk stuff: " << zz << " " << rcyl << " " << nu_ems[0] << " " << number_density << " " << nu0 << " " << temperature << " " << thetae << " " << jnu_tot << " " << anu_tot << " " << dsem << endl;
//if (nu_ems[ii]>1e9)
// cout << dsem << " " << nu_ems[ii] << " " << jnu_tot << " " << anu_tot << endl;
//if (nu_ems[ii]>1e9 && fabs(coord_ph[1]*cos(coord_ph[2]))<0.5)
// cout << "disk nu jnu anu in cgs= " <<nu_ems[ii] << " " << jnu_tot*10. << " " << anu_tot*0.01 << endl;
// expm1 is a precise implementation of exp(x)-1
double em1=std::expm1(-anu_tot * dsem * gg_->unitLength());
if (use_selfabsorption_){
// with self absorption
Taunu[ii] = em1+1.;
Inu[ii] = anu_tot == 0. ? jnu_tot * dsem * gg_->unitLength() :
-jnu_tot / anu_tot * em1;
}else{
// no absorption
Taunu[ii] = 1.;
Inu[ii] = jnu_tot * dsem * gg_->unitLength() ;
}
//cout << "unit length= " << gg_->unitLength() << " " << jnu_tot * gg_->unitLength() << endl;
if (Inu[ii]<0.)
GYOTO_ERROR("In ThickDisk::radiativeQ: Inu<0");
if (Inu[ii]!=Inu[ii] or Taunu[ii]!=Taunu[ii])
GYOTO_ERROR("In ThickDisk::radiativeQ: Inu or Taunu is nan");
if (Inu[ii]==Inu[ii]+1. or Taunu[ii]==Taunu[ii]+1.)
GYOTO_ERROR("In ThickDisk::radiativeQ: Inu or Taunu is infinite");
}
}
double ThickDisk::operator()(double const coord[4]) {
// zpos: modulus of altitude above equatorial plane
// rproj: radius projected in the equatorial plane
double zpos=0., rproj=0.;
switch (gg_ -> coordKind()) {
case GYOTO_COORDKIND_SPHERICAL:
rproj = coord[1]*sin(coord[2]);
zpos = fabs(coord[1]*cos(coord[2]));
break;
case GYOTO_COORDKIND_CARTESIAN:
zpos = fabs(coord[3]);
rproj = sqrt(coord[1]*coord[1]+coord[2]*coord[2]);
break;
default:
GYOTO_ERROR("ThickDisk::operator(): unknown COORDKIND");
}
// // 2019 paper version:
// double zdisk = 0.; // zdisk is fixed at zero rproj <= rinner,
// // then the distance to the disk is always positive
// double rproj_lim=thickDiskInnerRadius_;
// if (rproj > thickDiskInnerRadius_){
// if (rproj > rproj_lim) // usual linear surface above rproj_lim
// zdisk = (rproj - thickDiskInnerRadius_)
// * tan(M_PI/2. - thickDiskOpeningAngle_) ;
// else // parabola surface below, connecting continuously
// zdisk = (rproj - thickDiskInnerRadius_)
// *(rproj - thickDiskInnerRadius_)/(rproj_lim - thickDiskInnerRadius_)
// * tan(M_PI/2. - thickDiskOpeningAngle_) ;
// }
// return zpos - zdisk; // >0 outside, <0 inside flared disk
// 2021 version without surface
return -1.; // matter is everywhere
}
void ThickDisk::getVelocity(double const pos[4], double vel[4])
{
if (USE_IPOLE_FORMALISM==0){
// Vincent+22 formalism for circular/radial/mixed velocity profile
double vel_circ[4], vel_rad[4];
double rcyl = pos[1]*sin(pos[2]);// cylindrical radius of current location
double rr = pos[1];
double gtt = gg_->gmunu(pos,0,0),
grr = gg_->gmunu(pos,1,1),
gpp = gg_->gmunu(pos,3,3),
gtp = gg_->gmunu(pos,0,3),
guptt = gg_->gmunu_up(pos,0,0),
guptp = gg_->gmunu_up(pos,0,3),
guppp = gg_->gmunu_up(pos,3,3),
guprr = gg_->gmunu_up(pos,1,1);
// CIRCULAR VELOCITY
// u_\mu = (u_t,0,0,u_phi) = -u_t (-1,0,0,ll)
// with ll = rcyl^{3/2}/(rcyl+1.)
double mycst=1; // Gold+20 choice, Keplerian is mycst=-2,
// see Appendix of 2021 M87 paper.
double ll=pow(rcyl,1.5)/(rcyl+mycst);
double u_t_minus=sqrt(-1./(guptt - 2.*guptp*ll + guppp*ll*ll));
double u_t = -u_t_minus, u_phi = u_t_minus*ll;
vel_circ[0] = guptt*u_t + guptp*u_phi;
vel_circ[1] = 0.;
vel_circ[2] = 0.;
vel_circ[3] = guptp*u_t + guppp*u_phi;
double Omega_circ = vel_circ[3]/vel_circ[0];
// RADIAL VELOCITY
// 4-vel obtained by imposing: u_t=-1, u_phi=0, u^theta=0
// see FV notes SphericalVelocity.pdf for details
vel_rad[0] = -guptt;
vel_rad[1] = -sqrt((-1.-guptt)*guprr);
vel_rad[2] = 0;
vel_rad[3] = -guptp;
double Omega_rad = vel_rad[3]/vel_rad[0];
// MIXED VELOCITY
double alpha=alpha_veloparam_, beta=beta_veloparam_;
vel[1] = vel_circ[1] + (1-alpha)*(vel_rad[1]-vel_circ[1]);
vel[2] = 0.;
double Omega = Omega_circ + (1-beta)*(Omega_rad-Omega_circ);
double normfact = gtt + 2*Omega*gtp + Omega*Omega*gpp;
if (normfact>0) throwError("In ThickDisk::getVelocity: velocity "
"prescription non physical.");
vel[0] = sqrt(-(1. + grr*vel[1]*vel[1])/normfact);
vel[3] = Omega*vel[0];
// TEST!!!////// no spatial velocity/////
//vel[0] = sqrt(-1./gtt);
//vel[1] = 0.;
//vel[2] = 0.;
//vel[3] = 0.;
/////////////////////////////////////////
//cout << "at rcyl, th-pi/2= " << rcyl << " " << fabs(pos[2]-M_PI/2.) << " u2 = " << gg_->ScalarProd(pos,vel,vel) << endl;
double tol=0.03, normcur=gg_->ScalarProd(pos,vel,vel) ;
//cout << "4vel at r z= " << pos[1]*sin(pos[2]) << " " << pos[1]*cos(pos[2]) << " " << vel[0] << " " << vel[1] << " " << vel[2] << " " << vel[3] << " " << normcur << endl; // gg_->ScalarProd(pos,vel,vel)
if ((fabs(normcur+1.)>tol) ||
(normcur!=normcur) ||
(normcur==normcur+1)) {
cerr << setprecision(10) << "at rcyl th= " << rcyl << " " << pos[2] << ", u2= " << normcur << endl;
throwError("In ThickDisk: 4vel not properly normalized!");
}
}else{
// Ipole formalism for comparison to Vos+22
double rr = pos[1], theta=pos[2];
double Risco = 6.;
double a = 0.;
if (rr>Risco){
double sth2=sin(theta)*sin(theta),
cth2=cos(theta)*cos(theta),
rho2=rr*rr+a*a*cth2,
a2=a*a,
r2=rr*rr,
DD=1.-2./rr+a2/r2,
mu= 1. +a2*cth2/r2;
double g_tt = -(1.-2./(rr*mu)),
g_tp = -2.*a*sth2/(rr*mu),
g_pp = r2*sth2*(1.+a2/r2+2.*a2*sth2/(r2*rr*mu));
/*if (g_tt!=gg_->gmunu(pos,0,0)
or g_tp!=gg_->gmunu(pos,0,3)
or g_pp!=gg_->gmunu(pos,3,3)){
cout << "g_tt : " << g_tt << ", " << gg_->gmunu(pos,0,0) << endl;
cout << "g_tp : " << g_tp << ", " << gg_->gmunu(pos,0,3) << endl;
cout << "g_pp : " << g_pp << ", " << gg_->gmunu(pos,3,3) << endl;
GYOTO_ERROR("metric set by hand not equal to real metric.");
}*/
double omega = 1./(pow(rr,1.5)+a),
m1oA2=g_tt+2.*omega*g_tp+omega*omega*g_pp,
AA=sqrt(-1./m1oA2);
vel[0]=AA;
vel[1]=0.;
vel[2]=0.;
vel[3]=AA*omega;
}else{
double vel_cov[4]={0.,0.,0.,0.};
vel_cov[0]=-1./sqrt(-gg_->gmunu_up(pos,0,0));
vel_cov[1]=0.;
vel_cov[2]=0.;
vel_cov[3]=0.;
vel[0]=gg_->gmunu_up(pos,0,0)*vel_cov[0];
vel[1]=0.;
vel[2]=0.;
vel[3]=gg_->gmunu_up(pos,0,3)*vel_cov[3];
}
}
}
bool ThickDisk::isThreadSafe() const {
return Standard::isThreadSafe()
&& (!spectrumThermalSynch_ || spectrumThermalSynch_->isThreadSafe());
}
void ThickDisk::metric(SmartPointer<Metric::Generic> gg) {
if (gg_) gg_->unhook(this);
string kin = gg->kind();
//if (kin != "KerrBL" or kin!="NumericalMetricLorene")
// GYOTO_ERROR
// ("ThickDisk::metric(): metric must be KerrBL");
// NB: KerrBL needed for ZAMO velocity in getVelocity,
// could be generalized if needed
Generic::metric(gg);
}
void ThickDisk::radiativeQ(double *Inu, double *Qnu, double *Unu,
double *Vnu,
Eigen::Matrix4d *Onu,
double const *nuem , size_t nbnu,
double dsem,
state_t const &coord_ph,
double const *co) const {
// polarized radiativeQ
double rr, rcyl, theta, zz=0.;
switch (gg_->coordKind()) {
case GYOTO_COORDKIND_SPHERICAL:
rr = coord_ph[1];
rcyl = coord_ph[1]*sin(coord_ph[2]);
theta = coord_ph[2];
zz = coord_ph[1]*cos(coord_ph[2]);
break;
case GYOTO_COORDKIND_CARTESIAN:
rcyl = pow(coord_ph[1]*coord_ph[1]+coord_ph[2]*coord_ph[2], 0.5);
rr = sqrt(coord_ph[1]*coord_ph[1]+coord_ph[2]*coord_ph[2]
+coord_ph[3]*coord_ph[3]);
theta = acos(coord_ph[3]/rr);
zz = coord_ph[3];
break;
default:
GYOTO_ERROR("In ThickDisk::radiativeQ(): Unknown coordinate system kind");
}
double vel[4]; // 4-velocity of emitter
for (int ii=0;ii<4;ii++){
vel[ii]=co[ii+4];
}
//cout << vel[0] << " " << vel[1] << " " << vel[2] << " " << vel[3] << endl;
double number_density, zsigma;
if (USE_IPOLE_FORMALISM==1){
number_density = numberDensityAtInnerRadius_cgs_
*pow(rr, densitySlope_); // scaling with (r/M)^{densitySlope_}
zsigma = thickDiskZGaussianSigma_*rr;
}else{
number_density = numberDensityAtInnerRadius_cgs_
*pow(thickDiskInnerRadius_/rr, densitySlope_); // scaling with (r/rin)^{-densitySlope_} ; careful with sign
zsigma = thickDiskZGaussianSigma_*rcyl;
}
//cout << "nb density before expo= " << number_density << endl;
double expofact_zscaling = exp(-zz*zz/(2.*zsigma*zsigma)); // simple Gaussian modulation around z=0; RIAF model (Broderick+11) use zsigma=rcyl
//cout << "ne before expo= " << rr << " " <<thickDiskInnerRadius_ << " " << numberDensityAtInnerRadius_cgs_ << " " << number_density << endl;
number_density *= expofact_zscaling;
//number_density=6e5; // TEST
if (rr<thickDiskInnerRadius_) number_density=0.; //1e-3; //0.; //NB: actually Vos+22 use density=1e-3 below ISCO; their rmin is 1.05*rhor; for the Aimar+23 paper we took a zero density below ISCO in ipole as well.
double thetae, temperature, BB;
if (USE_IPOLE_FORMALISM==1){
thetae = 200.*pow(rr, temperatureSlope_);
temperature = GYOTO_ELECTRON_MASS_CGS*GYOTO_C2_CGS*thetae/GYOTO_BOLTZMANN_CGS;
double BB0 = 100.; // Gauss
BB = BB0*pow(rr,-1.);
}else{
temperature = temperatureAtInnerRadius_
*pow(thickDiskInnerRadius_/rr, temperatureSlope_);
thetae = GYOTO_BOLTZMANN_CGS*temperature
/(GYOTO_ELECTRON_MASS_CGS*GYOTO_C2_CGS);
//double BB0 = 100.; // Gauss
BB = sqrt(4.*M_PI*magnetizationParameter_
*GYOTO_PROTON_MASS_CGS * GYOTO_C_CGS * GYOTO_C_CGS
*number_density);
//BB = BB0*pow(rr,-1.);
//BB = sqrt(4.*M_PI*magnetizationParameter_
// *GYOTO_PROTON_MASS_CGS * GYOTO_C_CGS * GYOTO_C_CGS
// *number_density);
}
double nu0 = GYOTO_ELEMENTARY_CHARGE_CGS*BB
/(2.*M_PI*GYOTO_ELECTRON_MASS_CGS*GYOTO_C_CGS); // cyclotron freq
//cout << "jet stuff= " << coord_ph[1] << " " << coord_ph[2] << " " << zz << " " << rcyljetbase << " " << rcyl << " " << number_density << " " << thetae << " " << temperatureSlope_ << " " << nu0 << endl;
/**************************/
/* CHOOSE BFIELD GEOMETRY */
/**************************/
double B4vect[4]={0.,0.,0.,0.};
if (USE_IPOLE_FORMALISM==1){ // or USE_IPOLE_FORMALISM==0){ // TEST
string kin = gg_->kind();
if (kin != "KerrBL") GYOTO_ERROR("ThickDisk in Ipole formalism should be in Kerr!");
double spin = static_cast<SmartPointer<Metric::KerrBL> >(gg_) -> spin();
if (spin!=0.) GYOTO_ERROR("ThickDisk in Ipole formalism should be in Schwarzschild!");
computeB4vect_ipole(B4vect, magneticConfig_, co, coord_ph, spin);
}else{
computeB4vect(B4vect, magneticConfig_, co, coord_ph);
}
//cout << "B squared norm:" << gg_->ScalarProd(&coord_ph[0], B4vect, B4vect) << endl;
double norm=sqrt(gg_->ScalarProd(&coord_ph[0], B4vect, B4vect));
if (USE_IPOLE_FORMALISM==0){
// Gyoto B formalism gives a unit vector
if (fabs(norm-1.)>GYOTO_DEFAULT_ABSTOL) GYOTO_ERROR("Bad mf normalization");
}else{
// Ipole B formalism does not
gg_->multiplyFourVect(B4vect,1./norm);
}
//cout << "B norm= " << norm << endl;
double Chi=getChi(B4vect, coord_ph, vel); // this is EVPA
//cout << "At r,th,ph Chi[deg]= " << coord_ph[1] << " " << coord_ph[2] << " " << coord_ph[3] << " " << Chi*180./M_PI << endl;
// Computing the angle theta_mag between the magnetic field vector and photon tgt vector in the rest frame of the emitter
gg_->projectFourVect(&coord_ph[0],B4vect,vel); //Projection of the 4-vector B to 4-velocity to be in the rest frame of the emitter
double photon_emframe[4]; // photon tgt vector projected in comoving frame
for (int ii=0;ii<4;ii++){
photon_emframe[ii]=coord_ph[ii+4];
}
gg_->projectFourVect(&coord_ph[0],photon_emframe,vel);
double bnorm = gg_->norm(&coord_ph[0],B4vect);
double lnorm = gg_->norm(&coord_ph[0],photon_emframe);
double lscalb = gg_->ScalarProd(&coord_ph[0],photon_emframe,B4vect);
double theta_mag = acos(lscalb/(lnorm*bnorm));
if (theta_mag<0. or theta_mag>M_PI) throwError("ThickDisk: bad B angle");
Eigen::Matrix4d Omat, Pmat;
Omat << 1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1;
// Defining emission, absoprtion and rotation coefficients for the transmission matrix
double jInu[nbnu], jQnu[nbnu], jUnu[nbnu], jVnu[nbnu];
double aInu[nbnu], aQnu[nbnu], aUnu[nbnu], aVnu[nbnu];
double rotQnu[nbnu], rotUnu[nbnu], rotVnu[nbnu];
for (size_t ii=0; ii<nbnu; ++ii){
// Initialze them to -1 to create error if not updated
jInu[ii]=-1.;
jQnu[ii]=-1.;
jUnu[ii]=-1.;
jVnu[ii]=-1.;
aInu[ii]=-1.;
aQnu[ii]=-1.;
aUnu[ii]=-1.;
aVnu[ii]=-1.;
rotQnu[ii]=-1.;
rotUnu[ii]=-1.;
rotVnu[ii]=-1.;
}
double besselK2 = bessk(2, 1./thetae);
//if (fabs(zz)<10.) cout << "In ThickDisk: ne, temperature, BB, nu0, besselK2, theta_mag: " << number_density << " " << temperature << " " << BB << " " << nu0 << " " << besselK2 << " " << theta_mag << endl;
// THERMAL SYNCHROTRON
spectrumThermalSynch_->temperature(temperature);
spectrumThermalSynch_->numberdensityCGS(number_density);
spectrumThermalSynch_->angle_averaged(0); // no angle avg of course
spectrumThermalSynch_->angle_B_pem(theta_mag);
spectrumThermalSynch_->cyclotron_freq(nu0);
spectrumThermalSynch_->besselK2(besselK2);
//cout << "for anu jnu: " << coord_ph[1] << " " << zz << " " << temperature << " " << number_density << " " << nu0 << " " << thetae << " " << besselK2 << endl;
//cout << "nu passed to synchro= " << nuem[0] << endl;
//if (number_density==0.) {
//if (number_density<1.e4) {
if (number_density<numberDensityAtInnerRadius_cgs_/1e10) {
// Can happen due to strongly-killing z-expo factor
// if zsigma is small. Then leads to 0/0 in synchro stuff. TBC
for (size_t ii=0; ii<nbnu; ++ii){
jInu[ii]=0.;
jQnu[ii]=0.;
jUnu[ii]=0.;
jVnu[ii]=0.;
aInu[ii]=0.;
aQnu[ii]=0.;
aUnu[ii]=0.;
aVnu[ii]=0.;
rotQnu[ii]=0.;
rotUnu[ii]=0.;
rotVnu[ii]=0.;
}
}else{
spectrumThermalSynch_->radiativeQ(jInu, jQnu, jUnu, jVnu,
aInu, aQnu, aUnu, aVnu,
rotQnu, rotUnu, rotVnu, nuem, nbnu);
}
// RETURNING TOTAL INTENSITY AND TRANSMISSION
for (size_t ii=0; ii<nbnu; ++ii) {
//if (fabs(zz)<10.) cout << "In ThickDisk: rr, jInu, jQnu, jUnu, jVnu: " << rr << " " << jInu[ii] << ", " << jQnu[ii] << ", " << jUnu[ii] << ", " << jVnu[ii] << endl;
//cout << "In ThickDisk: aInu, aQnu, aUnu, aVnu: " << aInu[ii] << ", " << aQnu[ii] << ", " << aUnu[ii] << ", " << aVnu[ii] << endl;
//cout << "In ThickDisk: rQnu, rUnu, rVnu: " << rotQnu[ii] << ", " << rotUnu[ii] << ", " << rotVnu[ii] << endl;
//cout << "RADSTUFF: " << "r= " << coord_ph[1] << " " << ", th= " << coord_ph[2]*180./M_PI << " Rad transf stuff: " << jInu[ii]/(nuem[ii]*nuem[ii])*10. << ", " << jQnu[ii]/(nuem[ii]*nuem[ii])*10. << ", " << jUnu[ii]/(nuem[ii]*nuem[ii])*10. << ", " << jVnu[ii]/(nuem[ii]*nuem[ii])*10. << " " << nuem[ii]*aInu[ii]*0.01 << ", " << nuem[ii]*aQnu[ii]*0.01 << ", " << nuem[ii]*aUnu[ii]*0.01 << ", " << nuem[ii]*aVnu[ii]*0.01 << " " << nuem[ii]*rotQnu[ii]*0.01 << ", " << nuem[ii]*rotUnu[ii]*0.01 << ", " << nuem[ii]*rotVnu[ii]*0.01 << endl;
Eigen::Vector4d JstokesDs=rotateJs(jInu[ii], jQnu[ii], jUnu[ii], jVnu[ii], Chi)*dsem*gg_->unitLength(), Jstokes=rotateJs(jInu[ii], jQnu[ii], jUnu[ii], jVnu[ii], Chi);
//cout << Jstokes << endl;
Omat = Omatrix(aInu[ii], aQnu[ii], aUnu[ii], aVnu[ii], rotQnu[ii], rotUnu[ii], rotVnu[ii], Chi, dsem);
Pmat = Pmatrix(aInu[ii], aQnu[ii], aUnu[ii], aVnu[ii], rotQnu[ii], rotUnu[ii], rotVnu[ii], sin(2.*Chi), cos(2.*Chi), dsem);
//cout << Omat << endl;
// Computing the increment of the Stokes parameters. Equivalent to dInu=exp(-anu*dsem)*jnu*dsem in the non-polarised case.
Eigen::Vector4d StokesFirst=Omat*JstokesDs,
StokesMonika=Pmat*Jstokes, // Monika's version
Stokes=StokesFirst; //StokesMonika; //StokesFirst;
//cout << "StokesFirst= " << StokesFirst << endl;
//cout << "StokesMonika= " << StokesMonika << endl;
//cout << Stokes << endl;
Inu[ii] = Stokes(0);
Qnu[ii] = Stokes(1);
Unu[ii] = Stokes(2);
Vnu[ii] = Stokes(3);
Onu[ii] = Omat;
//cout << "In ThickDisk: r,th,ph, Inu, Qnu, Unu, Vnu, dsem, LP: " << coord_ph[1] << " " << coord_ph[2] << " " << coord_ph[3] << " " << Inu[ii] << ", " << Qnu[ii] << ", " << Unu[ii] << ", " << Vnu[ii] << ", " << dsem << ", " << pow(Qnu[ii]*Qnu[ii]+Unu[ii]*Unu[ii],0.5)/Inu[ii] << endl;
if (Inu[ii]<0.)
GYOTO_ERROR("In ThickDisk::radiativeQ(): Inu<0");
if (Inu[ii]!=Inu[ii] or Onu[ii](0,0)!=Onu[ii](0,0))
GYOTO_ERROR("In ThickDisk::radiativeQ(): Inu or Taunu is nan");
if (Inu[ii]==Inu[ii]+1. or Onu[ii](0,0)==Onu[ii](0,0)+1.)
GYOTO_ERROR("In ThickDisk::radiativeQ(): Inu or Taunu is infinite");
}
}
void ThickDisk::magneticConfiguration(string config){
magneticConfig_=config;
}
string ThickDisk::magneticConfiguration() const{
return magneticConfig_;
}
|