1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
/*
Copyright 2019-2021 Frederic Vincent & Thibaut Paumard
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#include "GyotoPhoton.h"
#include "GyotoThinDiskGridIntensity.h"
#include "GyotoProperty.h"
#include "GyotoUtils.h"
#include "GyotoFactoryMessenger.h"
#include "GyotoKerrBL.h"
#ifdef GYOTO_USE_CFITSIO
#define throwCfitsioError(status) \
{ fits_get_errstatus(status, ermsg); GYOTO_ERROR(ermsg); }
#endif
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
#include <fstream>
#include <string>
#include <cmath>
#include <limits>
#include <cstring>
using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;
GYOTO_PROPERTY_START(ThinDiskGridIntensity)
GYOTO_PROPERTY_FILENAME(ThinDiskGridIntensity, File, file,
"File name of FITS file containing data")
GYOTO_PROPERTY_DOUBLE(ThinDiskGridIntensity, TimeTranslation_inMunit,
timeTranslation_inMunit,
"Shift simulation times by this amount, in GM/c3 unit")
//GYOTO_PROPERTY_DOUBLE(ThinDiskGridIntensity, dt, dt)
GYOTO_PROPERTY_END(ThinDiskGridIntensity, ThinDisk::properties)
ThinDiskGridIntensity::ThinDiskGridIntensity() :
ThinDisk("ThinDiskGridIntensity"), GridData2D(),
filename_(""), time_array_(NULL),
intensity_(NULL),
deltat_(0.)
{
GYOTO_DEBUG << endl;
}
ThinDiskGridIntensity::ThinDiskGridIntensity(const ThinDiskGridIntensity& o) :
ThinDisk(o), GridData2D(o),
filename_(o.filename_), time_array_(NULL),
intensity_(NULL),
deltat_(o.deltat_)
{
GYOTO_DEBUG << endl;
size_t ncells = 0;
size_t nt=GridData2D::nt(), nphi=GridData2D::nphi(), nr=GridData2D::nr();
if (o.intensity_) {
intensity_ = new double[ncells = nt * nphi * nr];
memcpy(intensity_, o.intensity_, ncells * sizeof(double));
}
if (o.time_array_) {
time_array_ = new double[nt];
memcpy(time_array_,o.time_array_, nt*sizeof(double));
}
}
ThinDiskGridIntensity* ThinDiskGridIntensity::clone() const
{ return new ThinDiskGridIntensity(*this); }
ThinDiskGridIntensity::~ThinDiskGridIntensity() {
GYOTO_DEBUG << endl;
if (intensity_) delete [] intensity_;
if (time_array_) delete [] time_array_;
}
void ThinDiskGridIntensity::file(std::string const &f) {
# ifdef GYOTO_USE_CFITSIO
fitsRead(f);
# else
GYOTO_ERROR("This Gyoto has no FITS i/o");
# endif
}
std::string ThinDiskGridIntensity::file() const {
return filename_;
}
void ThinDiskGridIntensity::timeTranslation_inMunit(double const dt) {
double tmin=GridData2D::tmin(), tmax=GridData2D::tmax();
GridData2D::tmin(tmin-deltat_+dt);
GridData2D::tmax(tmax-deltat_+dt);
deltat_=dt;
if (GridData2D::nt()==0)
GYOTO_ERROR("In ThinDiskGridIntensity::timeTranslation nt not yet defined");
int nt = GridData2D::nt();
if (!time_array_)
GYOTO_ERROR("In ThinDiskGridIntensity::timeTranslation time_array_ not defined. Please use ThinDiskGridIntensity::file(string) before this function");
for (int ii=0;ii<nt;ii++){
time_array_[ii]+=dt;
}
if (GridData2D::tmin()>0)
cout << "\nWARNING : tmin is positive, in most cases the stationnary boundary condition will be applied. You should decrease more timeTranslation_inMunit until at least " << -tmin << "\n" << endl;
}
double ThinDiskGridIntensity::timeTranslation_inMunit() const {
return deltat_;
}
/*void ThinDiskGridIntensity::dt(double dd) {
GridData2D::dt(dd);
}*/
void ThinDiskGridIntensity::copyIntensity(double const *const intensity,
size_t const naxes[3]) {
GYOTO_DEBUG << endl;
if (intensity_) {
GYOTO_DEBUG << "delete [] intensity_;" << endl;
delete [] intensity_; intensity_ = NULL;
}
size_t nt=GridData2D::nt(), nphi=GridData2D::nphi(), nr=GridData2D::nr();
if (intensity) {
size_t nel;
GridData2D::nt(naxes[2]);
GridData2D::nphi(naxes[1]);
GridData2D::nr(naxes[0]);
//cout << naxes[0] << "," << naxes[1] << "," << naxes[2] << endl;
if (!(nel=naxes[0] * naxes[1] * naxes[2]))
GYOTO_ERROR( "dimensions can't be null");
// NB: not updating dr_ contrary to PD
GYOTO_DEBUG << "allocate intensity_;" << endl;
intensity_ = new double[nel];
GYOTO_DEBUG << "intensity >> intensity_" << endl;
memcpy(intensity_, intensity, nel*sizeof(double));
}
//cout << "intensity stored= " << endl;
//for (int ii=0;ii<30;ii++) cerr << intensity_[ii] << " " ;
//cout << endl;
}
double const * ThinDiskGridIntensity::getIntensity() const {
return intensity_; }
void ThinDiskGridIntensity::copyTimeArray(double const *const time_array,
size_t const ntimes) {
GYOTO_DEBUG << endl;
if (time_array_) {
GYOTO_DEBUG << "delete [] time_array_;\n";
delete [] time_array_; time_array_ = NULL;
}
size_t nt=GridData2D::nt();
if (time_array) {
if (nt != ntimes)
GYOTO_ERROR("the given ntimes and nt from FITS file are inconsistent");
GYOTO_DEBUG << "allocate time_array_;" << endl;
time_array_ = new double[ntimes];
GYOTO_DEBUG << "time_array >> time_array_" << endl;
memcpy(time_array_, time_array, ntimes*sizeof(double));
}
}
double const * ThinDiskGridIntensity::getTimeArray() const {
return time_array_; }
#ifdef GYOTO_USE_CFITSIO
vector<size_t> ThinDiskGridIntensity::fitsRead(string filename) {
// Remove first char if it is "!"
if (filename.substr(0,1)=="!")
filename.erase(0,1);
GYOTO_MSG << "ThinDiskGridIntensity reading FITS file: " << filename << endl;
filename_ = filename;
char* pixfile = const_cast<char*>(filename_.c_str());
fitsfile* fptr = NULL;
int status = 0;
double tmpd;
char ermsg[31] = ""; // ermsg is used in throwCfitsioError()
GYOTO_DEBUG << "ThinDiskGridIntensity::fitsRead: opening file" << endl;
if (fits_open_file(&fptr, pixfile, 0, &status)) throwCfitsioError(status) ;
////// READ FITS KEYWORDS COMMON TO ALL TABLES ///////
// These are: tmin, tmax, rmin, rmax, phimin, phimax
GYOTO_DEBUG << "ThinDiskGridIntensity::fitsRead(): read tmin_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO GridData2D tmin", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else GridData2D::tmin(tmpd+deltat_); // tmin_ found
GYOTO_DEBUG << "ThinDiskGridIntensity::fitsRead(): read tmax_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO GridData2D tmax", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else GridData2D::tmax(tmpd+deltat_); // tmax_ found
GYOTO_DEBUG << "ThinDiskGridIntensity::fitsRead(): read rmin_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO GridData2D rmin", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else GridData2D::rmin(tmpd); // rmin_ found
GYOTO_DEBUG << "ThinDiskGridIntensity::fitsRead(): read rmax_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO GridData2D rmax", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else GridData2D::rmax(tmpd); // rmax_ found
GYOTO_DEBUG << "ThinDiskGridIntensity::fitsRead(): read phimin_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO GridData2D phimin", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else GridData2D::phimin(tmpd); // phimin_ found
GYOTO_DEBUG << "ThinDiskGridIntensity::fitsRead(): read phimax_" << endl;
fits_read_key(fptr, TDOUBLE, "GYOTO GridData2D phimax", &tmpd,
NULL, &status);
if (status) {
if (status == KEY_NO_EXIST) status = 0; // not fatal
else throwCfitsioError(status) ;
} else GridData2D::phimax(tmpd); // phimax_ found
// READ EXTENSIONS
// Intensity
vector<size_t> naxes_intens =
GridData2D::fitsReadHDU(fptr,
"GYOTO GridData2D INTENSITY",
intensity_);
//cout << "intensity read= " << endl;
//for (int ii=0;ii<30;ii++) cerr << intensity_[ii] << " " ;
//cout << endl;
// Time array
vector<size_t> naxes_time =
GridData2D::fitsReadHDU(fptr,
"GYOTO GridData2D TIMEARRAY",
time_array_);
if (naxes_time[0]!=naxes_intens[2])
GYOTO_ERROR("In FlaredDiskSynchro: ntimes differ from intensity array and time_array");
/*cout << "velo read= " << endl;
for (int ii=0;ii<60;ii++) cerr << velocity_[ii] << " " ;
cout << endl;*/
GridData2D::nr(naxes_intens[0]);
GridData2D::nphi(naxes_intens[1]);
GridData2D::nt(naxes_intens[2]);
//cout << "axes intens: " << naxes_intens[0] << " " << naxes_intens[1] << " " << naxes_intens[2] << endl;
//cout << "axes velo: " << naxes_velo[0] << " " << naxes_velo[1] << " " << naxes_velo[2] << " " << naxes_velo[3] << endl;
return naxes_intens;
}
#endif
double ThinDiskGridIntensity::emission(double nu, double,
state_t const &coord_ph,
double const coord_obj[8]) const{
double rcyl=0.; // cylindrical radius
double zz=0.; // height, z coord
switch (gg_->coordKind()) {
case GYOTO_COORDKIND_SPHERICAL:
rcyl = coord_ph[1]*sin(coord_ph[2]);
zz = coord_ph[1]*cos(coord_ph[2]);
break;
case GYOTO_COORDKIND_CARTESIAN:
rcyl = pow(coord_ph[1]*coord_ph[1]+coord_ph[2]*coord_ph[2], 0.5);
zz = coord_ph[3];
break;
default:
GYOTO_ERROR("In ThinDiskGridIntensity::radiativeQ: Unknown coordinate system kind");
}
double tt = coord_ph[0], phi = coord_ph[3];
if (rcyl<GridData2D::rmin() || rcyl>GridData2D::rmax())
return 0.;
if (phi<0. or phi>2.*M_PI)
throwError("In ThinDiskGridIntensity::radiativeQ: phi is not in 0,2pi!");
// NB: phi is always in grid, and t might be outside, assuming stationnary
// disk at t<tmin_ and t>tmax_
//cout << "CALLING INTERPO FOR RHO" << endl;
//cout << "tmin max t phi rcyl: " << GridData2D::tmin() << " " << GridData2D::tmax() << " " << tt << " " << phi << " " << rcyl << endl;
// Interpolating the intensity_ table
double intensity_interpo=GridData2D::interpolate(tt,phi,rcyl,intensity_,time_array_);
//cout << "interpo intens= "<< intensity_interpo << endl;
return intensity_interpo;
}
void ThinDiskGridIntensity::getVelocity(double const pos[4], double vel[4]){
string kin = gg_->kind();
if (kin != "KerrBL")
GYOTO_ERROR("ThinDiskGridIntensity: KerrBL needed!");
double SPIN = static_cast<SmartPointer<Metric::KerrBL> >(gg_) -> spin();
double risco = gg_->getRms(); // prograde Kerr ISCO
double rr = pos[1];
if (rr > risco){
// Keplerian velocity above ISCO
gg_ -> circularVelocity(pos, vel, 1);
}else{
// See formulas in Gralla, Lupsasca & Marrone 2020, Eqs B8-B14
// initally from Cunnigham 1975
double lambda_ms = (risco*risco - 2.*SPIN*sqrt(risco) + SPIN*SPIN)/(pow(risco,1.5) - 2.*sqrt(risco) + SPIN),
gamma_ms = sqrt(1.-2./(3.*risco)),
delta = rr*rr - 2.*rr + SPIN*SPIN,
hh = (2.*rr - SPIN*lambda_ms)/delta;
vel[0] = gamma_ms*(1.+2./rr*(1.+hh)); // this is: -Ems*g^{tt} + Lms*g^{tp}
vel[1] = -sqrt(2./(3.*risco))*pow(risco/rr-1.,1.5); // this is: -sqrt{(-1 - g_{tt}*u^t - g_{pp}*u^p - 2*g_{tp}*u^t*u^p)/grr}
vel[2] = 0.;
vel[3] = gamma_ms/(rr*rr)*(lambda_ms+SPIN*hh);
//cout << "u2 = " << gg_->ScalarProd(pos,vel,vel) << endl;
}
}
bool ThinDiskGridIntensity::isThreadSafe() const {
return ThinDisk::isThreadSafe();
}
|