1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
/*
Copyright 2020 Frederic Vincent, Thibaut Paumard
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#include "GyotoPhoton.h"
#include "GyotoThinDiskProfile.h"
#include "GyotoProperty.h"
#include "GyotoUtils.h"
#include "GyotoFactoryMessenger.h"
#include "GyotoKerrBL.h"
#include "GyotoKerrKS.h"
#include "GyotoRezzollaZhidenko.h"
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
#include <fstream>
#include <string>
#include <cmath>
#include <limits>
#include <string>
using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;
using namespace Gyoto::Metric;
GYOTO_PROPERTY_START(ThinDiskProfile)
GYOTO_PROPERTY_BOOL(ThinDiskProfile, CircularMotion, NoCircularMotion,
circularMotion)
GYOTO_PROPERTY_VECTOR_DOUBLE(ThinDiskProfile, Model_param, model_param,
"Parameters useful for the disk, max number NPAR_MAX")
GYOTO_PROPERTY_END(ThinDiskProfile, ThinDisk::properties)
//#define SPIN 0.94 // Kerr spin parameter for Kerr-specific formulas...
#define NPAR_MAX 10 // Max allowed number of parameters
bool ThinDiskProfile::circularMotion() const {return circular_motion_;}
void ThinDiskProfile::circularMotion(bool circ) {circular_motion_=circ;}
void ThinDiskProfile::model_param(std::vector<double> const &v) {
size_t n = v.size();
if (n>NPAR_MAX) throwError("Too many parameters in model_param");
for (size_t i=0; i<n; ++i) model_param_[i]=v[i];
}
std::vector<double> ThinDiskProfile::model_param() const {
std::vector<double> v(NPAR_MAX, 0.);
for (size_t i=0; i<NPAR_MAX; ++i) v[i]=model_param_[i];
return v;
}
ThinDiskProfile::ThinDiskProfile() :
ThinDisk("ThinDiskProfile"),
circular_motion_(1),
model_param_(NULL)
{
GYOTO_DEBUG << endl;
model_param_ = new double[NPAR_MAX];
for (int ii=0;ii<NPAR_MAX;ii++) model_param_[ii]=0.;
}
ThinDiskProfile::ThinDiskProfile(const ThinDiskProfile& o) :
ThinDisk(o),
circular_motion_(o.circular_motion_),
model_param_(NULL)
{
if (o.gg_()) gg_=o.gg_->clone();
Generic::gg_=gg_;
model_param_ = new double[NPAR_MAX];
for (int ii=0;ii<NPAR_MAX;ii++) model_param_[ii]=o.model_param_[ii];
}
ThinDiskProfile* ThinDiskProfile::clone() const
{ return new ThinDiskProfile(*this); }
bool ThinDiskProfile::isThreadSafe() const {
return ThinDisk::isThreadSafe();
}
ThinDiskProfile::~ThinDiskProfile() {
GYOTO_DEBUG << endl;
delete [] model_param_;
}
double ThinDiskProfile::emission(double nu, double,
state_t const &,
double const coord_obj[8]) const{
string emission_model = "Thermal_Synchrotron"; // should be in: "Gralla_et_al", "Thermal_Synchrotron"
double rr = coord_obj[1],
emiss=0.; // model-dependent emission defined below
// Emission radius
//cerr << "Emission radius"; //cout
//std::ofstream outfile;
//outfile.open("./Bug.txt", std::ios_base::app); // append instead of overwrite
//outfile << "Radius: " << rr << "\n";
//outfile.close();
if (emission_model == "Gralla_et_al"){
// Emission from Gralla et al 2020
// ****************************** //
// Here model_param must contain:
// model_param = [gamma, mu, sigG]
// This model is Kerr specific
string kin = gg_->kind();
if (kin != "KerrBL")
GYOTO_ERROR("ThinDiskProfile: KerrBL needed!");
double SPIN = static_cast<SmartPointer<Metric::KerrBL> >(gg_) -> spin(),
a2 = SPIN*SPIN;
double rhor=1.+sqrt(1.-a2), rminus=1.-sqrt(1.-a2),
risco=gg_->getRms();
// Choose profile here:
double gamma=model_param_[0],
mu=model_param_[1],
sigG=model_param_[2];
//double gamma=-3./2., mu=rminus, sigG=1./2.;
//double gamma=-3., mu=risco-0.33, sigG=0.25;
double tmp = gamma+asinh((rr-mu)/sigG);
emiss = 1e-5*exp(-0.5*tmp*tmp)/sqrt((rr-mu)*(rr-mu)+sigG*sigG);
// the 1e-5 is just there to get a reasonable flux for M87
}
if (emission_model == "Thermal_Synchrotron"){
// Emission from Vincent+22 thick disk paper synchrotron formula
// ****************************** //
// Here model_param must contain:
//model_param = [zeta, rin, norm, indx1=alpha-2beta, indx2=gamma+2beta], with n_e propto r^-alpha, Theta_e propto r^-beta, B propto r^-gamma
double zeta = model_param_[0],
rin = model_param_[1], //1.+sqrt(1-SPIN*SPIN);
norm = model_param_[2],
indx1 = model_param_[3],
indx2 = model_param_[4];
//cout << "zeta= " << zeta << endl;
//cout << "nu_em= " << nu << endl;
// Equation B.7, Appendix B (nu_em=cst=230GHz)
//emiss = norm*exp(-zeta*rr/rin);
// the 1e-3 for zeta=3 is just there to get a reasonable flux for M87
// Equation B.4 with nu_em dependence and free indices of power law
// Decomment the following line (with indx1 = 0, indx2 = 3) to check that in this case the simplified emission is retrieved
//nu = 230e9;
// Power laws for n_e, Theta_e, B propto r^-2, r^-1, r^-1
//emiss = norm*nu/230*exp(-zeta*pow(230,-1./3)*pow(nu,1./3.)*rr/rin);
// Power laws for n_e, Theta_e, B propto r^-alpha, r^-beta, r^-gamma
emiss = norm*nu*1e-9/230*pow(rr,-indx1)*exp(-zeta*pow(230,-1./3)*pow(nu*1e-9,1./3.)*pow(rr/rin,indx2/3.));
//cout << setprecision(16);
//cout << "emiss " << emiss << endl;
// Check
//std::ofstream outfile;
//outfile.open("./Check/Check_Emission_B4_nu_general_new.txt", std::ios_base::app); // append instead of overwrite
//outfile << "Emission: " << emiss << "\n";
//outfile.close();
}
return emiss;
}
void ThinDiskProfile::getVelocity(double const pos[4], double vel[4])
{
string kin = gg_->kind();
double risco = 0.;
if (gg_->kind()!="Minkowski" && gg_->kind()!="Hayward")
risco=gg_->getRms(); // prograde Kerr ISCO
// let risco=0 if metric is Minko; then ISCO not defined
// let also risco=0 for Hayward as we would need to
// compute it numerically and give it in xml Metric field,
// not implemented so far
//cout << "in velo, r isco= " << pos[1] << " " << risco << endl;
double rr = pos[1];
//cout << "circ=" << circular_motion_ <<endl;
if (circular_motion_) {
// CIRCULAR ROTATION
if (rr > risco){
// Keplerian velocity above ISCO
gg_ -> circularVelocity(pos, vel, 1);
}else{
if (kin == "KerrBL"){
double SPIN = static_cast<SmartPointer<Metric::KerrBL> >(gg_) -> spin();
// See formulas in Gralla, Lupsasca & Marrone 2020, Eqs B8-B14
// initally from Cunnigham 1975
double lambda_ms = (risco*risco - 2.*SPIN*sqrt(risco) + SPIN*SPIN)/(pow(risco,1.5) - 2.*sqrt(risco) + SPIN),
gamma_ms = sqrt(1.-2./(3.*risco)),
delta = rr*rr - 2.*rr + SPIN*SPIN,
hh = (2.*rr - SPIN*lambda_ms)/delta;
vel[0] = gamma_ms*(1.+2./rr*(1.+hh)); // this is: -Ems*g^{tt} + Lms*g^{tp}
vel[1] = -sqrt(2./(3.*risco))*pow(risco/rr-1.,1.5); // this is: -sqrt{(-1 - g_{tt}*u^t - g_{pp}*u^p - 2*g_{tp}*u^t*u^p)/grr}
vel[2] = 0.;
vel[3] = gamma_ms/(rr*rr)*(lambda_ms+SPIN*hh);
//cout << "u2 = " << gg_->ScalarProd(pos,vel,vel) << endl;
} else if (kin == "RezzollaZhidenko") {
// See formulas in Cárdenas, Godfrey, Yunes & Lohfink 2019, Eqs 11 and 12 for E and L
// initally from Cunnigham 1975
double N2ms = static_cast<SmartPointer<Metric::RezzollaZhidenko> >(gg_) -> N2(risco);
double Nprimems = static_cast<SmartPointer<Metric::RezzollaZhidenko> >(gg_) -> Nprime(risco);
double g00 = static_cast<SmartPointer<Metric::RezzollaZhidenko> >(gg_) -> gmunu(pos,0,0);
double grr = static_cast<SmartPointer<Metric::RezzollaZhidenko> >(gg_) -> gmunu(pos,1,1);
double gpp = static_cast<SmartPointer<Metric::RezzollaZhidenko> >(gg_) -> gmunu(pos,3,3);
double NNms = sqrt(N2ms);
double Ems = sqrt(pow(NNms,3)/(NNms-risco*Nprimems));
double Lms = sqrt(pow(risco,3)*Nprimems/(NNms-risco*Nprimems));
vel[0] = -Ems/g00; // this is: -Ems*(g_{00}^{-1})
vel[2] = 0.; // this is: 0.
vel[3] = Lms/pow(rr,2); // this is: Lms/r**2
vel[1] = -sqrt(-pow(grr,-1)*(1.+g00*pow(vel[0],2)+gpp*pow(vel[3],2)));
// this is: -sqrt{-(g_{rr}^{-1})*(1 + g_{00}*(u^t)^2 + g_{pp}*(u^p)^2)}
// Velocity to see the discontinuity for n=0
//vel[1] = 0.;
//vel[2] = 0.;
//vel[3] = 0.;
//vel[0] = sqrt(-pow(g00,-1));
// Check the normalisation of the 4-velocity
double tol=1e-5;
double u2 = gg_->ScalarProd(pos,vel,vel);
if (fabs(u2+1.)>tol or u2!=u2) {
cerr << " *** 4-velocity squared norm= " << u2 << endl;
throwError("In ThinDiskProfile: 4vel RezzollaZhidenko is not properly normalized!");
}
} else {
GYOTO_ERROR("ThinDiskProfile: KerrBL or RezzollaZhidenko needed!");
}
}
}else{
// RADIAL FALL
double gtt = gg_->gmunu(pos,0,0),
grr = gg_->gmunu(pos,1,1),
guptt = gg_->gmunu_up(pos,0,0),
guptp = gg_->gmunu_up(pos,0,3),
guprr = gg_->gmunu_up(pos,1,1);
// 4-vel obtained by imposing: u_t=-1, u_phi=0, u^theta=0
// see FV notes SphericalVelocity.pdf for details
vel[0] = -guptt;
vel[1] = -sqrt((-1.-guptt)*guprr);
vel[2] = 0;
vel[3] = -guptp;
double tol=1e-5;
double u2 = gg_->ScalarProd(pos,vel,vel);
//cout << "4vel,u2= " << rr << " " << pos[2] << " " << gtt << " " << grr << " " << vel[0] << " " << vel[1] << " " << vel[2] << " " << vel[3] << " " << u2 << endl;
if (fabs(u2+1.)>tol or u2!=u2) {
cerr << " *** 4-velocity squared norm= " << u2 << endl;
throwError("In ThinDiskProfile: 4vel "
"is not properly normalized!");
}
}
//cout << "4vel= " << vel[0] << " " << vel[1] << " " << vel[2] << " " << vel[3]<< endl;
}
void ThinDiskProfile::processHitQuantities(Photon* ph,
state_t const &coord_ph_hit,
double const *coord_obj_hit,
double dt,
Properties* data) const {
#if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
#endif
SmartPointer<Spectrometer::Generic> spr = ph -> spectrometer();
size_t nbnuobs = spr() ? spr -> nSamples() : 0 ;
//cout << "nbnuobs " << nbnuobs << endl;
if (nbnuobs!=1) GYOTO_ERROR("nbnuobs should be 1"); //spectro.set("NSamples", 1)
double const * const nuobs = nbnuobs ? spr -> getMidpoints() : NULL;
double dlambda = dt/coord_ph_hit[4]; //dlambda = dt/tdot
double ggredm1 = -gg_->ScalarProd(&coord_ph_hit[0],coord_obj_hit+4,
&coord_ph_hit[4]);// / 1.;
//this is nu_em/nu_obs
if (noredshift_) ggredm1=1.;
double ggred = 1./ggredm1; //this is nu_obs/nu_em
double dsem = dlambda*ggredm1; // *1.
double inc =0.;
if (data){ // this check is necessary as process can be called
// with data replaced by NULL (see ComplexAstrobj and
// Photon nb_cross_eqplane)
if (data->user4) {
// *** CAREFUL!! ***
/*
I have to include here the "fudge factor" of Gralla+.
Do not forget to remove it to consider some other disk profile.
*/
double max_cross_eqplane = ph->maxCrossEqplane();
if (max_cross_eqplane==DBL_MAX) cout << "WARNING: in ThinDiskProfile::process: max_cross_eqplane is DBL_MAX and probably should not be" << endl;
int nb_cross_eqplane = ph->nb_cross_eqplane();
double fudge_Gralla=1.;
if (nb_cross_eqplane>0) fudge_Gralla=1.5;
inc = fudge_Gralla
* (emission(ggredm1, dsem, coord_ph_hit, coord_obj_hit))
* (ph -> getTransmission(size_t(-1)))
* ggred*ggred*ggred*ggred; // I/nu^4 invariant
*data->user4 += inc;
#if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG_EXPR(*data->user4);
#endif
} else if (data->spectrum) {
// *** CAREFUL!! ***
/*
I have to include here the "fudge factor" of Gralla+.
Do not forget to remove it to consider some other disk profile.
*/
double * nuem = new double[nbnuobs];
for (size_t ii=0; ii<nbnuobs; ++ii) {
nuem[ii]=nuobs[ii]*ggredm1;
}
double max_cross_eqplane = ph->maxCrossEqplane();
if (max_cross_eqplane==DBL_MAX) cout << "WARNING: in ThinDiskProfile::process: max_cross_eqplane is DBL_MAX and probably should not be" << endl;
int nb_cross_eqplane = ph->nb_cross_eqplane();
double fudge_Gralla=1.;
//cout << "nb cross fudge " << nb_cross_eqplane << endl;
if (nb_cross_eqplane>0) fudge_Gralla=1.5;
for (size_t ii=0; ii<nbnuobs; ++ii) {
inc = fudge_Gralla
* (emission(nuem[ii], dsem, coord_ph_hit, coord_obj_hit))
* (ph -> getTransmission(size_t(-1)))
* ggred*ggred*ggred; // I/nu^3 invariant
*data->spectrum += inc; // data->spectrum[ii*data->offset] += inc !Error
}
#if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG_EXPR(*data->spectrum);
#endif
}
else GYOTO_ERROR("unimplemented data");
}
}
|