File: Torus.C

package info (click to toggle)
gyoto 2.0.2-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,444 kB
  • sloc: cpp: 42,330; sh: 4,512; python: 3,436; xml: 2,865; makefile: 691; ansic: 346
file content (246 lines) | stat: -rw-r--r-- 8,182 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
    Copyright 2011, 2018 Thibaut Paumard

    This file is part of Gyoto.

    Gyoto is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Gyoto is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Gyoto.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "GyotoTorus.h"
#include "GyotoStandardAstrobj.h"
#include "GyotoUtils.h"
#include "GyotoBlackBodySpectrum.h"
#include "GyotoPowerLawSpectrum.h"
#include "GyotoMetric.h"
#include "GyotoProperty.h"
#include "GyotoFactoryMessenger.h"

#include <float.h>
#include <cmath>
#include <iostream>
#include <cstdlib>

using namespace Gyoto;
using namespace Gyoto::Astrobj;
using namespace std;

GYOTO_PROPERTY_START(Torus,
		     "Geometrical Torus in circular rotation.")
GYOTO_PROPERTY_SPECTRUM(Torus, Spectrum, spectrum,
			"Emission law.")
GYOTO_PROPERTY_SPECTRUM(Torus, Opacity, opacity,
			"Absorption law.")
GYOTO_PROPERTY_DOUBLE(Torus, SmallRadius, smallRadius,
		      "Minor radius, radius of a meridian circle.")
GYOTO_PROPERTY_DOUBLE(Torus, LargeRadius, largeRadius,
		      "Major radius, distance from centre of tube to centre of torus. ")
GYOTO_PROPERTY_END(Torus, Standard::properties)

Torus::Torus() : Standard("Torus"),
	  c_(3.5)
{
  critical_value_ = 0.25; // 0.5*0.5
  safety_value_ = 0.3;
  spectrum_ = new Spectrum::BlackBody(1000000.);
  opacity_ = new Spectrum::PowerLaw(0., 1.);
  spectrumThermalSynch_ = new Spectrum::ThermalSynchrotron();

}

Torus::Torus(const Torus& o)
  : Standard(o),
    c_(o.c_),
    spectrum_(o.spectrum_()?o.spectrum_->clone():NULL),
    opacity_(o.opacity_()?o.opacity_->clone():NULL),
    spectrumThermalSynch_(o.spectrumThermalSynch_()?o.spectrumThermalSynch_->clone():NULL)
{}

Torus::~Torus() {}

Torus* Torus::clone() const { return new Torus(*this); }

double Torus::largeRadius() const { return c_; }
double Torus::largeRadius(string unit) const {
  return Units::FromGeometrical(largeRadius(), unit, gg_);
}
double Torus::smallRadius() const { return sqrt(critical_value_); }
double Torus::smallRadius(string unit) const {
  return Units::FromGeometrical(smallRadius(), unit, gg_);
}

void Torus::largeRadius(double c) { c_ = c; }
void Torus::largeRadius(double c, string unit) {
  largeRadius(Units::ToGeometrical(c, unit, gg_));
}

void Torus::smallRadius(double a) {
  critical_value_ = a*a;
  safety_value_ = critical_value_ * 1.1;
}
void Torus::smallRadius(double c, string unit) {
  smallRadius(Units::ToGeometrical(c, unit, gg_));
}

SmartPointer<Spectrum::Generic> Torus::spectrum() const { return spectrum_; }
void Torus::spectrum(SmartPointer<Spectrum::Generic> sp) {spectrum_=sp;}

SmartPointer<Spectrum::Generic> Torus::opacity() const { return opacity_; }
void Torus::opacity(SmartPointer<Spectrum::Generic> sp) {opacity_=sp;}

double Torus::rMax() {
  if (rmax_==DBL_MAX) {
    rmax_ = 3.*(c_+sqrt(critical_value_));
  }
  return rmax_ ;
}

double Torus::emission(double nu_em, double dsem, state_t const &, double const *) const {
  if (flag_radtransf_) return (*spectrum_)(nu_em, (*opacity_)(nu_em), dsem);
  return (*spectrum_)(nu_em);
}

double Torus::transmission(double nuem, double dsem, state_t const &, double const *) const {
  if (!flag_radtransf_) return 0.;
  double opac = (*opacity_)(nuem);
  if (debug())
    cerr << "DEBUG: Torus::transmission(nuem="<<nuem<<", dsem="<<dsem<<"), "
	 << "opacity=" << opac << "\n";
  if (!opac) return 1.;
  return exp(-opac*dsem);
}

double Torus::integrateEmission(double nu1, double nu2, double dsem,
			       state_t const &, double const *) const {
  if (flag_radtransf_)
    return spectrum_->integrate(nu1, nu2, opacity_(), dsem);
  return spectrum_->integrate(nu1, nu2);
}

double Torus::operator()(double const pos[4]) {
  double drproj, h;
  switch (gg_->coordKind()) {
  case GYOTO_COORDKIND_SPHERICAL:
    drproj = pos[1]*sin(pos[2])-c_;
    h = pos[1]*cos(pos[2]);
    break;
  case GYOTO_COORDKIND_CARTESIAN:
    h = pos[3];
    drproj = sqrt(pos[1]*pos[1]+pos[2]*pos[2])-c_;
    break;
  default:
    GYOTO_ERROR("Torus::distance(): unknown coordinate system kind");
    h=0.,drproj=0.;
  }
  return drproj*drproj + h*h;
}

double Torus::deltaMax(double * coord) {
  double d2 = (*this)(coord);
  if (d2<critical_value_) d2 = critical_value_;
  return 0.1 * sqrt(d2);
}

void Torus::getVelocity(double const pos[4], double vel[4]) {
  double pos2[4] = {pos[0]};
  switch (gg_ -> coordKind()) {
  case GYOTO_COORDKIND_CARTESIAN:
    pos2[1] = pos[1];
    pos2[2] = pos[2];
    pos2[3] = 0.;
    break;
  case GYOTO_COORDKIND_SPHERICAL:
    pos2[1] = pos[1] * sin(pos[2]);
    pos2[2] = M_PI*0.5;
    pos2[3] = pos[3];
    break;
  default:
    GYOTO_ERROR("Torus::getVelocity(): unknown coordkind");
  }
  gg_ -> circularVelocity(pos2, vel);
}

void Torus::radiativeQ(double Inu[], // output
		       double Taunu[], // output
		       double const nu_ems[], size_t nbnu, // input
		       double dsem,
		       state_t const &coord_ph,
		       double const coord_obj[8]) const {
  
  double number_density = 4.8e5;

  double temperature = 9.5e10;

  double thetae = GYOTO_BOLTZMANN_CGS*temperature
    /(GYOTO_ELECTRON_MASS_CGS*GYOTO_C2_CGS);

  double magnetizationParameter = 0.01;

  double BB = sqrt(4.*M_PI*magnetizationParameter
		   *GYOTO_PROTON_MASS_CGS * GYOTO_C_CGS * GYOTO_C_CGS
		   *number_density);

  double nu0 = GYOTO_ELEMENTARY_CHARGE_CGS*BB
    /(2.*M_PI*GYOTO_ELECTRON_MASS_CGS*GYOTO_C_CGS); // cyclotron freq

  //cout << "jet stuff= " << coord_ph[1] << " " << coord_ph[2] << " " << zz << " " << rcyljetbase << " " << rcyl << " " << number_density << " " << thetae << " " << temperatureSlope_ << " " << nu0 << endl;
  //cout << "jet zz,rcyl,th,ph,ne,Te= " <<  zz << " " << rcyl << " " << coord_ph[2] << " " << coord_ph[3] << " " << number_density << " " << temperature << endl;
  // Use that line for Compton study:
  //cout <<  zz << " " << rcyl << " " << number_density << " " << temperature << endl;

  // Emission and absorption synchrotron coefs
  double jnu_synch[nbnu], anu_synch[nbnu];
  for (size_t ii=0; ii<nbnu; ++ii){
    // Initializing to <0 value to create errors if not updated
    jnu_synch[ii]=-1.;
    anu_synch[ii]=-1.;
  }

  // THERMAL SYNCHROTRON
  spectrumThermalSynch_->temperature(temperature);
  spectrumThermalSynch_->numberdensityCGS(number_density);
  spectrumThermalSynch_->angle_averaged(1); // impose angle-averaging
  spectrumThermalSynch_->angle_B_pem(0.);   // so we don't care about angle
  spectrumThermalSynch_->cyclotron_freq(nu0);
  double besselK2 = bessk(2, 1./thetae);
  spectrumThermalSynch_->besselK2(besselK2);
  
  spectrumThermalSynch_->radiativeQ(jnu_synch,anu_synch,
			nu_ems,nbnu);

  // RETURNING TOTAL INTENSITY AND TRANSMISSION
  for (size_t ii=0; ii<nbnu; ++ii){

    double jnu_tot = jnu_synch[ii],
      anu_tot = anu_synch[ii];

    //cout << "in jet stuff: " << number_density << " " << nu0 << " " << thetae << " " << hypergeom << " " << jnu_tot << " " << anu_tot << " " << dsem << endl;

    //cout << "at r,th= " << coord_ph[1] << " " << coord_ph[2] << endl;
    //cout << "jet jnu anu kappa= " << jnu_tot << " " << anu_tot << endl; //x" " << jnu_tot/anu_tot << " " << dsem << endl;

    // expm1 is a precise implementation of exp(x)-1
    double em1=std::expm1(-anu_tot * dsem * gg_->unitLength());
    Taunu[ii] = em1+1.;
    Inu[ii] = anu_tot == 0. ? jnu_tot * dsem * gg_->unitLength() :
      -jnu_tot / anu_tot * em1;

    if (Inu[ii]<0.)
      GYOTO_ERROR("In Torus::radiativeQ: Inu<0");
    if (Inu[ii]!=Inu[ii] or Taunu[ii]!=Taunu[ii])
      GYOTO_ERROR("In Torus::radiativeQ: Inu or Taunu is nan");
    if (Inu[ii]==Inu[ii]+1. or Taunu[ii]==Taunu[ii]+1.)
      GYOTO_ERROR("In Torus::radiativeQ: Inu or Taunu is infinite");

  }
}