1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
/*
Copyright 2011-2015, 2018-2019 Thibaut Paumard, Frederic Vincent
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#include "GyotoUtils.h"
#include "GyotoUniformSphere.h"
#include "GyotoPhoton.h"
#include "GyotoPowerLawSpectrum.h"
#include "GyotoBlackBodySpectrum.h"
#include "GyotoFactoryMessenger.h"
#include "GyotoConverters.h"
#include "GyotoProperty.h"
#include <iostream>
#include <cmath>
#include <string>
#include <cstdlib>
#include <float.h>
#include <sstream>
#include <string.h>
using namespace std;
using namespace Gyoto;
using namespace Gyoto::Astrobj;
GYOTO_PROPERTY_START(Gyoto::Astrobj::UniformSphere,
"Coordinate sphere with uniform emission and absorption.")
GYOTO_PROPERTY_SPECTRUM(UniformSphere, Spectrum, spectrum,
"Emission law.")
GYOTO_PROPERTY_SPECTRUM(UniformSphere,Opacity, opacity,
"Absorption law.")
GYOTO_PROPERTY_BOOL(UniformSphere,
IsotropicEmittedIntensity, TrueEmittedIntensity,
isotropic,
"If true, then emission just returns 1.")
GYOTO_PROPERTY_DOUBLE(UniformSphere,
DeltaMaxOverDistance, deltaMaxOverDistance,
"Maximum value of step/distance from centre of sphere for photons.")
GYOTO_PROPERTY_DOUBLE(UniformSphere,
DeltaMaxOverRadius, deltaMaxOverRadius,
"Maximum value of step/radius of sphere for photons.")
GYOTO_PROPERTY_DOUBLE(UniformSphere, Alpha, alpha, "Deprecated")
GYOTO_PROPERTY_DOUBLE_UNIT(UniformSphere, Radius, radius, "Sphere radius (geometrical units).")
GYOTO_PROPERTY_END(UniformSphere, Standard::properties)
#define GYOTO_USPH_DELTAMAX_OVER_RAD 0.1
#define GYOTO_USPH_DELTAMAX_OVER_DST 0.1
UniformSphere::UniformSphere(string kin) :
Astrobj::Standard(kin),
// radius_(0.),
isotropic_(0),
spectrum_(NULL),
opacity_(NULL),
dltmor_(GYOTO_USPH_DELTAMAX_OVER_RAD),
dltmod_(GYOTO_USPH_DELTAMAX_OVER_DST)
{
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
# endif
//cout << "in creaor " << Generic::radiativeQ() << endl;
// also initial safety_value_ etc.
radius(0.);
spectrum(new Spectrum::BlackBody());
opacity(new Spectrum::PowerLaw(0., 1.));
opticallyThin(false);
}
UniformSphere::UniformSphere(string kin,
SmartPointer<Metric::Generic> met, double rad) :
Astrobj::Standard(kin),
//radius_(rad),
isotropic_(0),
spectrum_(NULL), opacity_(NULL),
dltmor_(GYOTO_USPH_DELTAMAX_OVER_RAD),
dltmod_(GYOTO_USPH_DELTAMAX_OVER_DST)
{
// also initialize safety_value_ etc.
radius(rad);
spectrum(new Spectrum::BlackBody());
opacity(new Spectrum::PowerLaw(0., 1.));
opticallyThin(false);
gg_=met;
}
UniformSphere::UniformSphere(const UniformSphere& orig) :
Astrobj::Standard(orig),
radius_(orig.radius_),
isotropic_(orig.isotropic_),
spectrum_(NULL), opacity_(NULL),
dltmor_(orig.dltmor_),
dltmod_(orig.dltmod_)
{
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
# endif
if (orig.spectrum_()) spectrum_=orig.spectrum_->clone();
if (orig.opacity_()) opacity_=orig.opacity_->clone();
}
UniformSphere::~UniformSphere() {
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
# endif
}
string UniformSphere::className() const { return string("UniformSphere"); }
string UniformSphere::className_l() const { return string("uniformsphere"); }
SmartPointer<Spectrum::Generic> UniformSphere::spectrum() const { return spectrum_; }
void UniformSphere::spectrum(SmartPointer<Spectrum::Generic> sp) {spectrum_=sp;}
SmartPointer<Spectrum::Generic> UniformSphere::opacity() const { return opacity_; }
void UniformSphere::opacity(SmartPointer<Spectrum::Generic> sp) {
opticallyThin(sp);
opacity_=sp;
}
double UniformSphere::operator()(double const coord[4]) {
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
# endif
double coord_st[4] = {coord[0]};
double coord_ph[4] = {coord[0]};
double sintheta;
getCartesian(coord_st, 1, coord_st+1, coord_st+2, coord_st+3);
// Special treatment for SchwarzschildHarmonic: define star
// as a sphere of radius r_BL=R_star and not r_harmonic=R_star,
// in order to ease comparison between coordinate systems.
if (gg_->kind()=="SchwarzschildHarmonic"){
double r_st = sqrt(coord_st[1]*coord_st[1]+coord_st[2]*coord_st[2]+coord_st[3]*coord_st[3]);
double theta = acos(coord_st[3]/r_st), phi = atan(coord_st[2]/coord_st[1]);
coord_st[1]+= sin(theta)*cos(phi);
coord_st[2]+= sin(theta)*sin(phi);
coord_st[3]+= cos(theta);
}
switch (gg_->coordKind()) {
case GYOTO_COORDKIND_CARTESIAN:
memcpy(coord_ph+1, coord+1, 3*sizeof(double));
break;
case GYOTO_COORDKIND_SPHERICAL:
coord_ph[1] = (coord[1]) * (sintheta=sin(coord[2])) * cos(coord[3]);
coord_ph[2] = (coord[1]) * sintheta * sin(coord[3]);
coord_ph[3] = (coord[1]) * cos(coord[2]) ;
// Special treatment for SchwarzschildHarmonic: define star
// as a sphere of radius r_BL=R_star and not r_harmonic=R_star,
// in order to ease comparison between coordinate systems.
if (gg_->kind()=="SchwarzschildHarmonic"){
coord_ph[1] = (coord[1]+1.) * sintheta * cos(coord[3]);
coord_ph[2] = (coord[1]+1.) * sintheta * sin(coord[3]);
coord_ph[3] = (coord[1]+1.) * cos(coord[2]) ;
}
break;
default:
GYOTO_ERROR("unsupported coordkind");
}
//cout << "testcoord: " << coord_ph[1] << " " << coord_st[1] << " " << coord_ph[1] - coord_st[1] << endl;
double dx = coord_ph[1]-coord_st[1];
double dy = coord_ph[2]-coord_st[2];
double dz = coord_ph[3]-coord_st[3];
//cout << "unif= " << dx*dx << " " << dy*dy << " " << dz*dz << endl;
//double rstar = sqrt(coord_st[1]*coord_st[1] + coord_st[2]*coord_st[2] +coord_st[3]*coord_st[3]);
//cout << "tph, rph, thph, phph= " << coord[0]<< " " << coord[1] << " " << coord[2] << " " << coord[3] << " " << endl;
//cout << "tst, rst, thst, phst= " << coord_st[0]<< " " << r_st << " " << theta << " " << phi << endl;
//cout << "d2 Rstar= " << dx*dx + dy*dy + dz*dz << " " << radius_*radius_<< endl;
//cout << "trthph ph + st, rsp= " << coord[0] << " " << coord[1] << " " << coord[2] << " " << coord[3] << " ; " << coord_st[0] << " " << rstar << " " << acos(coord_st[3]/rstar) << " " << atan(coord_st[2]/coord_st[1]) << " " << dx*dx + dy*dy + dz*dz << endl;
return dx*dx + dy*dy + dz*dz;
}
double UniformSphere::deltaMax(double * coord) {
double r;
switch (gg_->coordKind()) {
case GYOTO_COORDKIND_CARTESIAN:
r=sqrt(coord[1]*coord[1]+coord[2]*coord[2]+coord[3]*coord[3]);
break;
case GYOTO_COORDKIND_SPHERICAL:
r=coord[1];
break;
default:
r=0.;
GYOTO_ERROR("unsupported coordkind");
}
if (rmax_!=DBL_MAX && r>rmax_) return r*0.5;
return max(dltmod_*sqrt((*this)(coord)), dltmor_*radius_);
}
double UniformSphere::emission(double nu_em, double dsem, state_t const &, double const *) const {
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
# endif
if (isotropic_){
if (flag_radtransf_){
return dsem;
}else{
//cout << "returning 1 in unif sph" << endl;
return 1.;
}
}
if (flag_radtransf_) return (*spectrum_)(nu_em, (*opacity_)(nu_em), dsem);
return (*spectrum_)(nu_em);
}
double UniformSphere::transmission(double nuem, double dsem, state_t const &, double const *) const {
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
# endif
if (!flag_radtransf_) return 0.;
double opac = (*opacity_)(nuem);
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << "(nuem=" << nuem
<< ", dsem=" << dsem
<< "), opacity=" << opac << endl;
# endif
if (!opac) return 1.;
return exp(-opac*dsem);
}
double UniformSphere::integrateEmission(double nu1, double nu2, double dsem,
state_t const &, double const *) const {
# if GYOTO_DEBUG_ENABLED
GYOTO_DEBUG << endl;
# endif
if (flag_radtransf_)
return spectrum_->integrate(nu1, nu2, opacity_(), dsem);
return spectrum_->integrate(nu1, nu2);
}
double UniformSphere::radius() const {
return radius_;
}
void UniformSphere::radius(double r) {
radius_=r;
critical_value_ = r*r;
safety_value_ = critical_value_*1.1+0.1;
}
double UniformSphere::radius(std::string const &unit) const {
return Units::FromGeometrical(radius(), unit, gg_);
}
void UniformSphere::radius(double r, std::string const &unit) {
radius(Units::ToGeometrical(r, unit, gg_));
}
double UniformSphere::deltaMaxOverRadius() const {return dltmor_;}
void UniformSphere::deltaMaxOverRadius(double f) {dltmor_=f;}
double UniformSphere::deltaMaxOverDistance() const {return dltmod_;}
void UniformSphere::deltaMaxOverDistance(double f) {dltmod_=f;}
double UniformSphere::alpha() const { return 1.; }
void UniformSphere::alpha(double a) {
if (a != 1.) GYOTO_ERROR("property 'Alpha' is deprecated");
}
bool UniformSphere::isotropic() const { return isotropic_; }
void UniformSphere::isotropic(bool a) { isotropic_ = a; }
|