1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
|
'''Sample metrics for using with Gyoto Python plug-in
Those classes demonstrate how to use Python classes as Gyoto
Metric implementations using Gyoto's "python" plug-in. Note that
this plug-in can be renamed to whatever matches the particular
version of Python it has been built against (e.g. python3.4).
The goal is to be able to instantiate these from XML, from
Yorick... and even from Python using the gyoto extension...
Synopsis:
import gyoto.core
gyoto.core.requirePlugin("python") # or python2.7 or python3.4...
gg=gyoto.core.Metric("Python")
gg.set("Module", "gyoto_sample_metric")
gg.set("Class", "Minkowski")
Classes that aim at implementing the Gyoto::Metric::Generic
interface do so by providing the following methods:
gmunu(self, dst, pos): mandatory;
christoffel(self, dst, pos): mandatory;
getRms(self): optional
getRmb(self): optional
getSpecificAngularMomentum(self, rr): optional
getPotential(self, pos, l_cst): optional
__setattr__(self, key, value): optional, useful to react
when the C++ Metric object sets attributes:
this: if the Python extension "gyoto.core" can be imported,
it will be set to a gyoto.core.Metric instance
pointing to the C++-side instance. If the "gyoto.core"
extension cannot be loaded, this will be set to None.
spherical: when the spherical(bool t) method is called in
the C++ layer, it sets the spherical attribute in the
Python side.
mass: when the mass(double m) method is called in the C++
side, it sets the spherical attribute in the Python
side.
__setitem__(self, key, value): optional, mandatory to support the
"Parameters" Property to set arbitrary parameters for this
metric.
set(self, key, val) and get(self, key): optional, both need to be
implemented in order to support additional "Properties" with
arbitrary names. In addition, member self.properties must be set
to a dictionary listing key:datatype pairs, where both key and
datatype are strings. As of writing, only "double" is supported
as a datatype.
'''
import math
import numpy
import gyoto.core
class Minkowski:
'''Flat space metric
Implemented for both Cartesian and spherical coordinates.
'''
def __setattr__(self, key, value):
'''Set attributes.
Optional.
C++ will set several attributes. By overloading __setattr__,
one can react when that occurs, in particular to make sure `this'
knows the coordinate kind as in this example.
Attributes set by the C++ layer:
this: if the Python extension "gyoto.core" can be imported, it
will be set to a gyoto.core.Metric instance pointing to the
C++-side instance. If the "gyoto.core" extension cannot be
loaded, this will be set to None.
spherical: when the spherical(bool t) method is called in
the C++ layer, it sets the spherical attribute in the
Python side.
mass: when the mass(double m) method is called in the C++
side, it sets the spherical attribute in the Python
side.
This example initializes coordKind in the C++ side if it is
not already set, since this Minkowski class can work in
either.
'''
# First, actually store the attribute. This is what would
# happen if we did not overload __setattr__.
self.__dict__[key]=value
# Then, if key is "this", ensure this knows a valid coordKind.
if (key == "this"):
cK=value.coordKind()
if cK is gyoto.core.GYOTO_COORDKIND_UNSPECIFIED:
value.set("Spherical", False)
# We could do without this, since this will tell us later
# anyway.
else:
self.spherical = (cK is gyoto.core.GYOTO_COORDKIND_SPHERICAL)
def gmunu(self, g, x):
''' Gyoto::Metric::Generic::gmunu(double dst[4][4], const double pos[4])
Mandatory.
C++ will send two NumPy arrays.
'''
for mu in range(0, 4):
for nu in range(0, 4):
g[mu][nu]=g[nu][mu]=0
g[0][0]=-1;
if not self.spherical:
for mu in range(1, 4):
g[mu][mu]=1.
return
r=x[1]
theta=x[2]
tmp=r*math.sin(theta)
g[1][1]=1.
g[2][2]=r*r
g[3][3]=tmp*tmp
def christoffel(self, dst, x):
'''Gyoto::Metric::Generic::christoffel(double dst[4][4][4], const double pos[4])
Mandatory.
C++ will send two NumPy arrays.
'''
for alpha in range(0, 4):
for mu in range(0, 4):
for nu in range(0, 4):
dst[alpha][mu][nu]=0.
if not self.spherical:
return 0
r=x[1]
theta=x[2]
sth=math.sin(theta)
cth=math.cos(theta)
dst[1][2][2]=-r
dst[1][3][3]=-r*sth*sth
dst[2][1][2]=dst[2][2][1]= 1./r
dst[2][3][3]=-sth*cth
dst[3][1][3]=dst[3][3][1]= dst[2][1][2]
dst[3][2][3]=dst[3][3][2]= math.tan(math.pi*0.5 - x[2])
return 0
class KerrBL:
'''A Python implementation of Gyoto::Metric::KerrBL
Spin and HorizonSecurity may be set either using the Parameters
Property, as in:
<Parameters> O.5 0.01 </Parameters>
or using two distinct ad hoc "properties":
<Spin> 0.5 </Spin>
<HorizonSecurity> 0.01 </HorizonSecurity>
The various methods are essentially cut-and-paste from the C++ class.
Only gmunu and christoffel absolutely need to be implemented, but
various Astrobj require more. See below.
This is for educational and testing purposes. For all practical uses,
the C++ implementation is much faster.
'''
# This is needed to support setting Spin and HorizonSecurity by name
# in addition to the set and get methods
properties={"Spin":"double", "HorizonSecurity":"double"}
spin=0.
drhor=gyoto.core.GYOTO_KERR_HORIZON_SECURITY
rsink=2.+gyoto.core.GYOTO_KERR_HORIZON_SECURITY
def __setitem__(self, key, value):
'''Set parameters
Optional, one way to handle parameters
This is how Gyoto sends the <Parameters/> XML entity:
metric[key]=value
key=0: set spin (0.)
key=1: set drhor, thickness of sink layer around horizon (0.01)
'''
if (key==0):
self.spin = value
elif (key==1):
self.drhor = value
else:
raise IndexError
def set(self, key, value):
'''Set parameters by name
Optional, one way to handle parameters
This is how Gyoto sends custom XML entities, e.g.
<MyEntity>value</MyEntity>
metric.set("MyEntity", value)
Here:
key="Spin": set spin (0.)
key="HorizonSecurity": set drhor, thickness of sink layer
around horizon (0.01)
'''
if (key=="Spin"):
self.spin = value
elif (key=="HorizonSecurity"):
self.drhor = value
else:
raise IndexError
def get(self, key):
'''Get parameters by name
Optional, mandatory if "properties" and "set" are defined.
'''
if (key=="Spin"):
return self.spin
elif (key=="HorizonSecurity"):
return self.drhor
else:
raise IndexError
def __setattr__(self, key, value):
'''Set attributes.
Optional.
C++ will set several attributes. By overloading __setattr__,
one can react when that occurs, in particular to make sure
`this' knows the coordinate kind as in this example.
In addition, update self.rsink each time self.spin or
self.drhor change.
'''
# First, actually store the attribute. This is what would
# happen if we did not overload __setattr__.
self.__dict__[key]=value
# Then, if key is "this", ensure `this' knows a valid coordKind.
if (key == "this"):
self.this.set("Spherical", True)
elif key in ("spin", "drhor"):
if self.spin > 1:
self.rsink=drhor
else:
self.rsink=1.+math.sqrt(1.-self.spin**2)+self.drhor
def gmunu(self, g, x):
''' Gyoto::Metric::Generic::gmunu(double g[4], const double pos[4])
Mandatory.
C++ will send two NumPy arrays.
Note that the user will not be able to call this method directly but
through self.this.gmunu which has a different calling sequence:
g=self.this.gmunu(x)
'''
spin_=self.spin
a2_=spin_**2
r=x[1]
sth2=math.sin(x[2])**2
cth2=math.cos(x[2])**2
r2=r*r
sigma=r2+a2_*cth2
delta=r2-2.*r+a2_
for mu in range(0, 4):
for nu in range(0, 4):
g[mu][nu]=g[nu][mu]=0
g[0][0] = -1.+2.*r/sigma;
g[1][1] = sigma/delta;
g[2][2] = sigma;
g[3][3] = (r2+a2_+2.*r*a2_*sth2/sigma)*sth2;
g[0][3] = g[3][0] = -2*spin_*r*sth2/sigma;
def christoffel(self, dst, x):
'''Gyoto::Metric::Generic::christoffel(double dst[4][4][4], const double pos[4])
Mandatory.
C++ will send two NumPy arrays.
Like gmunu, the call will actually be:
dst=metric.gmunu(x)
where `metric' is self.this.
'''
for alpha in range(0, 4):
for mu in range(0, 4):
for nu in range(0, 4):
dst[alpha][mu][nu]=0.
spin_=self.spin
a2_=spin_**2
r=x[1]
sth=math.sin(x[2])
cth=math.cos(x[2])
sth2 = sth*sth
cth2 = cth*cth
sth4=sth2*sth2
s2th = 2.*sth*cth
c2th=cth2-sth2
s4th = 2.*s2th*c2th
s2th2= s2th*s2th
ctgth=cth/sth
r2=r*r
r4=r2*r2
r6=r4*r2;
Sigma=r2+a2_*cth2
Sigma2=Sigma*Sigma
Delta=r2-2.*r+a2_
Deltam1=1./Delta
Sigmam1=1./Sigma
Sigmam2=Sigmam1*Sigmam1
Sigmam3=Sigmam2*Sigmam1
a2cthsth=a2_*cth*sth
rSigmam1=r*Sigmam1
Deltam1Sigmam2=Deltam1*Sigmam2
r2plusa2 = r2+a2_
dst[1][1][1]=(1.-r)*Deltam1+rSigmam1;
dst[1][2][1]=dst[1][1][2]=-a2cthsth*Sigmam1;
dst[1][2][2]=-Delta*rSigmam1;
dst[1][3][3]=-Delta*sth2*(r+(a2_*(-2.*r2+Sigma)*sth2)/Sigma2)/Sigma;
dst[1][3][0]=dst[1][0][3]=spin_*Delta*(-2*r2+Sigma)*sth2*Sigmam3;
dst[1][0][0]=-Delta*(-2.*r2+Sigma)*Sigmam3;
dst[2][1][1]=a2cthsth*Deltam1*Sigmam1;
dst[2][2][1]=dst[2][1][2]=rSigmam1;
dst[2][2][2]=-a2cthsth*Sigmam1;
dst[2][3][3]=-sth*cth*Sigmam3 * (Delta*Sigma2 + 2.*r*r2plusa2*r2plusa2);
dst[2][0][3]=dst[2][3][0]=spin_*r*r2plusa2*s2th*Sigmam3;
dst[2][0][0]=-2.*a2cthsth*r*Sigmam3;
dst[3][3][1]=dst[3][1][3]=Deltam1*Sigmam2 * (r*Sigma*(Sigma-2.*r) + a2_*(Sigma-2.*r2)*sth2);
dst[3][3][2]=dst[3][2][3]=Sigmam2*ctgth * (-(Sigma+Delta)*a2_*sth2 + r2plusa2*r2plusa2);
dst[3][0][1]=dst[3][1][0]=spin_*(2.*r2-Sigma)*Deltam1Sigmam2;
dst[3][0][2]=dst[3][2][0]=-2.*spin_*r*ctgth*Sigmam2;
dst[0][3][1]=dst[0][1][3]=-spin_*sth2*Deltam1Sigmam2 * (2.*r2*r2plusa2 + Sigma*(r2-a2_));
dst[0][3][2]=dst[0][2][3]=Sigmam2*spin_*a2_*r*sth2*s2th;
dst[0][0][1]=dst[0][1][0]=(a2_+r2)*(2.*r2-Sigma)*Deltam1Sigmam2;
dst[0][0][2]=dst[0][2][0]=-a2_*r*s2th*Sigmam2;
return 0
def getRms(self):
aa=self.spin;
a2_=aa*aa
z1 = 1. + pow((1. - a2_),1./3.)*(pow((1. + aa),1./3.) + pow((1. - aa),1./3.))
z2 = pow(3.*a2_ + z1*z1,1./2.);
return (3. + z2 - pow((3. - z1)*(3. + z1 + 2.*z2),1./2.));
def getRmb(self):
spin_=self.spin
return 2.-spin_+2.*math.sqrt(1.-spin_);
def getSpecificAngularMomentum(self, rr):
aa=self.spin
sqrtr=math.sqrt(rr);
return (rr*rr-2.*aa*sqrtr+aa*aa)/(rr**1.5-2.*sqrtr+aa);
def getPotential(self, pos, l_cst):
# this is W = -ln(|u_t|) for a circular equatorial 4-velocity
# Don't try to call directly gmunu from `self',
# Call it through `this', a pointer to the C++ instance of
# Gyoto::Metric::Python
# Note that the calling sequence is not gmunu(self, gg, pos)
gg=self.this.gmunu(pos)
gtt = gg[0,0];
gtp = gg[0,3];
gpp = gg[3,3];
Omega = -(gtp + l_cst * gtt)/(gpp + l_cst * gtp) ;
W = (0.5 * math.log(abs(gtt + 2. * Omega * gtp + Omega*Omega * gpp))
- math.log(abs(gtt + Omega * gtp))) ;
return W ;
def isStopCondition(self, coord):
return coord[1] < self.rsink
def circularVelocity(self, coor, vel, d):
'''Velocity of a particle in circular motion at point
Note: this is called only if this->keplerian_ is False.
'''
sinth = math.sin(coor[2]);
coord = [coor[0], coor[1]*sinth, math.pi*0.5, coor[3]];
vel[1] = vel[2] = 0.;
#vel[3] = 1./((d*pow(coord[1], 1.5) + spin_)*sinth);
vel[3] = 1./((d*pow(coord[1], 1.5) + self.spin));
vel[0] = self.this.SysPrimeToTdot(coor, vel[1:]);
vel[3] *= vel[0];
|