1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
#/bin/env python
# -*- coding: utf-8 -*-
# Example file for gyoto
#
# Copyright 2014-2018 Thibaut Paumard
#
# This file is part of Gyoto.
#
# Gyoto is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Gyoto is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
import numpy
import matplotlib as ml
import matplotlib.pyplot as plt
import gyoto.core
import gyoto.std
# Simple stuff
scr=gyoto.core.Screen()
gg=gyoto.std.KerrBL()
scr.metric(gg)
pos=scr.getObserverPos()
# Load Scenery
a=gyoto.core.Factory("../doc/examples/example-moving-star.xml")
sc=a.scenery()
sc.nThreads(8)
sc.astrobj().opticallyThin(False)
scr=sc.screen()
dest=numpy.zeros(8, float)
scr.getRayTriad(1,1,dest)
dest=numpy.ndarray(3, float)
scr.coordToSky((0., 5., numpy.pi/2, 0), dest)
# Trace and plot NULL geodesic:
ph=gyoto.core.Photon()
ph.setInitialCondition(sc.metric(), sc.astrobj(), sc.screen(), 0., 0.)
ph.hit()
n=ph.get_nelements()
# We try to map Gyoto arrays to NumPy arrays wherever possible.
# Create NumPy arrays
t=numpy.ndarray(n)
r=numpy.ndarray(n)
theta=numpy.ndarray(n)
phi=numpy.ndarray(n)
# Call Gyoto method that takes these arrays as argument:
ph.get_t(t)
ph.getCoord(t, r, theta, phi)
plt.plot(t, r)
plt.show()
# Trace and plot timelike geodesic
# We need to cast the object to a gyoto.std.Star:
wl=gyoto.std.Star(sc.astrobj())
wl.xFill(1000)
n=wl.get_nelements()
x=numpy.ndarray(n)
y=numpy.ndarray(n)
z=numpy.ndarray(n)
wl.get_xyz(x, y, z)
plt.plot(x, y)
plt.show()
# Ray-trace scenery
# For that, we can use the short-hand:
sc.requestedQuantitiesString('Intensity EmissionTime MinDistance')
results=sc.rayTrace()
plt.imshow(results['Intensity'])
plt.show()
plt.imshow(results['EmissionTime'])
plt.show()
plt.imshow(results['MinDistance'])
plt.show()
# Or we can do it manually to understand how the Gyoto API works:
res=sc.screen().resolution()
intensity=numpy.zeros((res, res), dtype=float)
time=numpy.zeros((res, res), dtype=float)
distance=numpy.zeros((res, res), dtype=float)
aop=gyoto.core.AstrobjProperties()
# Here we will use the low-level AstrobjProperties facilities. This is
# one of a few Gyoto functionalities where NumPy arrays are not
# directly supported. We use lower-level C-like arrays through the
# gyoto.core.array_double and gyoto.core.array_unsigned_long classes. Beware
# that this type does not provide any safeguards, it is quite easy to
# get it to SEGFAULT. As we develop Gyoto, we try to remove the need
# for the gyoto.core.array_* classes in favor of NumPy arrays. Code that
# uses this... ``feature'' therefore may break in future releases.
#
# To (indirectly) use NumPy arrays with a functionality that requires
# gyoto.core.array_* arguments, create the arrays using numpy (see above:
# `intensity', `time' and `distance' arrays) , then cast them using
# the fromnumpyN static methods, where the digit N indicates the
# dimensionality of the NumPy array. The underlying storage belongs to
# the NumPy variable and will be deleted with it: don't use the
# array_double() variable (for anyting else that destroying it) past
# the destruction of the corresponding NumPy variable.
aop.intensity=gyoto.core.array_double.fromnumpy2(intensity)
aop.time=gyoto.core.array_double.fromnumpy2(time)
aop.distance=gyoto.core.array_double.fromnumpy2(distance)
ii=gyoto.core.Range(1, res, 1)
jj=gyoto.core.Range(1, res, 1)
grid=gyoto.core.Grid(ii, jj, "\rj = ")
sc.rayTrace(grid, aop)
plt.imshow(intensity)
plt.show()
plt.imshow(time)
plt.show()
plt.imshow(distance)
plt.show()
# Another Scenery, with spectrum
sc=gyoto.core.Factory("../doc/examples/example-polish-doughnut.xml").scenery()
sc.screen().resolution(32)
res=sc.screen().resolution()
ns=sc.screen().spectrometer().nSamples()
spectrum=numpy.zeros((ns, res, res), dtype=float)
ii=gyoto.core.Range(1, res, 1)
jj=gyoto.core.Range(1, res, 1)
grid=gyoto.core.Grid(ii, jj, "\rj = ")
aop=gyoto.core.AstrobjProperties()
aop.spectrum=gyoto.core.array_double.fromnumpy3(spectrum)
aop.offset=res*res
sc.rayTrace(grid, aop)
plt.imshow(spectrum[1,:,:])
plt.show()
# Another Scenery, with impact coords, created from within Python
met=gyoto.core.Metric("KerrBL")
met.mass(4e6, "sunmass")
ao=gyoto.core.Astrobj("PageThorneDisk")
ao.metric(met)
ao.opticallyThin(False)
ao.rMax(100)
screen=gyoto.core.Screen()
screen.distance(8, "kpc")
screen.time(8, "kpc")
screen.resolution(64)
screen.inclination(numpy.pi/4)
screen.PALN(numpy.pi)
screen.time(8, "kpc")
screen.fieldOfView(100, "µas")
sc=gyoto.core.Scenery()
sc.metric(met)
sc.astrobj(ao)
sc.screen(screen)
sc.delta(1, "kpc")
sc.adaptive(True)
sc.nThreads(8)
res=sc.screen().resolution()
ii=gyoto.core.Range(1, res, 1)
jj=gyoto.core.Range(1, res, 1)
grid=gyoto.core.Grid(ii, jj, "\rj = ")
ipct=numpy.zeros((res, res, 16), dtype=float)
aop=gyoto.core.AstrobjProperties()
aop.impactcoords=gyoto.core.array_double.fromnumpy3(ipct)
aop.offset=res*res
sc.rayTrace(grid, aop)
plt.imshow(ipct[:,:,0], interpolation="nearest", vmin=-100, vmax=0)
plt.show()
# Trace one line of the above using alpha and delta
N=10
buf=numpy.linspace(screen.fieldOfView()*-0.5, screen.fieldOfView()*0.5, N)
a=gyoto.core.Angles(buf)
d=gyoto.core.RepeatAngle(screen.fieldOfView()*-0.5, N)
bucket=gyoto.core.Bucket(a, d)
ipct=numpy.zeros((N, 16), dtype=float)
aop=gyoto.core.AstrobjProperties()
aop.impactcoords=gyoto.core.array_double.fromnumpy2(ipct)
aop.offset=N
sc.rayTrace(bucket, aop)
plt.plot(buf, ipct[:,0])
plt.show()
# Trace the diagonal of the above using i and j. The Range and Indices
# definitions below are equivalent. Range is more efficient for a
# range, Indices can hold arbitrary indices.
ind=numpy.arange(1, res+1, dtype=numpy.uintp) # on 64bit arch...
ii=gyoto.core.Indices(ind)
# Or:
# ind=gyoto.core.array_size_t(res)
# for i in range(0, res):
# ind[i]=i+1
# ii=gyoto.core.Indices(ind, res)
jj=gyoto.core.Range(1, res, 1)
bucket=gyoto.core.Bucket(ii, jj)
ipct=numpy.zeros((res, 16), dtype=float)
aop=gyoto.core.AstrobjProperties()
aop.impactcoords=gyoto.core.array_double.fromnumpy2(ipct)
aop.offset=res
sc.rayTrace(bucket, aop)
t=numpy.clip(ipct[:,0], a_min=-200, a_max=0)
plt.plot(t)
plt.show()
# Any derived class can be instantiated from its name, as soon as the
# corresponding plug-in has been loaded into Gyoto. The standard
# plug-in is normally loaded automatically (and is always loaded when
# gyoto.std is imported), but this can also be forced with
# gyoto.core.requirePlugin():
gyoto.core.requirePlugin('stdplug')
tt=gyoto.core.Astrobj('Torus')
kerr=gyoto.core.Metric('KerrBL')
# Most properties that can be set in an XML file can also be accessed
# from Python using the Property/Value mechanism:
# Low-level access:
p=tt.property("SmallRadius")
p.type==gyoto.core.Property.double_t
tt.set(p, gyoto.core.Value(0.2))
tt.get(p) == 0.2
# Higher-level:
kerr.set("Spin", 0.95)
kerr.get("Spin") == 0.95
# However, we also have Python extensions around the standard Gyoto
# plug-ins.
import gyoto.std
# And if the lorene plug-in has been compiled:
# import gyoto.lorene
# It then becomes possible to access the methods specific to derived
# classes. They can be instantiated directly from the gyoto_* extension:
tr2=gyoto.std.Torus()
# and we can cast a generic pointer (from the gyoto extension) to a
# derived class:
tr=gyoto.std.Torus(tt)
tt.get("SmallRadius") == tr.smallRadius()
# Another example: using a complex (i.e. compound) Astrobj:
cplx=gyoto.std.ComplexAstrobj()
cplx.append(tr)
cplx.append(sc.astrobj())
sc.astrobj(cplx)
print("All done, exiting")
|