1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
import numpy
import unittest
import gyoto.core
import gyoto.std
import gyoto.metric
import inspect
class TestChernSimons(unittest.TestCase):
def test_setInitCoord(self):
gg=gyoto.std.ChernSimons()
zeta=0.5
gg.dzetaCS(zeta)
self.assertTrue((gg.dzetaCS() == zeta))
class TestDeformedTorus(unittest.TestCase):
def test_DeformedTorus(self):
ao=gyoto.core.Astrobj("DeformedTorus")
ao=gyoto.std.DeformedTorus()
sp=gyoto.std.BlackBody()
ao.spectrum(sp)
r=4.
ao.largeRadius(r)
self.assertTrue((ao.largeRadius() == r))
class TestDynamicalDiskBolometric(unittest.TestCase):
def test_DynamicalDiskBolometric(self):
ao=gyoto.core.Astrobj("DynamicalDiskBolometric")
ao=gyoto.std.DynamicalDiskBolometric()
self.assertTrue(True)
class TestEquatorialHotSpot(unittest.TestCase):
def test_EquatorialHotSpot(self):
ao=gyoto.core.Astrobj("EquatorialHotSpot")
ao=gyoto.std.EquatorialHotSpot()
r=4.
ao.spotRadSize(r)
self.assertTrue((ao.spotRadSize() == r))
kind="RadialBeaming"
ao.beaming(kind)
self.assertTrue((ao.beaming() == kind))
self.assertRaises(gyoto.core.Error, ao.beaming, "foo")
class TestInflateStar(unittest.TestCase):
def test_InflateStar(self):
ao=gyoto.core.Astrobj("InflateStar")
ao=gyoto.std.InflateStar()
ao.radius(0.)
ao.radiusStop(2.)
ao.timeInflateInit(0.)
ao.timeInflateStop(2.)
self.assertTrue(abs(ao.radiusAt(1.)-1.) < 1e-6)
class TestOscilTorus(unittest.TestCase):
def test_OscilTorus(self):
ao=gyoto.core.Astrobj("OscilTorus")
ao=gyoto.std.OscilTorus()
r=4.
ao.largeRadius(r)
self.assertTrue((ao.largeRadius() == r))
perturbkind="Vertical"
ao.perturbKind(perturbkind)
self.assertTrue((ao.perturbKind() == perturbkind))
class TestRezzollaZhidenko(unittest.TestCase):
def test_mass(self):
gg=gyoto.std.RezzollaZhidenko()
m=2.
gg.mass(m)
self.assertTrue((gg.mass() == m))
def test_aparam(self):
gg=gyoto.std.RezzollaZhidenko()
a=(1., 2., 3., 4.)
gg.aparam(a)
self.assertTrue((gg.aparam() == a))
class TestHayward(unittest.TestCase):
def test_mass(self):
gg=gyoto.std.Hayward()
m=2.
gg.mass(m)
self.assertTrue((gg.mass() == m))
def test_charge(self):
gg=gyoto.std.Hayward()
b=0.5
gg.charge(b)
self.assertTrue((gg.charge() == b))
def test_gmunu(self):
metric=gyoto.std.Hayward()
I=numpy.zeros((4,4))
for i in range(4):
I[i,i]=1.
for r in (-2, 0.5, 6):
pos=(10, r, numpy.pi/4, numpy.pi/3)
g=metric.gmunu(pos)
gup=metric.gmunu_up(pos)
ggup=numpy.linalg.multi_dot((g, gup))
for mu in range(4):
for nu in range(4):
self.assertAlmostEqual(metric.gmunu(pos, mu, nu), g[mu, nu])
self.assertAlmostEqual(metric.gmunu_up(pos, mu, nu), gup[mu, nu], 7,
"mu: {}, nu: {}".format(mu, nu))
self.assertAlmostEqual(ggup[mu, nu],I[mu,nu])
class TestStar(unittest.TestCase):
def test_setInitCoord(self):
st=gyoto.std.Star()
gg=gyoto.std.KerrBL()
st.metric(gg)
pos_list=(600., 9., 1.5707999999999999741, 0)
vel_list=(0., 0., 0.037037)
st.setInitCoord(pos_list, vel_list)
dst=gyoto.core.vector_double()
dst2=gyoto.core.vector_double()
st.getInitialCoord(dst)
st.setPosition(pos_list)
st.setVelocity(vel_list)
st.getInitialCoord(dst2)
self.assertTrue((numpy.asarray(dst) == numpy.asarray(dst2)).all())
class TestMinkowski(unittest.TestCase):
def _compute_r_norm(self, met, st, pos, v, tmax=1e6):
t, x, y, z, tdot, xdot, ydot, zdot=self._compute_orbit(met, st, pos, v, tmax)
if met.spherical():
r=x
else:
r=numpy.sqrt(x**2+y**2+z**2)
n=t.size
norm=numpy.asarray([met.norm([t[i], x[i], y[i], z[i]],
[tdot[i], xdot[i], ydot[i], zdot[i]])
for i in range(n)])
return r, norm
def _compute_orbit(self, met, st, pos, v, tmax=1e6):
st.initCoord(numpy.append(pos, v))
st.xFill(tmax)
n=st.get_nelements()
t=numpy.ndarray(n)
x=numpy.ndarray(n)
y=numpy.ndarray(n)
z=numpy.ndarray(n)
tdot=numpy.ndarray(n)
xdot=numpy.ndarray(n)
ydot=numpy.ndarray(n)
zdot=numpy.ndarray(n)
st.get_t(t)
st.getCoord(t, x, y, z, tdot, xdot, ydot, zdot)
return t, x, y, z, tdot, xdot, ydot, zdot
def test_Keplerian(self):
met=gyoto.std.Minkowski()
met.keplerian(True)
st=gyoto.std.Star()
st.metric(met)
# Cartesian coordinates
# particlae is at x=1000:
pos=[0., 1000., 0., 0.]
v=met.circularVelocity(pos)
r, norm=self._compute_r_norm(met, st, pos, v)
self.assertLess( numpy.abs(r-1000.).max(), 1e-6)
self.assertLess( numpy.abs(norm+1.).max(), 1e-6 )
# same velocity at z=1000:
pos=[0., 0., 0., 1000.]
r, norm=self._compute_r_norm(met, st, pos, v)
self.assertLess( numpy.abs(r-1000.).max(), 1e-6)
self.assertLess( numpy.abs(norm+1.).max(), 1e-6 )
# same velocity at x=z=1000/sqrt(2)
pos=[0., 1000./numpy.sqrt(2.), 0., 1000./numpy.sqrt(2.)]
r, norm=self._compute_r_norm(met, st, pos, v)
self.assertLess( numpy.abs(r-1000.).max(), 1e-6)
self.assertLess( numpy.abs(norm+1.).max(), 1e-6 )
# a elliptical orbit
pos=[0., 1000., 0., 0.]
v3=[0, 0.015, 0]
tdot=met.SysPrimeToTdot(pos, v3)
v=[tdot, v3[0]*tdot, v3[1]*tdot, v3[2]/tdot]
r, norm=self._compute_r_norm(met, st, pos, v)
self.assertLess( numpy.abs(norm+1.).max(), 1e-6 )
# circular orbit starting at x=3
pos=[0., 3., 0., 0.]
v=met.circularVelocity(pos)
st.deltaMaxOverR(0.1)
r, norm=self._compute_r_norm(met, st, pos, v, tmax=50.)
self.assertLess( numpy.abs(r-3.).max(), 1e-6)
self.assertLess( numpy.abs(norm+1.).max(), 1e-6 )
# Spherical coordinates
st=gyoto.std.Star()
st.metric(met)
met.spherical(True)
# again starting at x=1000
pos=[0., 1000., numpy.pi*0.5, 0.]
v=met.circularVelocity(pos)
r, norm=self._compute_r_norm(met, st, pos, v)
self.assertLess( numpy.abs(r-1000.).max(), 1e-6)
self.assertLess( numpy.abs(norm+1.).max(), 1e-6 )
# elliptical orbit
v[3] = v[3]/2.
r, norm=self._compute_r_norm(met, st, pos, v)
self.assertLess( numpy.abs(norm+1.).max(), 1e-3 )
# circular orbit starting at x=z=1000/sqrt(2)
pos=[0., 1000., numpy.pi/2., 0.]
v=met.circularVelocity(pos)
pos[2]=numpy.pi/4.
v[3]=v[3]/numpy.sin(numpy.pi/4.)
r, norm=self._compute_r_norm(met, st, pos, v)
self.assertLess( numpy.abs(r-1000.).max(), 1e-6)
self.assertLess( numpy.abs(norm+1.).max(), 1e-6 )
# circular orbit starting at x=3
pos=[0., 3., numpy.pi*0.5, 0.]
st.deltaMaxOverR(0.1)
st.initCoord(numpy.append(pos, v))
v=met.circularVelocity(pos)
r, norm=self._compute_r_norm(met, st, pos, v, tmax=50.)
self.assertLess( numpy.abs(r-3.).max(), 1e-6)
self.assertLess( numpy.abs(norm+1.).max(), 1e-6 )
class TestStdMetric(unittest.TestCase):
def pos(self, metric):
if metric.coordKind() is gyoto.core.GYOTO_COORDKIND_SPHERICAL:
pos=(10, 6., numpy.pi/4, numpy.pi/3)
else:
pos=(10, 6, 2, 4.)
return pos
def metric(self, cls):
metric=cls()
# All Kerr-like: use non-zero spin
try:
metric.spin(0.5)
except AttributeError:
pass
# Chern-Simons: non-zero dzeta
try:
metric.dzetaCS(0.5)
except AttributeError:
pass
# Complex: add two metrics
try:
metric.append(gyoto.std.KerrBL())
metric.append(gyoto.std.KerrBL())
except AttributeError:
pass
# Shift: add a submetric
if (cls == gyoto.std.Shift):
metric.subMetric(gyoto.std.KerrKS())
metric.offset((1., 1., 1., 1.))
return metric
def invalid(self, classname, cls):
return (not inspect.isclass(cls)
or not issubclass(cls, gyoto.core.Metric))
def test_christoffel(self):
nspace=gyoto.std
for classname, cls in inspect.getmembers(nspace):
if (self.invalid(classname, cls)):
continue
metric=self.metric(cls)
try:
gyoto.metric.check_christoffel(metric, poslist=(self.pos(metric),), epsilon=1e-7)
except AssertionError as e:
self.fail(e.__str__())
pos=self.pos(metric)
G=metric.christoffel(pos)
G2=numpy.ones((4,4,4))
retval=metric.christoffel(G2, pos)
self.assertEqual(retval, 0, 'christoffel errors out')
for a in range(4):
for mu in range(4):
for nu in range(4):
self.assertAlmostEqual(metric.christoffel(pos, a, mu, nu), G[a, mu, nu], 7, classname)
self.assertAlmostEqual(metric.christoffel(pos, a, mu, nu), G2[a, mu, nu], 7, classname)
def test_jacobian(self):
nspace=gyoto.std
for classname, cls in inspect.getmembers(nspace):
if (self.invalid(classname, cls)):
continue
metric=self.metric(cls)
pos=self.pos(metric)
jac=metric.jacobian(pos)
jacn=gyoto.metric.jacobian_numerical(metric, pos, epsilon=1e-7)
for a in range(4):
for m in range(4):
for n in range(4):
self.assertAlmostEqual(jac[a,m,n],
jacn[a,m,n], 7, classname)
def test_gmunu(self):
nspace=gyoto.std
for classname, cls in inspect.getmembers(nspace):
if (self.invalid(classname, cls)):
continue
metric=self.metric(cls)
pos=self.pos(metric)
g=metric.gmunu(pos)
for mu in range(4):
for nu in range(4):
self.assertAlmostEqual(metric.gmunu(pos, mu, nu), g[mu, nu], 7, classname)
def test_gmunu_up(self):
nspace=gyoto.std
for classname, cls in inspect.getmembers(nspace):
if (self.invalid(classname, cls)):
continue
metric=self.metric(cls)
pos=self.pos(metric)
gup=metric.gmunu_up(pos)
gup2, jac=metric.gmunu_up_and_jacobian(pos)
g=metric.gmunu(pos)
gup3=numpy.linalg.inv(g)
for mu in range(4):
for nu in range(4):
self.assertAlmostEqual(metric.gmunu_up(pos, mu, nu), gup[mu, nu], 7,
"class: {}, mu: {}, nu: {} ({})".format(classname, mu, nu, 'coef/matrix'))
self.assertAlmostEqual(gup3[mu, nu], gup2[mu, nu], 7,
"class: {}, mu: {}, nu: {} ({})".format(classname, mu, nu, 'inv(g)/*_and_jacobian'))
self.assertAlmostEqual(gup2[mu, nu], gup[mu, nu], 7,
"class: {}, mu: {}, nu: {} ({})".format(classname, mu, nu, 'matrix/*_and_jacobian'))
def test_gmunu_gmunu_up(self):
nspace=gyoto.std
I=numpy.zeros((4,4))
for i in range(4):
I[i,i]=1.
for classname, cls in inspect.getmembers(nspace):
if (self.invalid(classname, cls)):
continue
metric=self.metric(cls)
pos=self.pos(metric)
g=metric.gmunu(pos)
gup=metric.gmunu_up(pos)
self.assertAlmostEqual(numpy.abs(numpy.linalg.multi_dot((g, gup))-I).max(), 0.)
|