1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/*
* Copyright 2016-2022 Great Scott Gadgets <info@greatscottgadgets.com>
* Copyright 2016 Mike Walters, Dominic Spill
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "usb_api_sweep.h"
#include "usb_queue.h"
#include <stddef.h>
#include <hackrf_core.h>
#include "usb_api_transceiver.h"
#include "usb_bulk_buffer.h"
#include "usb_api_m0_state.h"
#include "tuning.h"
#include "usb_endpoint.h"
#include "streaming.h"
#include <libopencm3/lpc43xx/m4/nvic.h>
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define FREQ_GRANULARITY 1000000
#define MAX_RANGES 10
#define THROWAWAY_BUFFERS 2
static uint64_t sweep_freq;
static uint16_t frequencies[MAX_RANGES * 2];
static unsigned char data[9 + MAX_RANGES * 2 * sizeof(frequencies[0])];
static uint16_t num_ranges = 0;
static uint32_t dwell_blocks = 0;
static uint32_t step_width = 0;
static uint32_t offset = 0;
static enum sweep_style style = LINEAR;
/* Do this before starting sweep mode with request_transceiver_mode(). */
usb_request_status_t usb_vendor_request_init_sweep(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
uint32_t num_bytes;
int i;
if (stage == USB_TRANSFER_STAGE_SETUP) {
num_bytes = (endpoint->setup.index << 16) | endpoint->setup.value;
dwell_blocks = num_bytes / 0x4000;
if (1 > dwell_blocks) {
return USB_REQUEST_STATUS_STALL;
}
num_ranges = (endpoint->setup.length - 9) / (2 * sizeof(frequencies[0]));
if ((1 > num_ranges) || (MAX_RANGES < num_ranges)) {
return USB_REQUEST_STATUS_STALL;
}
usb_transfer_schedule_block(
endpoint->out,
&data,
endpoint->setup.length,
NULL,
NULL);
} else if (stage == USB_TRANSFER_STAGE_DATA) {
step_width = ((uint32_t) (data[3]) << 24) | ((uint32_t) (data[2]) << 16) |
((uint32_t) (data[1]) << 8) | data[0];
if (1 > step_width) {
return USB_REQUEST_STATUS_STALL;
}
offset = ((uint32_t) (data[7]) << 24) | ((uint32_t) (data[6]) << 16) |
((uint32_t) (data[5]) << 8) | data[4];
style = data[8];
if (INTERLEAVED < style) {
return USB_REQUEST_STATUS_STALL;
}
for (i = 0; i < (num_ranges * 2); i++) {
frequencies[i] =
((uint16_t) (data[10 + i * 2]) << 8) + data[9 + i * 2];
}
sweep_freq = (uint64_t) frequencies[0] * FREQ_GRANULARITY;
set_freq(sweep_freq + offset);
usb_transfer_schedule_ack(endpoint->in);
}
return USB_REQUEST_STATUS_OK;
}
void sweep_bulk_transfer_complete(void* user_data, unsigned int bytes_transferred)
{
(void) user_data;
(void) bytes_transferred;
// For each buffer transferred, we need to bump the count by three buffers
// worth of data, to allow for the discarded buffers.
m0_state.m4_count += 3 * 0x4000;
}
void sweep_mode(uint32_t seq)
{
// Sweep mode is implemented using timed M0 operations, as follows:
//
// 0. M4 initially puts the M0 into RX mode, with an m0_count threshold
// of 16K and a next mode of WAIT.
//
// 1. M4 spins until the M0 switches to WAIT mode.
//
// 2. M0 captures one 16K block of samples, and switches to WAIT mode.
//
// 3. M4 sees the mode change, advances the m0_count target by 32K, and
// sets next mode to RX.
//
// 4. M4 adds the sweep metadata at the start of the block and
// schedules a bulk transfer for the block.
//
// 5. M4 retunes - this takes about 760us worst-case, so should be
// complete before the M0 goes back to RX.
//
// 6. M4 spins until the M0 mode changes to RX, then advances the
// m0_count limit by 16K and sets the next mode to WAIT.
//
// 7. Process repeats from step 1.
unsigned int blocks_queued = 0;
unsigned int phase = 0;
bool odd = true;
uint16_t range = 0;
uint8_t* buffer;
transceiver_startup(TRANSCEIVER_MODE_RX_SWEEP);
// Set M0 to RX first buffer, then wait.
m0_state.threshold = 0x4000;
m0_state.next_mode = M0_MODE_WAIT;
baseband_streaming_enable(&sgpio_config);
while (transceiver_request.seq == seq) {
// Wait for M0 to finish receiving a buffer.
while (m0_state.active_mode != M0_MODE_WAIT) {
if (transceiver_request.seq != seq) {
goto end;
}
}
// Set M0 to switch back to RX after two more buffers.
m0_state.threshold += 0x8000;
m0_state.next_mode = M0_MODE_RX;
// Write metadata to buffer.
buffer = &usb_bulk_buffer[phase * 0x4000];
*buffer = 0x7f;
*(buffer + 1) = 0x7f;
*(buffer + 2) = sweep_freq & 0xff;
*(buffer + 3) = (sweep_freq >> 8) & 0xff;
*(buffer + 4) = (sweep_freq >> 16) & 0xff;
*(buffer + 5) = (sweep_freq >> 24) & 0xff;
*(buffer + 6) = (sweep_freq >> 32) & 0xff;
*(buffer + 7) = (sweep_freq >> 40) & 0xff;
*(buffer + 8) = (sweep_freq >> 48) & 0xff;
*(buffer + 9) = (sweep_freq >> 56) & 0xff;
// Set up IN transfer of buffer.
usb_transfer_schedule_block(
&usb_endpoint_bulk_in,
buffer,
0x4000,
sweep_bulk_transfer_complete,
NULL);
// Use other buffer next time.
phase = (phase + 1) % 2;
if (++blocks_queued == dwell_blocks) {
// Calculate next sweep frequency.
if (INTERLEAVED == style) {
if (!odd &&
((sweep_freq + step_width) >=
((uint64_t) frequencies[1 + range * 2] *
FREQ_GRANULARITY))) {
range = (range + 1) % num_ranges;
sweep_freq = (uint64_t) frequencies[range * 2] *
FREQ_GRANULARITY;
} else {
if (odd) {
sweep_freq += step_width / 4;
} else {
sweep_freq += 3 * step_width / 4;
}
}
odd = !odd;
} else {
if ((sweep_freq + step_width) >=
((uint64_t) frequencies[1 + range * 2] *
FREQ_GRANULARITY)) {
range = (range + 1) % num_ranges;
sweep_freq = (uint64_t) frequencies[range * 2] *
FREQ_GRANULARITY;
} else {
sweep_freq += step_width;
}
}
// Retune to new frequency.
nvic_disable_irq(NVIC_USB0_IRQ);
set_freq(sweep_freq + offset);
nvic_enable_irq(NVIC_USB0_IRQ);
blocks_queued = 0;
}
// Wait for M0 to resume RX.
while (m0_state.active_mode != M0_MODE_RX) {
if (transceiver_request.seq != seq) {
goto end;
}
}
// Set M0 to switch back to WAIT after filling next buffer.
m0_state.threshold += 0x4000;
m0_state.next_mode = M0_MODE_WAIT;
}
end:
transceiver_shutdown();
}
|