1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
|
/*
* Reimplementation of Deflate (RFC1951) compression. Adapted from
* the version in PuTTY, and extended to write dynamic Huffman
* trees and choose block boundaries usefully.
*/
/*
* TODO:
*
* - Feature: could do with forms of flush other than SYNC_FLUSH.
* I'm not sure exactly how those work when you don't know in
* advance that your next block will be static (as we did in
* PuTTY). And remember the 9-bit limitation of zlib.
* + also, zlib has FULL_FLUSH which clears the LZ77 state as
* well, for random access.
*
* - Compression quality: chooseblock() appears to be computing
* wildly inaccurate block size estimates. Possible resolutions:
* + find and fix some trivial bug I haven't spotted yet
* + abandon the entropic approximation and go with trial
* Huffman runs
*
* - Compression quality: see if increasing SYMLIMIT causes
* dynamic blocks to start being consistently smaller than it.
* + actually we seem to be there already, but check on a
* larger corpus.
*
* - Compression quality: we ought to be able to fall right back
* to actual uncompressed blocks if really necessary, though
* it's not clear what the criterion for doing so would be.
*/
/*
* This software is copyright 2000-2006 Simon Tatham.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
* IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include "deflate.h"
#define snew(type) ( (type *) malloc(sizeof(type)) )
#define snewn(n, type) ( (type *) malloc((n) * sizeof(type)) )
#define sresize(x, n, type) ( (type *) realloc((x), (n) * sizeof(type)) )
#define sfree(x) ( free((x)) )
#define lenof(x) (sizeof((x)) / sizeof(*(x)))
#ifndef FALSE
#define FALSE 0
#define TRUE (!FALSE)
#endif
/* ----------------------------------------------------------------------
* This file can be compiled in a number of modes.
*
* With -DSTANDALONE, it builds a self-contained deflate tool which
* can compress, decompress, and also analyse a deflated file to
* print out the sequence of literals and copy commands it
* contains.
*
* With -DTESTMODE, it builds a test application which is given a
* file on standard input, both compresses and decompresses it, and
* outputs the re-decompressed result so it can be conveniently
* diffed against the original. Define -DTESTDBG as well for lots
* of diagnostics.
*/
#if defined TESTDBG
/* gcc-specific diagnostic macro */
#define debug_int(x...) ( fprintf(stderr, x) )
#define debug(x) ( debug_int x )
#else
#define debug(x)
#endif
#ifdef STANDALONE
#define ANALYSIS
#endif
#ifdef ANALYSIS
int analyse_level = 0;
#endif
/* ----------------------------------------------------------------------
* Basic LZ77 code. This bit is designed modularly, so it could be
* ripped out and used in a different LZ77 compressor. Go to it,
* and good luck :-)
*/
struct LZ77InternalContext;
struct LZ77Context {
struct LZ77InternalContext *ictx;
void *userdata;
void (*literal) (struct LZ77Context * ctx, unsigned char c);
void (*match) (struct LZ77Context * ctx, int distance, int len);
};
/*
* Initialise the private fields of an LZ77Context. It's up to the
* user to initialise the public fields.
*/
static int lz77_init(struct LZ77Context *ctx);
/*
* Supply data to be compressed. Will update the private fields of
* the LZ77Context, and will call literal() and match() to output.
* If `compress' is FALSE, it will never emit a match, but will
* instead call literal() for everything.
*/
static void lz77_compress(struct LZ77Context *ctx,
const unsigned char *data, int len, int compress);
/*
* Modifiable parameters.
*/
#define WINSIZE 32768 /* window size. Must be power of 2! */
#define HASHMAX 2039 /* one more than max hash value */
#define MAXMATCH 32 /* how many matches we track */
#define HASHCHARS 3 /* how many chars make a hash */
/*
* This compressor takes a less slapdash approach than the
* gzip/zlib one. Rather than allowing our hash chains to fall into
* disuse near the far end, we keep them doubly linked so we can
* _find_ the far end, and then every time we add a new byte to the
* window (thus rolling round by one and removing the previous
* byte), we can carefully remove the hash chain entry.
*/
#define INVALID -1 /* invalid hash _and_ invalid offset */
struct WindowEntry {
short next, prev; /* array indices within the window */
short hashval;
};
struct HashEntry {
short first; /* window index of first in chain */
};
struct Match {
int distance, len;
};
struct LZ77InternalContext {
struct WindowEntry win[WINSIZE];
unsigned char data[WINSIZE];
int winpos;
struct HashEntry hashtab[HASHMAX];
unsigned char pending[HASHCHARS];
int npending;
};
static int lz77_hash(const unsigned char *data)
{
return (257 * data[0] + 263 * data[1] + 269 * data[2]) % HASHMAX;
}
static int lz77_init(struct LZ77Context *ctx)
{
struct LZ77InternalContext *st;
int i;
st = snew(struct LZ77InternalContext);
if (!st)
return 0;
ctx->ictx = st;
for (i = 0; i < WINSIZE; i++)
st->win[i].next = st->win[i].prev = st->win[i].hashval = INVALID;
for (i = 0; i < HASHMAX; i++)
st->hashtab[i].first = INVALID;
st->winpos = 0;
st->npending = 0;
return 1;
}
static void lz77_advance(struct LZ77InternalContext *st,
unsigned char c, int hash)
{
int off;
/*
* Remove the hash entry at winpos from the tail of its chain,
* or empty the chain if it's the only thing on the chain.
*/
if (st->win[st->winpos].prev != INVALID) {
st->win[st->win[st->winpos].prev].next = INVALID;
} else if (st->win[st->winpos].hashval != INVALID) {
st->hashtab[st->win[st->winpos].hashval].first = INVALID;
}
/*
* Create a new entry at winpos and add it to the head of its
* hash chain.
*/
st->win[st->winpos].hashval = hash;
st->win[st->winpos].prev = INVALID;
off = st->win[st->winpos].next = st->hashtab[hash].first;
st->hashtab[hash].first = st->winpos;
if (off != INVALID)
st->win[off].prev = st->winpos;
st->data[st->winpos] = c;
/*
* Advance the window pointer.
*/
st->winpos = (st->winpos + 1) & (WINSIZE - 1);
}
#define CHARAT(k) ( (k)<0 ? st->data[(st->winpos+k)&(WINSIZE-1)] : data[k] )
static void lz77_compress(struct LZ77Context *ctx,
const unsigned char *data, int len, int compress)
{
struct LZ77InternalContext *st = ctx->ictx;
int i, hash, distance, off, nmatch, matchlen, advance;
struct Match defermatch, matches[MAXMATCH];
int deferchr;
/*
* Add any pending characters from last time to the window. (We
* might not be able to.)
*/
for (i = 0; i < st->npending; i++) {
unsigned char foo[HASHCHARS];
int j;
if (len + st->npending - i < HASHCHARS) {
/* Update the pending array. */
for (j = i; j < st->npending; j++)
st->pending[j - i] = st->pending[j];
break;
}
for (j = 0; j < HASHCHARS; j++)
foo[j] = (i + j < st->npending ? st->pending[i + j] :
data[i + j - st->npending]);
lz77_advance(st, foo[0], lz77_hash(foo));
}
st->npending -= i;
defermatch.len = 0;
deferchr = '\0';
while (len > 0) {
/* Don't even look for a match, if we're not compressing. */
if (compress && len >= HASHCHARS) {
/*
* Hash the next few characters.
*/
hash = lz77_hash(data);
/*
* Look the hash up in the corresponding hash chain and see
* what we can find.
*/
nmatch = 0;
for (off = st->hashtab[hash].first;
off != INVALID; off = st->win[off].next) {
/* distance = 1 if off == st->winpos-1 */
/* distance = WINSIZE if off == st->winpos */
distance =
WINSIZE - (off + WINSIZE - st->winpos) % WINSIZE;
for (i = 0; i < HASHCHARS; i++)
if (CHARAT(i) != CHARAT(i - distance))
break;
if (i == HASHCHARS) {
matches[nmatch].distance = distance;
matches[nmatch].len = 3;
if (++nmatch >= MAXMATCH)
break;
}
}
} else {
nmatch = 0;
hash = INVALID;
}
if (nmatch > 0) {
/*
* We've now filled up matches[] with nmatch potential
* matches. Follow them down to find the longest. (We
* assume here that it's always worth favouring a
* longer match over a shorter one.)
*/
matchlen = HASHCHARS;
while (matchlen < len) {
int j;
for (i = j = 0; i < nmatch; i++) {
if (CHARAT(matchlen) ==
CHARAT(matchlen - matches[i].distance)) {
matches[j++] = matches[i];
}
}
if (j == 0)
break;
matchlen++;
nmatch = j;
}
/*
* We've now got all the longest matches. We favour the
* shorter distances, which means we go with matches[0].
* So see if we want to defer it or throw it away.
*/
matches[0].len = matchlen;
if (defermatch.len > 0) {
if (matches[0].len > defermatch.len + 1) {
/* We have a better match. Emit the deferred char,
* and defer this match. */
ctx->literal(ctx, (unsigned char) deferchr);
defermatch = matches[0];
deferchr = data[0];
advance = 1;
} else {
/* We don't have a better match. Do the deferred one. */
ctx->match(ctx, defermatch.distance, defermatch.len);
advance = defermatch.len - 1;
defermatch.len = 0;
}
} else {
/* There was no deferred match. Defer this one. */
defermatch = matches[0];
deferchr = data[0];
advance = 1;
}
} else {
/*
* We found no matches. Emit the deferred match, if
* any; otherwise emit a literal.
*/
if (defermatch.len > 0) {
ctx->match(ctx, defermatch.distance, defermatch.len);
advance = defermatch.len - 1;
defermatch.len = 0;
} else {
ctx->literal(ctx, data[0]);
advance = 1;
}
}
/*
* Now advance the position by `advance' characters,
* keeping the window and hash chains consistent.
*/
while (advance > 0) {
if (len >= HASHCHARS) {
lz77_advance(st, *data, lz77_hash(data));
} else {
st->pending[st->npending++] = *data;
}
data++;
len--;
advance--;
}
}
}
/* ----------------------------------------------------------------------
* Deflate functionality common to both compression and decompression.
*/
static const unsigned char lenlenmap[] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
#define MAXCODELEN 16
/*
* Given a sequence of Huffman code lengths, compute the actual
* codes, in the final form suitable for feeding to outbits (i.e.
* already bit-mirrored).
*
* Returns the maximum code length found. Can also return -1 to
* indicate the table was overcommitted (too many or too short
* codes to exactly cover the possible space), or -2 to indicate it
* was undercommitted (too few or too long codes).
*/
static int hufcodes(const unsigned char *lengths, int *codes, int nsyms)
{
int count[MAXCODELEN], startcode[MAXCODELEN];
int code, maxlen;
int i, j;
/* Count the codes of each length. */
maxlen = 0;
for (i = 1; i < MAXCODELEN; i++)
count[i] = 0;
for (i = 0; i < nsyms; i++) {
count[lengths[i]]++;
if (maxlen < lengths[i])
maxlen = lengths[i];
}
/* Determine the starting code for each length block. */
code = 0;
for (i = 1; i < MAXCODELEN; i++) {
startcode[i] = code;
code += count[i];
if (code > (1 << i))
maxlen = -1; /* overcommitted */
code <<= 1;
}
if (code < (1 << MAXCODELEN))
maxlen = -2; /* undercommitted */
/* Determine the code for each symbol. Mirrored, of course. */
for (i = 0; i < nsyms; i++) {
code = startcode[lengths[i]]++;
codes[i] = 0;
for (j = 0; j < lengths[i]; j++) {
codes[i] = (codes[i] << 1) | (code & 1);
code >>= 1;
}
}
return maxlen;
}
/*
* Adler32 checksum function.
*/
static unsigned long adler32_update(unsigned long s,
const unsigned char *data, int len)
{
unsigned s1 = s & 0xFFFF, s2 = (s >> 16) & 0xFFFF;
int i;
for (i = 0; i < len; i++) {
s1 += data[i];
s2 += s1;
if (!(i & 0xFFF)) {
s1 %= 65521;
s2 %= 65521;
}
}
return ((s2 % 65521) << 16) | (s1 % 65521);
}
/*
* CRC32 checksum function.
*/
static unsigned long crc32_update(unsigned long crcword,
const unsigned char *data, int len)
{
static const unsigned long crc32_table[256] = {
0x00000000L, 0x77073096L, 0xEE0E612CL, 0x990951BAL,
0x076DC419L, 0x706AF48FL, 0xE963A535L, 0x9E6495A3L,
0x0EDB8832L, 0x79DCB8A4L, 0xE0D5E91EL, 0x97D2D988L,
0x09B64C2BL, 0x7EB17CBDL, 0xE7B82D07L, 0x90BF1D91L,
0x1DB71064L, 0x6AB020F2L, 0xF3B97148L, 0x84BE41DEL,
0x1ADAD47DL, 0x6DDDE4EBL, 0xF4D4B551L, 0x83D385C7L,
0x136C9856L, 0x646BA8C0L, 0xFD62F97AL, 0x8A65C9ECL,
0x14015C4FL, 0x63066CD9L, 0xFA0F3D63L, 0x8D080DF5L,
0x3B6E20C8L, 0x4C69105EL, 0xD56041E4L, 0xA2677172L,
0x3C03E4D1L, 0x4B04D447L, 0xD20D85FDL, 0xA50AB56BL,
0x35B5A8FAL, 0x42B2986CL, 0xDBBBC9D6L, 0xACBCF940L,
0x32D86CE3L, 0x45DF5C75L, 0xDCD60DCFL, 0xABD13D59L,
0x26D930ACL, 0x51DE003AL, 0xC8D75180L, 0xBFD06116L,
0x21B4F4B5L, 0x56B3C423L, 0xCFBA9599L, 0xB8BDA50FL,
0x2802B89EL, 0x5F058808L, 0xC60CD9B2L, 0xB10BE924L,
0x2F6F7C87L, 0x58684C11L, 0xC1611DABL, 0xB6662D3DL,
0x76DC4190L, 0x01DB7106L, 0x98D220BCL, 0xEFD5102AL,
0x71B18589L, 0x06B6B51FL, 0x9FBFE4A5L, 0xE8B8D433L,
0x7807C9A2L, 0x0F00F934L, 0x9609A88EL, 0xE10E9818L,
0x7F6A0DBBL, 0x086D3D2DL, 0x91646C97L, 0xE6635C01L,
0x6B6B51F4L, 0x1C6C6162L, 0x856530D8L, 0xF262004EL,
0x6C0695EDL, 0x1B01A57BL, 0x8208F4C1L, 0xF50FC457L,
0x65B0D9C6L, 0x12B7E950L, 0x8BBEB8EAL, 0xFCB9887CL,
0x62DD1DDFL, 0x15DA2D49L, 0x8CD37CF3L, 0xFBD44C65L,
0x4DB26158L, 0x3AB551CEL, 0xA3BC0074L, 0xD4BB30E2L,
0x4ADFA541L, 0x3DD895D7L, 0xA4D1C46DL, 0xD3D6F4FBL,
0x4369E96AL, 0x346ED9FCL, 0xAD678846L, 0xDA60B8D0L,
0x44042D73L, 0x33031DE5L, 0xAA0A4C5FL, 0xDD0D7CC9L,
0x5005713CL, 0x270241AAL, 0xBE0B1010L, 0xC90C2086L,
0x5768B525L, 0x206F85B3L, 0xB966D409L, 0xCE61E49FL,
0x5EDEF90EL, 0x29D9C998L, 0xB0D09822L, 0xC7D7A8B4L,
0x59B33D17L, 0x2EB40D81L, 0xB7BD5C3BL, 0xC0BA6CADL,
0xEDB88320L, 0x9ABFB3B6L, 0x03B6E20CL, 0x74B1D29AL,
0xEAD54739L, 0x9DD277AFL, 0x04DB2615L, 0x73DC1683L,
0xE3630B12L, 0x94643B84L, 0x0D6D6A3EL, 0x7A6A5AA8L,
0xE40ECF0BL, 0x9309FF9DL, 0x0A00AE27L, 0x7D079EB1L,
0xF00F9344L, 0x8708A3D2L, 0x1E01F268L, 0x6906C2FEL,
0xF762575DL, 0x806567CBL, 0x196C3671L, 0x6E6B06E7L,
0xFED41B76L, 0x89D32BE0L, 0x10DA7A5AL, 0x67DD4ACCL,
0xF9B9DF6FL, 0x8EBEEFF9L, 0x17B7BE43L, 0x60B08ED5L,
0xD6D6A3E8L, 0xA1D1937EL, 0x38D8C2C4L, 0x4FDFF252L,
0xD1BB67F1L, 0xA6BC5767L, 0x3FB506DDL, 0x48B2364BL,
0xD80D2BDAL, 0xAF0A1B4CL, 0x36034AF6L, 0x41047A60L,
0xDF60EFC3L, 0xA867DF55L, 0x316E8EEFL, 0x4669BE79L,
0xCB61B38CL, 0xBC66831AL, 0x256FD2A0L, 0x5268E236L,
0xCC0C7795L, 0xBB0B4703L, 0x220216B9L, 0x5505262FL,
0xC5BA3BBEL, 0xB2BD0B28L, 0x2BB45A92L, 0x5CB36A04L,
0xC2D7FFA7L, 0xB5D0CF31L, 0x2CD99E8BL, 0x5BDEAE1DL,
0x9B64C2B0L, 0xEC63F226L, 0x756AA39CL, 0x026D930AL,
0x9C0906A9L, 0xEB0E363FL, 0x72076785L, 0x05005713L,
0x95BF4A82L, 0xE2B87A14L, 0x7BB12BAEL, 0x0CB61B38L,
0x92D28E9BL, 0xE5D5BE0DL, 0x7CDCEFB7L, 0x0BDBDF21L,
0x86D3D2D4L, 0xF1D4E242L, 0x68DDB3F8L, 0x1FDA836EL,
0x81BE16CDL, 0xF6B9265BL, 0x6FB077E1L, 0x18B74777L,
0x88085AE6L, 0xFF0F6A70L, 0x66063BCAL, 0x11010B5CL,
0x8F659EFFL, 0xF862AE69L, 0x616BFFD3L, 0x166CCF45L,
0xA00AE278L, 0xD70DD2EEL, 0x4E048354L, 0x3903B3C2L,
0xA7672661L, 0xD06016F7L, 0x4969474DL, 0x3E6E77DBL,
0xAED16A4AL, 0xD9D65ADCL, 0x40DF0B66L, 0x37D83BF0L,
0xA9BCAE53L, 0xDEBB9EC5L, 0x47B2CF7FL, 0x30B5FFE9L,
0xBDBDF21CL, 0xCABAC28AL, 0x53B39330L, 0x24B4A3A6L,
0xBAD03605L, 0xCDD70693L, 0x54DE5729L, 0x23D967BFL,
0xB3667A2EL, 0xC4614AB8L, 0x5D681B02L, 0x2A6F2B94L,
0xB40BBE37L, 0xC30C8EA1L, 0x5A05DF1BL, 0x2D02EF8DL
};
crcword ^= 0xFFFFFFFFL;
while (len--) {
unsigned long newbyte = *data++;
newbyte ^= crcword & 0xFFL;
crcword = (crcword >> 8) ^ crc32_table[newbyte];
}
return crcword ^ 0xFFFFFFFFL;
}
typedef struct {
short code, extrabits;
int min, max;
} coderecord;
static const coderecord lencodes[] = {
{257, 0, 3, 3},
{258, 0, 4, 4},
{259, 0, 5, 5},
{260, 0, 6, 6},
{261, 0, 7, 7},
{262, 0, 8, 8},
{263, 0, 9, 9},
{264, 0, 10, 10},
{265, 1, 11, 12},
{266, 1, 13, 14},
{267, 1, 15, 16},
{268, 1, 17, 18},
{269, 2, 19, 22},
{270, 2, 23, 26},
{271, 2, 27, 30},
{272, 2, 31, 34},
{273, 3, 35, 42},
{274, 3, 43, 50},
{275, 3, 51, 58},
{276, 3, 59, 66},
{277, 4, 67, 82},
{278, 4, 83, 98},
{279, 4, 99, 114},
{280, 4, 115, 130},
{281, 5, 131, 162},
{282, 5, 163, 194},
{283, 5, 195, 226},
{284, 5, 227, 257},
{285, 0, 258, 258},
};
static const coderecord distcodes[] = {
{0, 0, 1, 1},
{1, 0, 2, 2},
{2, 0, 3, 3},
{3, 0, 4, 4},
{4, 1, 5, 6},
{5, 1, 7, 8},
{6, 2, 9, 12},
{7, 2, 13, 16},
{8, 3, 17, 24},
{9, 3, 25, 32},
{10, 4, 33, 48},
{11, 4, 49, 64},
{12, 5, 65, 96},
{13, 5, 97, 128},
{14, 6, 129, 192},
{15, 6, 193, 256},
{16, 7, 257, 384},
{17, 7, 385, 512},
{18, 8, 513, 768},
{19, 8, 769, 1024},
{20, 9, 1025, 1536},
{21, 9, 1537, 2048},
{22, 10, 2049, 3072},
{23, 10, 3073, 4096},
{24, 11, 4097, 6144},
{25, 11, 6145, 8192},
{26, 12, 8193, 12288},
{27, 12, 12289, 16384},
{28, 13, 16385, 24576},
{29, 13, 24577, 32768},
};
/* ----------------------------------------------------------------------
* Deflate compression.
*/
#define SYMLIMIT 65536
#define SYMPFX_LITLEN 0x00000000U
#define SYMPFX_DIST 0x40000000U
#define SYMPFX_EXTRABITS 0x80000000U
#define SYMPFX_CODELEN 0xC0000000U
#define SYMPFX_MASK 0xC0000000U
#define SYM_EXTRABITS_MASK 0x3C000000U
#define SYM_EXTRABITS_SHIFT 26
struct huftrees {
unsigned char *len_litlen;
int *code_litlen;
unsigned char *len_dist;
int *code_dist;
unsigned char *len_codelen;
int *code_codelen;
};
struct deflate_compress_ctx {
struct LZ77Context *lzc;
unsigned char *outbuf;
int outlen, outsize;
unsigned long outbits;
int noutbits;
int firstblock;
unsigned long *syms;
int symstart, nsyms;
int type;
unsigned long checksum;
unsigned long datasize;
int lastblock;
int finished;
unsigned char static_len1[286], static_len2[30];
int static_code1[286], static_code2[30];
struct huftrees sht;
#ifdef STATISTICS
unsigned long bitcount;
#endif
};
static void outbits(deflate_compress_ctx *out,
unsigned long bits, int nbits)
{
assert(out->noutbits + nbits <= 32);
out->outbits |= bits << out->noutbits;
out->noutbits += nbits;
while (out->noutbits >= 8) {
if (out->outlen >= out->outsize) {
out->outsize = out->outlen + 64;
out->outbuf = sresize(out->outbuf, out->outsize, unsigned char);
}
out->outbuf[out->outlen++] = (unsigned char) (out->outbits & 0xFF);
out->outbits >>= 8;
out->noutbits -= 8;
}
#ifdef STATISTICS
out->bitcount += nbits;
#endif
}
/*
* Binary heap functions used by buildhuf(). Each one assumes the
* heap to be stored in an array of ints, with two ints per node
* (user data and key). They take in the old heap length, and
* return the new one.
*/
#define HEAPPARENT(x) (((x)-2)/4*2)
#define HEAPLEFT(x) ((x)*2+2)
#define HEAPRIGHT(x) ((x)*2+4)
static int addheap(int *heap, int len, int userdata, int key)
{
int me, dad, tmp;
me = len;
heap[len++] = userdata;
heap[len++] = key;
while (me > 0) {
dad = HEAPPARENT(me);
if (heap[me+1] < heap[dad+1]) {
tmp = heap[me]; heap[me] = heap[dad]; heap[dad] = tmp;
tmp = heap[me+1]; heap[me+1] = heap[dad+1]; heap[dad+1] = tmp;
me = dad;
} else
break;
}
return len;
}
static int rmheap(int *heap, int len, int *userdata, int *key)
{
int me, lc, rc, c, tmp;
len -= 2;
*userdata = heap[0];
*key = heap[1];
heap[0] = heap[len];
heap[1] = heap[len+1];
me = 0;
while (1) {
lc = HEAPLEFT(me);
rc = HEAPRIGHT(me);
if (lc >= len)
break;
else if (rc >= len || heap[lc+1] < heap[rc+1])
c = lc;
else
c = rc;
if (heap[me+1] > heap[c+1]) {
tmp = heap[me]; heap[me] = heap[c]; heap[c] = tmp;
tmp = heap[me+1]; heap[me+1] = heap[c+1]; heap[c+1] = tmp;
} else
break;
me = c;
}
return len;
}
/*
* The core of the Huffman algorithm: takes an input array of
* symbol frequencies, and produces an output array of code
* lengths.
*
* This is basically a generic Huffman implementation, but it has
* one zlib-related quirk which is that it caps the output code
* lengths to fit in an unsigned char (which is safe since Deflate
* will reject anything longer than 15 anyway). Anyone wanting to
* rip it out and use it in another context should find that easy
* to remove.
*/
#define HUFMAX 286
static void buildhuf(const int *freqs, unsigned char *lengths, int nsyms)
{
int parent[2*HUFMAX-1];
int length[2*HUFMAX-1];
int heap[2*HUFMAX];
int heapsize;
int i, j, n;
int si, sj;
assert(nsyms <= HUFMAX);
memset(parent, 0, sizeof(parent));
/*
* Begin by building the heap.
*/
heapsize = 0;
for (i = 0; i < nsyms; i++)
if (freqs[i] > 0) /* leave unused symbols out totally */
heapsize = addheap(heap, heapsize, i, freqs[i]);
/*
* Now repeatedly take two elements off the heap and merge
* them.
*/
n = HUFMAX;
while (heapsize > 2) {
heapsize = rmheap(heap, heapsize, &i, &si);
heapsize = rmheap(heap, heapsize, &j, &sj);
parent[i] = n;
parent[j] = n;
heapsize = addheap(heap, heapsize, n, si + sj);
n++;
}
/*
* Now we have our tree, in the form of a link from each node
* to the index of its parent. Count back down the tree to
* determine the code lengths.
*/
memset(length, 0, sizeof(length));
/* The tree root has length 0 after that, which is correct. */
for (i = n-1; i-- ;)
if (parent[i] > 0)
length[i] = 1 + length[parent[i]];
/*
* And that's it. (Simple, wasn't it?) Copy the lengths into
* the output array and leave.
*
* Here we cap lengths to fit in unsigned char.
*/
for (i = 0; i < nsyms; i++)
lengths[i] = (length[i] > 255 ? 255 : length[i]);
}
/*
* Wrapper around buildhuf() which enforces the Deflate restriction
* that no code length may exceed 15 bits, or 7 for the auxiliary
* code length alphabet. This function has the same calling
* semantics as buildhuf(), except that it might modify the freqs
* array.
*/
static void deflate_buildhuf(int *freqs, unsigned char *lengths,
int nsyms, int limit)
{
int smallestfreq, totalfreq, nactivesyms;
int num, denom, adjust;
int i;
int maxprob;
/*
* Nasty special case: if the frequency table has fewer than
* two non-zero elements, we must invent some, because we can't
* have fewer than one bit encoding a symbol.
*/
assert(nsyms >= 2);
{
int count = 0;
for (i = 0; i < nsyms; i++)
if (freqs[i] > 0)
count++;
if (count < 2) {
for (i = 0; i < nsyms && count > 0; i++)
if (freqs[i] == 0) {
freqs[i] = 1;
count--;
}
}
}
/*
* First, try building the Huffman table the normal way. If
* this works, it's optimal, so we don't want to mess with it.
*/
buildhuf(freqs, lengths, nsyms);
for (i = 0; i < nsyms; i++)
if (lengths[i] > limit)
break;
if (i == nsyms)
return; /* OK */
/*
* The Huffman algorithm can only ever generate a code length
* of N bits or more if there is a symbol whose probability is
* less than the reciprocal of the (N+2)th Fibonacci number
* (counting from F_0=0 and F_1=1), i.e. 1/2584 for N=16, or
* 1/55 for N=8. (This is a necessary though not sufficient
* condition.)
*
* Why is this? Well, consider the input symbol with the
* smallest probability. Let that probability be x. In order
* for this symbol to have a code length of at least 1, the
* Huffman algorithm will have to merge it with some other
* node; and since x is the smallest probability, the node it
* gets merged with must be at least x. Thus, the probability
* of the resulting combined node will be at least 2x. Now in
* order for our node to reach depth 2, this 2x-node must be
* merged again. But what with? We can't assume the node it
* merges with is at least 2x, because this one might only be
* the _second_ smallest remaining node. But we do know the
* node it merges with must be at least x, so our order-2
* internal node is at least 3x.
*
* How small a node can merge with _that_ to get an order-3
* internal node? Well, it must be at least 2x, because if it
* was smaller than that then it would have been one of the two
* smallest nodes in the previous step and been merged at that
* point. So at least 3x, plus at least 2x, comes to at least
* 5x for an order-3 node.
*
* And so it goes on: at every stage we must merge our current
* node with a node at least as big as the bigger of this one's
* two parents, and from this starting point that gives rise to
* the Fibonacci sequence. So we find that in order to have a
* node n levels deep (i.e. a maximum code length of n), the
* overall probability of the root of the entire tree must be
* at least F_{n+2} times the probability of the rarest symbol.
* In other words, since the overall probability is 1, it is a
* necessary condition for a code length of 16 or more that
* there must be at least one symbol with probability <=
* 1/F_18.
*
* (To demonstrate that a probability this big really can give
* rise to a code length of 16, consider the set of input
* frequencies { 1-epsilon, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
* 89, 144, 233, 377, 610, 987 }, for arbitrarily small
* epsilon.)
*
* So here buildhuf() has returned us an overlong code. So to
* ensure it doesn't do it again, we add a constant to all the
* (non-zero) symbol frequencies, causing them to become more
* balanced and removing the danger. We can then feed the
* results back to the standard buildhuf() and be
* assert()-level confident that the resulting code lengths
* contain nothing outside the permitted range.
*/
assert(limit == 15 || limit == 7);
maxprob = (limit == 15 ? 2584 : 55); /* no point in computing full F_n */
totalfreq = nactivesyms = 0;
smallestfreq = -1;
for (i = 0; i < nsyms; i++) {
if (freqs[i] == 0)
continue;
if (smallestfreq < 0 || smallestfreq > freqs[i])
smallestfreq = freqs[i];
totalfreq += freqs[i];
nactivesyms++;
}
assert(smallestfreq <= totalfreq / maxprob);
/*
* We want to find the smallest integer `adjust' such that
* (totalfreq + nactivesyms * adjust) / (smallestfreq +
* adjust) is less than maxprob. A bit of algebra tells us
* that the threshold value is equal to
*
* totalfreq - maxprob * smallestfreq
* ----------------------------------
* maxprob - nactivesyms
*
* rounded up, of course. And we'll only even be trying
* this if
*/
num = totalfreq - smallestfreq * maxprob;
denom = maxprob - nactivesyms;
adjust = (num + denom - 1) / denom;
/*
* Now add `adjust' to all the input symbol frequencies.
*/
for (i = 0; i < nsyms; i++)
if (freqs[i] != 0)
freqs[i] += adjust;
/*
* Rebuild the Huffman tree...
*/
buildhuf(freqs, lengths, nsyms);
/*
* ... and this time it ought to be OK.
*/
for (i = 0; i < nsyms; i++)
assert(lengths[i] <= limit);
}
/*
* Compute the bit length of a symbol, given the three Huffman
* trees.
*/
static int symsize(unsigned sym, const struct huftrees *trees)
{
unsigned basesym = sym &~ SYMPFX_MASK;
switch (sym & SYMPFX_MASK) {
case SYMPFX_LITLEN:
return trees->len_litlen[basesym];
case SYMPFX_DIST:
return trees->len_dist[basesym];
case SYMPFX_CODELEN:
return trees->len_codelen[basesym];
default /*case SYMPFX_EXTRABITS*/:
return basesym >> SYM_EXTRABITS_SHIFT;
}
}
/*
* Write out a single symbol, given the three Huffman trees.
*/
static void writesym(deflate_compress_ctx *out,
unsigned sym, const struct huftrees *trees)
{
unsigned basesym = sym &~ SYMPFX_MASK;
int i;
switch (sym & SYMPFX_MASK) {
case SYMPFX_LITLEN:
debug(("send: litlen %d\n", basesym));
outbits(out, trees->code_litlen[basesym], trees->len_litlen[basesym]);
break;
case SYMPFX_DIST:
debug(("send: dist %d\n", basesym));
outbits(out, trees->code_dist[basesym], trees->len_dist[basesym]);
break;
case SYMPFX_CODELEN:
debug(("send: codelen %d\n", basesym));
outbits(out, trees->code_codelen[basesym],trees->len_codelen[basesym]);
break;
case SYMPFX_EXTRABITS:
i = basesym >> SYM_EXTRABITS_SHIFT;
basesym &= ~SYM_EXTRABITS_MASK;
debug(("send: extrabits %d/%d\n", basesym, i));
outbits(out, basesym, i);
break;
}
}
/*
* outblock() must output _either_ a dynamic block of length
* `dynamic_len', _or_ a static block of length `static_len', but
* it gets to choose which.
*/
static void outblock(deflate_compress_ctx *out,
int dynamic_len, int static_len)
{
int freqs1[286], freqs2[30], freqs3[19];
unsigned char len1[286], len2[30], len3[19];
int code1[286], code2[30], code3[19];
int hlit, hdist, hclen, bfinal, btype;
int treesrc[286 + 30];
int treesyms[286 + 30];
int codelen[19];
int i, ntreesrc, ntreesyms;
int dynamic, blklen;
struct huftrees dht;
const struct huftrees *ht;
#ifdef STATISTICS
unsigned long bitcount_before;
#endif
dht.len_litlen = len1;
dht.len_dist = len2;
dht.len_codelen = len3;
dht.code_litlen = code1;
dht.code_dist = code2;
dht.code_codelen = code3;
/*
* We make our choice of block to output by doing all the
* detailed work to determine the exact length of each possible
* block. Then we choose the one which has fewest output bits
* per symbol.
*/
/*
* First build the two main Huffman trees for the dynamic
* block.
*/
/*
* Count up the frequency tables.
*/
memset(freqs1, 0, sizeof(freqs1));
memset(freqs2, 0, sizeof(freqs2));
freqs1[256] = 1; /* we're bound to need one EOB */
for (i = 0; i < dynamic_len; i++) {
unsigned sym = out->syms[(out->symstart + i) % SYMLIMIT];
/*
* Increment the occurrence counter for this symbol, if
* it's in one of the Huffman alphabets and isn't extra
* bits.
*/
if ((sym & SYMPFX_MASK) == SYMPFX_LITLEN) {
sym &= ~SYMPFX_MASK;
assert(sym < lenof(freqs1));
freqs1[sym]++;
} else if ((sym & SYMPFX_MASK) == SYMPFX_DIST) {
sym &= ~SYMPFX_MASK;
assert(sym < lenof(freqs2));
freqs2[sym]++;
}
}
deflate_buildhuf(freqs1, len1, lenof(freqs1), 15);
deflate_buildhuf(freqs2, len2, lenof(freqs2), 15);
hufcodes(len1, code1, lenof(freqs1));
hufcodes(len2, code2, lenof(freqs2));
/*
* Determine HLIT and HDIST.
*/
for (hlit = 286; hlit > 257 && len1[hlit-1] == 0; hlit--);
for (hdist = 30; hdist > 1 && len2[hdist-1] == 0; hdist--);
/*
* Write out the list of symbols used to transmit the
* trees.
*/
ntreesrc = 0;
for (i = 0; i < hlit; i++)
treesrc[ntreesrc++] = len1[i];
for (i = 0; i < hdist; i++)
treesrc[ntreesrc++] = len2[i];
ntreesyms = 0;
for (i = 0; i < ntreesrc ;) {
int j = 1;
int k;
/* Find length of run of the same length code. */
while (i+j < ntreesrc && treesrc[i+j] == treesrc[i])
j++;
/* Encode that run as economically as we can. */
k = j;
if (treesrc[i] == 0) {
/*
* Zero code length: we can output run codes for
* 3-138 zeroes. So if we have fewer than 3 zeroes,
* we just output literals. Otherwise, we output
* nothing but run codes, and tweak their lengths
* to make sure we aren't left with under 3 at the
* end.
*/
if (k < 3) {
while (k--)
treesyms[ntreesyms++] = 0 | SYMPFX_CODELEN;
} else {
while (k > 0) {
int rpt = (k < 138 ? k : 138);
if (rpt > k-3 && rpt < k)
rpt = k-3;
assert(rpt >= 3 && rpt <= 138);
if (rpt < 11) {
treesyms[ntreesyms++] = 17 | SYMPFX_CODELEN;
treesyms[ntreesyms++] =
(SYMPFX_EXTRABITS | (rpt - 3) |
(3 << SYM_EXTRABITS_SHIFT));
} else {
treesyms[ntreesyms++] = 18 | SYMPFX_CODELEN;
treesyms[ntreesyms++] =
(SYMPFX_EXTRABITS | (rpt - 11) |
(7 << SYM_EXTRABITS_SHIFT));
}
k -= rpt;
}
}
} else {
/*
* Non-zero code length: we must output the first
* one explicitly, then we can output a copy code
* for 3-6 repeats. So if we have fewer than 4
* repeats, we _just_ output literals. Otherwise,
* we output one literal plus at least one copy
* code, and tweak the copy codes to make sure we
* aren't left with under 3 at the end.
*/
assert(treesrc[i] < 16);
treesyms[ntreesyms++] = treesrc[i] | SYMPFX_CODELEN;
k--;
if (k < 3) {
while (k--)
treesyms[ntreesyms++] = treesrc[i] | SYMPFX_CODELEN;
} else {
while (k > 0) {
int rpt = (k < 6 ? k : 6);
if (rpt > k-3 && rpt < k)
rpt = k-3;
assert(rpt >= 3 && rpt <= 6);
treesyms[ntreesyms++] = 16 | SYMPFX_CODELEN;
treesyms[ntreesyms++] = (SYMPFX_EXTRABITS | (rpt - 3) |
(2 << SYM_EXTRABITS_SHIFT));
k -= rpt;
}
}
}
i += j;
}
assert((unsigned)ntreesyms < lenof(treesyms));
/*
* Count up the frequency table for the tree-transmission
* symbols, and build the auxiliary Huffman tree for that.
*/
memset(freqs3, 0, sizeof(freqs3));
for (i = 0; i < ntreesyms; i++) {
unsigned sym = treesyms[i];
/*
* Increment the occurrence counter for this symbol, if
* it's the Huffman alphabet and isn't extra bits.
*/
if ((sym & SYMPFX_MASK) == SYMPFX_CODELEN) {
sym &= ~SYMPFX_MASK;
assert(sym < lenof(freqs3));
freqs3[sym]++;
}
}
deflate_buildhuf(freqs3, len3, lenof(freqs3), 7);
hufcodes(len3, code3, lenof(freqs3));
/*
* Reorder the code length codes into transmission order, and
* determine HCLEN.
*/
for (i = 0; i < 19; i++)
codelen[i] = len3[lenlenmap[i]];
for (hclen = 19; hclen > 4 && codelen[hclen-1] == 0; hclen--);
/*
* Now work out the exact size of both the dynamic and the
* static block, in bits.
*/
{
int ssize, dsize;
/*
* First the dynamic block.
*/
dsize = 3 + 5 + 5 + 4; /* 3-bit header, HLIT, HDIST, HCLEN */
dsize += 3 * hclen; /* code-length-alphabet code lengths */
/* Code lengths */
for (i = 0; i < ntreesyms; i++)
dsize += symsize(treesyms[i], &dht);
/* The actual block data */
for (i = 0; i < dynamic_len; i++) {
unsigned sym = out->syms[(out->symstart + i) % SYMLIMIT];
dsize += symsize(sym, &dht);
}
/* And the end-of-data symbol. */
dsize += symsize(SYMPFX_LITLEN | 256, &dht);
/*
* Now the static block.
*/
ssize = 3; /* 3-bit block header */
/* The actual block data */
for (i = 0; i < static_len; i++) {
unsigned sym = out->syms[(out->symstart + i) % SYMLIMIT];
ssize += symsize(sym, &out->sht);
}
/* And the end-of-data symbol. */
ssize += symsize(SYMPFX_LITLEN | 256, &out->sht);
/*
* Compare the two and decide which to output. We break
* exact ties in favour of the static block, because of the
* special case in which that block has zero length.
*/
dynamic = ((double)ssize * dynamic_len > (double)dsize * static_len);
ht = dynamic ? &dht : &out->sht;
blklen = dynamic ? dynamic_len : static_len;
}
/*
* Actually transmit the block.
*/
/* 3-bit block header */
bfinal = (out->lastblock ? 1 : 0);
btype = dynamic ? 2 : 1;
debug(("send: bfinal=%d btype=%d\n", bfinal, btype));
outbits(out, bfinal, 1);
outbits(out, btype, 2);
#ifdef STATISTICS
bitcount_before = out->bitcount;
#endif
if (dynamic) {
/* HLIT, HDIST and HCLEN */
debug(("send: hlit=%d hdist=%d hclen=%d\n", hlit, hdist, hclen));
outbits(out, hlit - 257, 5);
outbits(out, hdist - 1, 5);
outbits(out, hclen - 4, 4);
/* Code lengths for the auxiliary tree */
for (i = 0; i < hclen; i++) {
debug(("send: lenlen %d\n", codelen[i]));
outbits(out, codelen[i], 3);
}
/* Code lengths for the literal/length and distance trees */
for (i = 0; i < ntreesyms; i++)
writesym(out, treesyms[i], ht);
#ifdef STATISTICS
fprintf(stderr, "total tree size %lu bits\n",
out->bitcount - bitcount_before);
#endif
}
/* Output the actual symbols from the buffer */
for (i = 0; i < blklen; i++) {
unsigned sym = out->syms[(out->symstart + i) % SYMLIMIT];
writesym(out, sym, ht);
}
/* Output the end-of-data symbol */
writesym(out, SYMPFX_LITLEN | 256, ht);
/*
* Remove all the just-output symbols from the symbol buffer by
* adjusting symstart and nsyms.
*/
out->symstart = (out->symstart + blklen) % SYMLIMIT;
out->nsyms -= blklen;
}
/*
* Give the approximate log-base-2 of an input integer, measured in
* 8ths of a bit. (I.e. this computes an integer approximation to
* 8*logbase2(x).)
*/
static int approxlog2(unsigned x)
{
int ret = 31*8;
/*
* Binary-search to get the top bit of x up to bit 31.
*/
if (x < 0x00010000U) x <<= 16, ret -= 16*8;
if (x < 0x01000000U) x <<= 8, ret -= 8*8;
if (x < 0x10000000U) x <<= 4, ret -= 4*8;
if (x < 0x40000000U) x <<= 2, ret -= 2*8;
if (x < 0x80000000U) x <<= 1, ret -= 1*8;
/*
* Now we know the logarithm we want is in [ret,ret+1).
* Determine the bottom three bits by checking against
* threshold values.
*
* (Each of these threshold values is 0x80000000 times an odd
* power of 2^(1/16). Therefore, this function rounds to
* nearest.)
*/
if (x <= 0xAD583EEAU) {
if (x <= 0x91C3D373U)
ret += (x <= 0x85AAC367U ? 0 : 1);
else
ret += (x <= 0x9EF53260U ? 2 : 3);
} else {
if (x <= 0xCE248C15U)
ret += (x <= 0xBD08A39FU ? 4 : 5);
else
ret += (x <= 0xE0CCDEECU ? 6 : x <= 0xF5257D15L ? 7 : 8);
}
return ret;
}
static void chooseblock(deflate_compress_ctx *out)
{
int freqs1[286], freqs2[30];
int i, len, bestlen, longestlen = 0;
int total1, total2;
int bestvfm;
memset(freqs1, 0, sizeof(freqs1));
memset(freqs2, 0, sizeof(freqs2));
freqs1[256] = 1; /* we're bound to need one EOB */
total1 = 1;
total2 = 0;
/*
* Iterate over all possible block lengths, computing the
* entropic coding approximation to the final length at every
* stage. We divide the result by the number of symbols
* encoded, to determine the `value for money' (overall
* bits-per-symbol count) of a block of that length.
*/
bestlen = -1;
bestvfm = 0;
len = 300 * 8; /* very approximate size of the Huffman trees */
for (i = 0; i < out->nsyms; i++) {
unsigned sym = out->syms[(out->symstart + i) % SYMLIMIT];
if (i > 0 && (sym & SYMPFX_MASK) == SYMPFX_LITLEN) {
/*
* This is a viable point at which to end the block.
* Compute the value for money.
*/
int vfm = i * 32768 / len; /* symbols encoded per bit */
if (bestlen < 0 || vfm > bestvfm) {
bestlen = i;
bestvfm = vfm;
}
longestlen = i;
}
/*
* Increment the occurrence counter for this symbol, if
* it's in one of the Huffman alphabets and isn't extra
* bits.
*/
if ((sym & SYMPFX_MASK) == SYMPFX_LITLEN) {
sym &= ~SYMPFX_MASK;
assert(sym < lenof(freqs1));
len += freqs1[sym] * approxlog2(freqs1[sym]);
len -= total1 * approxlog2(total1);
freqs1[sym]++;
total1++;
len -= freqs1[sym] * approxlog2(freqs1[sym]);
len += total1 * approxlog2(total1);
} else if ((sym & SYMPFX_MASK) == SYMPFX_DIST) {
sym &= ~SYMPFX_MASK;
assert(sym < lenof(freqs2));
len += freqs2[sym] * approxlog2(freqs2[sym]);
len -= total2 * approxlog2(total2);
freqs2[sym]++;
total2++;
len -= freqs2[sym] * approxlog2(freqs2[sym]);
len += total2 * approxlog2(total2);
} else if ((sym & SYMPFX_MASK) == SYMPFX_EXTRABITS) {
len += 8 * ((sym &~ SYMPFX_MASK) >> SYM_EXTRABITS_SHIFT);
}
}
assert(bestlen > 0);
outblock(out, bestlen, longestlen);
}
/*
* Force the current symbol buffer to be flushed out as a single
* block.
*/
static void flushblock(deflate_compress_ctx *out)
{
/*
* No need to check that out->nsyms is a valid block length: we
* know it has to be, because flushblock() is called in between
* two matches/literals.
*/
outblock(out, out->nsyms, out->nsyms);
assert(out->nsyms == 0);
}
/*
* Place a symbol into the symbols buffer.
*/
static void outsym(deflate_compress_ctx *out, unsigned long sym)
{
assert(out->nsyms < SYMLIMIT);
out->syms[(out->symstart + out->nsyms++) % SYMLIMIT] = sym;
if (out->nsyms == SYMLIMIT)
chooseblock(out);
}
static void literal(struct LZ77Context *ectx, unsigned char c)
{
deflate_compress_ctx *out = (deflate_compress_ctx *) ectx->userdata;
outsym(out, SYMPFX_LITLEN | c);
}
static void match(struct LZ77Context *ectx, int distance, int len)
{
const coderecord *d, *l;
int i, j, k;
deflate_compress_ctx *out = (deflate_compress_ctx *) ectx->userdata;
while (len > 0) {
int thislen;
/*
* We can transmit matches of lengths 3 through 258
* inclusive. So if len exceeds 258, we must transmit in
* several steps, with 258 or less in each step.
*
* Specifically: if len >= 261, we can transmit 258 and be
* sure of having at least 3 left for the next step. And if
* len <= 258, we can just transmit len. But if len == 259
* or 260, we must transmit len-3.
*/
thislen = (len > 260 ? 258 : len <= 258 ? len : len - 3);
len -= thislen;
/*
* Binary-search to find which length code we're
* transmitting.
*/
i = -1;
j = sizeof(lencodes) / sizeof(*lencodes);
while (1) {
assert(j - i >= 2);
k = (j + i) / 2;
if (thislen < lencodes[k].min)
j = k;
else if (thislen > lencodes[k].max)
i = k;
else {
l = &lencodes[k];
break; /* found it! */
}
}
/*
* Transmit the length code.
*/
outsym(out, SYMPFX_LITLEN | l->code);
/*
* Transmit the extra bits.
*/
if (l->extrabits) {
outsym(out, (SYMPFX_EXTRABITS | (thislen - l->min) |
(l->extrabits << SYM_EXTRABITS_SHIFT)));
}
/*
* Binary-search to find which distance code we're
* transmitting.
*/
i = -1;
j = sizeof(distcodes) / sizeof(*distcodes);
while (1) {
assert(j - i >= 2);
k = (j + i) / 2;
if (distance < distcodes[k].min)
j = k;
else if (distance > distcodes[k].max)
i = k;
else {
d = &distcodes[k];
break; /* found it! */
}
}
/*
* Write the distance code.
*/
outsym(out, SYMPFX_DIST | d->code);
/*
* Transmit the extra bits.
*/
if (d->extrabits) {
outsym(out, (SYMPFX_EXTRABITS | (distance - d->min) |
(d->extrabits << SYM_EXTRABITS_SHIFT)));
}
}
}
deflate_compress_ctx *deflate_compress_new(int type)
{
deflate_compress_ctx *out;
struct LZ77Context *ectx = snew(struct LZ77Context);
lz77_init(ectx);
ectx->literal = literal;
ectx->match = match;
out = snew(deflate_compress_ctx);
out->type = type;
out->outbits = out->noutbits = 0;
out->firstblock = TRUE;
#ifdef STATISTICS
out->bitcount = 0;
#endif
out->syms = snewn(SYMLIMIT, unsigned long);
out->symstart = out->nsyms = 0;
out->checksum = (type == DEFLATE_TYPE_ZLIB ? 1 : 0);
out->datasize = 0;
out->lastblock = FALSE;
out->finished = FALSE;
/*
* Build the static Huffman tables now, so we'll have them
* available every time outblock() is called.
*/
{
int i;
for (i = 0; i < lenof(out->static_len1); i++)
out->static_len1[i] = (i < 144 ? 8 :
i < 256 ? 9 :
i < 280 ? 7 : 8);
for (i = 0; i < lenof(out->static_len2); i++)
out->static_len2[i] = 5;
}
hufcodes(out->static_len1, out->static_code1, lenof(out->static_code1));
hufcodes(out->static_len2, out->static_code2, lenof(out->static_code2));
out->sht.len_litlen = out->static_len1;
out->sht.len_dist = out->static_len2;
out->sht.len_codelen = NULL;
out->sht.code_litlen = out->static_code1;
out->sht.code_dist = out->static_code2;
out->sht.code_codelen = NULL;
ectx->userdata = out;
out->lzc = ectx;
return out;
}
void deflate_compress_free(deflate_compress_ctx *out)
{
struct LZ77Context *ectx = out->lzc;
sfree(out->syms);
sfree(ectx->ictx);
sfree(ectx);
sfree(out);
}
void deflate_compress_data(deflate_compress_ctx *out,
const void *vblock, int len, int flushtype,
void **outblock, int *outlen)
{
struct LZ77Context *ectx = out->lzc;
const unsigned char *block = (const unsigned char *)vblock;
assert(!out->finished);
out->outbuf = NULL;
out->outlen = out->outsize = 0;
/*
* If this is the first block, output the header.
*/
if (out->firstblock) {
switch (out->type) {
case DEFLATE_TYPE_BARE:
break; /* no header */
case DEFLATE_TYPE_ZLIB:
/*
* zlib (RFC1950) header bytes: 78 9C. (Deflate
* compression, 32K window size, default algorithm.)
*/
outbits(out, 0x9C78, 16);
break;
case DEFLATE_TYPE_GZIP:
/*
* Minimal gzip (RFC1952) header:
*
* - basic header of 1F 8B
* - compression method byte (8 = deflate)
* - flags byte (zero: we use no optional features)
* - modification time (zero: no time stamp available)
* - extra flags byte (2: we use maximum compression
* always)
* - operating system byte (255: we do not specify)
*/
outbits(out, 0x00088B1F, 32); /* header, CM, flags */
outbits(out, 0, 32); /* mtime */
outbits(out, 0xFF02, 16); /* xflags, OS */
break;
}
out->firstblock = FALSE;
}
/*
* Feed our data to the LZ77 compression phase.
*/
lz77_compress(ectx, block, len, TRUE);
/*
* Update checksums and counters.
*/
switch (out->type) {
case DEFLATE_TYPE_ZLIB:
out->checksum = adler32_update(out->checksum, block, len);
break;
case DEFLATE_TYPE_GZIP:
out->checksum = crc32_update(out->checksum, block, len);
break;
}
out->datasize += len;
switch (flushtype) {
/*
* FIXME: what other flush types are available and useful?
* In PuTTY, it was clear that we generally wanted to be in
* a static block so it was safe to open one. Here, we
* probably prefer to be _outside_ a block if we can. Think
* about this.
*/
case DEFLATE_NO_FLUSH:
break; /* don't flush any data at all (duh) */
case DEFLATE_SYNC_FLUSH:
/*
* Close the current block.
*/
flushblock(out);
/*
* Then output an empty _uncompressed_ block: send 000,
* then sync to byte boundary, then send bytes 00 00 FF
* FF.
*/
outbits(out, 0, 3);
if (out->noutbits)
outbits(out, 0, 8 - out->noutbits);
outbits(out, 0, 16);
outbits(out, 0xFFFF, 16);
break;
case DEFLATE_END_OF_DATA:
/*
* Output a block with BFINAL set.
*/
out->lastblock = TRUE;
flushblock(out);
/*
* Sync to byte boundary, flushing out the final byte.
*/
if (out->noutbits)
outbits(out, 0, 8 - out->noutbits);
/*
* Format-specific trailer data.
*/
switch (out->type) {
case DEFLATE_TYPE_ZLIB:
/*
* Just write out the Adler32 checksum.
*/
outbits(out, (out->checksum >> 24) & 0xFF, 8);
outbits(out, (out->checksum >> 16) & 0xFF, 8);
outbits(out, (out->checksum >> 8) & 0xFF, 8);
outbits(out, (out->checksum >> 0) & 0xFF, 8);
break;
case DEFLATE_TYPE_GZIP:
/*
* Write out the CRC32 checksum and the data length.
*/
outbits(out, out->checksum, 32);
outbits(out, out->datasize, 32);
break;
}
out->finished = TRUE;
break;
}
/*
* Return any data that we've generated.
*/
*outblock = (void *)out->outbuf;
*outlen = out->outlen;
}
/* ----------------------------------------------------------------------
* Deflate decompression.
*/
/*
* The way we work the Huffman decode is to have a table lookup on
* the first N bits of the input stream (in the order they arrive,
* of course, i.e. the first bit of the Huffman code is in bit 0).
* Each table entry lists the number of bits to consume, plus
* either an output code or a pointer to a secondary table.
*/
struct table;
struct tableentry;
struct tableentry {
unsigned char nbits;
short code;
struct table *nexttable;
};
struct table {
int mask; /* mask applied to input bit stream */
struct tableentry *table;
};
#define MAXSYMS 288
#define DWINSIZE 32768
/*
* Build a single-level decode table for elements
* [minlength,maxlength) of the provided code/length tables, and
* recurse to build subtables.
*/
static struct table *mkonetab(int *codes, unsigned char *lengths, int nsyms,
int pfx, int pfxbits, int bits)
{
struct table *tab = snew(struct table);
int pfxmask = (1 << pfxbits) - 1;
int nbits, i, j, code;
tab->table = snewn(1 << bits, struct tableentry);
tab->mask = (1 << bits) - 1;
for (code = 0; code <= tab->mask; code++) {
tab->table[code].code = -1;
tab->table[code].nbits = 0;
tab->table[code].nexttable = NULL;
}
for (i = 0; i < nsyms; i++) {
if (lengths[i] <= pfxbits || (codes[i] & pfxmask) != pfx)
continue;
code = (codes[i] >> pfxbits) & tab->mask;
for (j = code; j <= tab->mask; j += 1 << (lengths[i] - pfxbits)) {
tab->table[j].code = i;
nbits = lengths[i] - pfxbits;
if (tab->table[j].nbits < nbits)
tab->table[j].nbits = nbits;
}
}
for (code = 0; code <= tab->mask; code++) {
if (tab->table[code].nbits <= bits)
continue;
/* Generate a subtable. */
tab->table[code].code = -1;
nbits = tab->table[code].nbits - bits;
if (nbits > 7)
nbits = 7;
tab->table[code].nbits = bits;
tab->table[code].nexttable = mkonetab(codes, lengths, nsyms,
pfx | (code << pfxbits),
pfxbits + bits, nbits);
}
return tab;
}
/*
* Build a decode table, given a set of Huffman tree lengths.
*/
static struct table *mktable(unsigned char *lengths, int nlengths,
#ifdef ANALYSIS
const char *alphabet,
#endif
int *error)
{
int codes[MAXSYMS];
int maxlen;
#ifdef ANALYSIS
if (alphabet && analyse_level > 1) {
int i, col = 0;
printf("code lengths for %s alphabet:\n", alphabet);
for (i = 0; i < nlengths; i++) {
col += printf("%3d", lengths[i]);
if (col > 72) {
putchar('\n');
col = 0;
}
}
if (col > 0)
putchar('\n');
}
#endif
maxlen = hufcodes(lengths, codes, nlengths);
if (maxlen < 0) {
*error = (maxlen == -1 ? DEFLATE_ERR_LARGE_HUFTABLE :
DEFLATE_ERR_SMALL_HUFTABLE);
return NULL;
}
/*
* Now we have the complete list of Huffman codes. Build a
* table.
*/
return mkonetab(codes, lengths, nlengths, 0, 0, maxlen < 9 ? maxlen : 9);
}
static int freetable(struct table **ztab)
{
struct table *tab;
int code;
if (ztab == NULL)
return -1;
if (*ztab == NULL)
return 0;
tab = *ztab;
for (code = 0; code <= tab->mask; code++)
if (tab->table[code].nexttable != NULL)
freetable(&tab->table[code].nexttable);
sfree(tab->table);
tab->table = NULL;
sfree(tab);
*ztab = NULL;
return (0);
}
struct deflate_decompress_ctx {
struct table *staticlentable, *staticdisttable;
struct table *currlentable, *currdisttable, *lenlentable;
enum {
ZLIBSTART,
GZIPSTART, GZIPMETHFLAGS, GZIPIGNORE1, GZIPIGNORE2, GZIPIGNORE3,
GZIPEXTRA, GZIPFNAME, GZIPCOMMENT,
OUTSIDEBLK, TREES_HDR, TREES_LENLEN, TREES_LEN, TREES_LENREP,
INBLK, GOTLENSYM, GOTLEN, GOTDISTSYM,
UNCOMP_LEN, UNCOMP_NLEN, UNCOMP_DATA,
END,
ADLER1, ADLER2,
CRC1, CRC2, ILEN1, ILEN2,
FINALSPIN
} state;
int sym, hlit, hdist, hclen, lenptr, lenextrabits, lenaddon, len,
lenrep, lastblock;
int uncomplen;
unsigned char lenlen[19];
unsigned char lengths[286 + 32];
unsigned long bits;
int nbits;
unsigned char window[DWINSIZE];
int winpos;
unsigned char *outblk;
int outlen, outsize;
int type;
unsigned long checksum;
unsigned long bytesout;
int gzflags, gzextralen;
#ifdef ANALYSIS
int bytesread;
int bitcount_before;
#define BITCOUNT(dctx) ( (dctx)->bytesread * 8 - (dctx)->nbits )
#endif
};
deflate_decompress_ctx *deflate_decompress_new(int type)
{
deflate_decompress_ctx *dctx = snew(deflate_decompress_ctx);
unsigned char lengths[288];
memset(lengths, 8, 144);
memset(lengths + 144, 9, 256 - 144);
memset(lengths + 256, 7, 280 - 256);
memset(lengths + 280, 8, 288 - 280);
dctx->staticlentable = mktable(lengths, 288,
#ifdef ANALYSIS
NULL,
#endif
NULL);
assert(dctx->staticlentable);
memset(lengths, 5, 32);
dctx->staticdisttable = mktable(lengths, 32,
#ifdef ANALYSIS
NULL,
#endif
NULL);
assert(dctx->staticdisttable);
dctx->state = (type == DEFLATE_TYPE_ZLIB ? ZLIBSTART :
type == DEFLATE_TYPE_GZIP ? GZIPSTART :
OUTSIDEBLK);
dctx->currlentable = dctx->currdisttable = dctx->lenlentable = NULL;
dctx->bits = 0;
dctx->nbits = 0;
dctx->winpos = 0;
dctx->type = type;
dctx->lastblock = FALSE;
dctx->checksum = (type == DEFLATE_TYPE_ZLIB ? 1 : 0);
dctx->bytesout = 0;
dctx->gzflags = dctx->gzextralen = 0;
#ifdef ANALYSIS
dctx->bytesread = dctx->bitcount_before = 0;
#endif
return dctx;
}
void deflate_decompress_free(deflate_decompress_ctx *dctx)
{
if (dctx->currlentable && dctx->currlentable != dctx->staticlentable)
freetable(&dctx->currlentable);
if (dctx->currdisttable && dctx->currdisttable != dctx->staticdisttable)
freetable(&dctx->currdisttable);
if (dctx->lenlentable)
freetable(&dctx->lenlentable);
freetable(&dctx->staticlentable);
freetable(&dctx->staticdisttable);
sfree(dctx);
}
static int huflookup(unsigned long *bitsp, int *nbitsp, struct table *tab)
{
unsigned long bits = *bitsp;
int nbits = *nbitsp;
while (1) {
struct tableentry *ent;
ent = &tab->table[bits & tab->mask];
if (ent->nbits > nbits)
return -1; /* not enough data */
bits >>= ent->nbits;
nbits -= ent->nbits;
if (ent->code == -1)
tab = ent->nexttable;
else {
*bitsp = bits;
*nbitsp = nbits;
return ent->code;
}
/*
* If we reach here with `tab' null, it can only be because
* there was a missing entry in the Huffman table. This
* should never occur even with invalid input data, because
* we enforce at mktable time that the Huffman codes should
* precisely cover the code space; so we can enforce this
* by assertion.
*/
assert(tab);
}
}
static void emit_char(deflate_decompress_ctx *dctx, int c)
{
dctx->window[dctx->winpos] = c;
dctx->winpos = (dctx->winpos + 1) & (DWINSIZE - 1);
if (dctx->outlen >= dctx->outsize) {
dctx->outsize = dctx->outlen * 3 / 2 + 512;
dctx->outblk = sresize(dctx->outblk, dctx->outsize, unsigned char);
}
if (dctx->type == DEFLATE_TYPE_ZLIB) {
unsigned char uc = c;
dctx->checksum = adler32_update(dctx->checksum, &uc, 1);
} else if (dctx->type == DEFLATE_TYPE_GZIP) {
unsigned char uc = c;
dctx->checksum = crc32_update(dctx->checksum, &uc, 1);
}
dctx->outblk[dctx->outlen++] = c;
dctx->bytesout++;
}
#define EATBITS(n) ( dctx->nbits -= (n), dctx->bits >>= (n) )
int deflate_decompress_data(deflate_decompress_ctx *dctx,
const void *vblock, int len,
void **outblock, int *outlen)
{
const coderecord *rec;
const unsigned char *block = (const unsigned char *)vblock;
int code, bfinal, btype, rep, dist, nlen, header, cksum;
int error = 0;
if (len == 0) {
*outblock = NULL;
*outlen = 0;
if (dctx->state != FINALSPIN)
return DEFLATE_ERR_UNEXPECTED_EOF;
else
return 0;
}
dctx->outblk = NULL;
dctx->outsize = 0;
dctx->outlen = 0;
while (len > 0 || dctx->nbits > 0) {
while (dctx->nbits < 24 && len > 0) {
dctx->bits |= (*block++) << dctx->nbits;
dctx->nbits += 8;
len--;
#ifdef ANALYSIS
dctx->bytesread++;
#endif
}
switch (dctx->state) {
case ZLIBSTART:
/* Expect 16-bit zlib header. */
if (dctx->nbits < 16)
goto finished; /* done all we can */
/*
* The header is stored as a big-endian 16-bit integer,
* in contrast to the general little-endian policy in
* the rest of the format :-(
*/
header = (((dctx->bits & 0xFF00) >> 8) |
((dctx->bits & 0x00FF) << 8));
EATBITS(16);
/*
* Check the header:
*
* - bits 8-11 should be 1000 (Deflate/RFC1951)
* - bits 12-15 should be at most 0111 (window size)
* - bit 5 should be zero (no dictionary present)
* - we don't care about bits 6-7 (compression rate)
* - bits 0-4 should be set up to make the whole thing
* a multiple of 31 (checksum).
*/
if ((header & 0xF000) > 0x7000 ||
(header & 0x0020) != 0x0000 ||
(header % 31) != 0) {
error = DEFLATE_ERR_ZLIB_HEADER;
goto finished;
}
if ((header & 0x0F00) != 0x0800) {
error = DEFLATE_ERR_ZLIB_WRONGCOMP;
goto finished;
}
dctx->state = OUTSIDEBLK;
break;
case GZIPSTART:
/* Expect 16-bit gzip header. */
if (dctx->nbits < 16)
goto finished;
header = dctx->bits & 0xFFFF;
EATBITS(16);
if (header != 0x8B1F) {
error = DEFLATE_ERR_GZIP_HEADER;
goto finished;
}
dctx->state = GZIPMETHFLAGS;
break;
case GZIPMETHFLAGS:
/* Expect gzip compression method and flags bytes. */
if (dctx->nbits < 16)
goto finished;
header = dctx->bits & 0xFF;
EATBITS(8);
if (header != 8) {
error = DEFLATE_ERR_GZIP_WRONGCOMP;
goto finished;
}
dctx->gzflags = dctx->bits & 0xFF;
if (dctx->gzflags & 2) {
/*
* The FHCRC flag is slightly confusing. RFC1952
* documents it as indicating the presence of a
* two-byte CRC16 of the gzip header, occurring
* just before the beginning of the Deflate stream.
* However, gzip itself (as of 1.3.5) appears to
* believe it indicates that the current gzip
* `member' is not the final one, i.e. that the
* stream is composed of multiple gzip members
* concatenated together, and furthermore gzip will
* refuse to decode any file that has it set.
*
* For this reason, I label it as `disputed' and
* also refuse to decode anything that has it set.
* I don't expect this to be a problem in practice.
*/
error = DEFLATE_ERR_GZIP_FHCRC;
goto finished;
}
EATBITS(8);
dctx->state = GZIPIGNORE1;
break;
case GZIPIGNORE1:
case GZIPIGNORE2:
case GZIPIGNORE3:
/* Expect two bytes of gzip timestamp/XFL/OS, which we ignore. */
if (dctx->nbits < 16)
goto finished;
EATBITS(16);
if (dctx->state == GZIPIGNORE3) {
dctx->state = GZIPEXTRA;
} else
dctx->state++; /* maps IGNORE1 -> IGNORE2 -> IGNORE3 */
break;
case GZIPEXTRA:
if (dctx->gzflags & 4) {
/* Expect two bytes of extra-length count, then that many
* extra bytes of header data, all of which we ignore. */
if (!dctx->gzextralen) {
if (dctx->nbits < 16)
goto finished;
dctx->gzextralen = dctx->bits & 0xFFFF;
EATBITS(16);
break;
} else if (dctx->gzextralen > 0) {
if (dctx->nbits < 8)
goto finished;
EATBITS(8);
if (--dctx->gzextralen > 0)
break;
}
}
dctx->state = GZIPFNAME;
break;
case GZIPFNAME:
if (dctx->gzflags & 8) {
/*
* Expect a NUL-terminated filename.
*/
if (dctx->nbits < 8)
goto finished;
code = dctx->bits & 0xFF;
EATBITS(8);
} else
code = 0;
if (code == 0)
dctx->state = GZIPCOMMENT;
break;
case GZIPCOMMENT:
if (dctx->gzflags & 16) {
/*
* Expect a NUL-terminated filename.
*/
if (dctx->nbits < 8)
goto finished;
code = dctx->bits & 0xFF;
EATBITS(8);
} else
code = 0;
if (code == 0)
dctx->state = OUTSIDEBLK;
break;
case OUTSIDEBLK:
/* Expect 3-bit block header. */
if (dctx->nbits < 3)
goto finished; /* done all we can */
bfinal = dctx->bits & 1;
if (bfinal)
dctx->lastblock = TRUE;
EATBITS(1);
btype = dctx->bits & 3;
EATBITS(2);
if (btype == 0) {
int to_eat = dctx->nbits & 7;
dctx->state = UNCOMP_LEN;
EATBITS(to_eat); /* align to byte boundary */
} else if (btype == 1) {
dctx->currlentable = dctx->staticlentable;
dctx->currdisttable = dctx->staticdisttable;
dctx->state = INBLK;
} else if (btype == 2) {
dctx->state = TREES_HDR;
}
debug(("recv: bfinal=%d btype=%d\n", bfinal, btype));
#ifdef ANALYSIS
if (analyse_level > 1) {
static const char *const btypes[] = {
"uncompressed", "static", "dynamic", "type 3 (unknown)"
};
printf("new block, %sfinal, %s\n",
bfinal ? "" : "not ",
btypes[btype]);
}
#endif
break;
case TREES_HDR:
/*
* Dynamic block header. Five bits of HLIT, five of
* HDIST, four of HCLEN.
*/
if (dctx->nbits < 5 + 5 + 4)
goto finished; /* done all we can */
dctx->hlit = 257 + (dctx->bits & 31);
EATBITS(5);
dctx->hdist = 1 + (dctx->bits & 31);
EATBITS(5);
dctx->hclen = 4 + (dctx->bits & 15);
EATBITS(4);
debug(("recv: hlit=%d hdist=%d hclen=%d\n", dctx->hlit,
dctx->hdist, dctx->hclen));
#ifdef ANALYSIS
if (analyse_level > 1)
printf("hlit=%d, hdist=%d, hclen=%d\n",
dctx->hlit, dctx->hdist, dctx->hclen);
#endif
dctx->lenptr = 0;
dctx->state = TREES_LENLEN;
memset(dctx->lenlen, 0, sizeof(dctx->lenlen));
break;
case TREES_LENLEN:
if (dctx->nbits < 3)
goto finished;
while (dctx->lenptr < dctx->hclen && dctx->nbits >= 3) {
dctx->lenlen[lenlenmap[dctx->lenptr++]] =
(unsigned char) (dctx->bits & 7);
debug(("recv: lenlen %d\n", (unsigned char) (dctx->bits & 7)));
EATBITS(3);
}
if (dctx->lenptr == dctx->hclen) {
dctx->lenlentable = mktable(dctx->lenlen, 19,
#ifdef ANALYSIS
"code length",
#endif
&error);
if (!dctx->lenlentable)
goto finished; /* error code set up by mktable */
dctx->state = TREES_LEN;
dctx->lenptr = 0;
}
break;
case TREES_LEN:
if (dctx->lenptr >= dctx->hlit + dctx->hdist) {
dctx->currlentable = mktable(dctx->lengths, dctx->hlit,
#ifdef ANALYSIS
"literal/length",
#endif
&error);
if (!dctx->currlentable)
goto finished; /* error code set up by mktable */
dctx->currdisttable = mktable(dctx->lengths + dctx->hlit,
dctx->hdist,
#ifdef ANALYSIS
"distance",
#endif
&error);
if (!dctx->currdisttable)
goto finished; /* error code set up by mktable */
freetable(&dctx->lenlentable);
dctx->lenlentable = NULL;
dctx->state = INBLK;
break;
}
code = huflookup(&dctx->bits, &dctx->nbits, dctx->lenlentable);
debug(("recv: codelen %d\n", code));
if (code == -1)
goto finished;
if (code < 16) {
#ifdef ANALYSIS
if (analyse_level > 1)
printf("code-length %d\n", code);
#endif
dctx->lengths[dctx->lenptr++] = code;
} else {
dctx->lenextrabits = (code == 16 ? 2 : code == 17 ? 3 : 7);
dctx->lenaddon = (code == 18 ? 11 : 3);
dctx->lenrep = (code == 16 && dctx->lenptr > 0 ?
dctx->lengths[dctx->lenptr - 1] : 0);
dctx->state = TREES_LENREP;
}
break;
case TREES_LENREP:
if (dctx->nbits < dctx->lenextrabits)
goto finished;
rep =
dctx->lenaddon +
(dctx->bits & ((1 << dctx->lenextrabits) - 1));
EATBITS(dctx->lenextrabits);
if (dctx->lenextrabits)
debug(("recv: codelen-extrabits %d/%d\n", rep - dctx->lenaddon,
dctx->lenextrabits));
#ifdef ANALYSIS
if (analyse_level > 1)
printf("code-length-repeat: %d copies of %d\n", rep,
dctx->lenrep);
#endif
while (rep > 0 && dctx->lenptr < dctx->hlit + dctx->hdist) {
dctx->lengths[dctx->lenptr] = dctx->lenrep;
dctx->lenptr++;
rep--;
}
dctx->state = TREES_LEN;
break;
case INBLK:
#ifdef ANALYSIS
dctx->bitcount_before = BITCOUNT(dctx);
#endif
code = huflookup(&dctx->bits, &dctx->nbits, dctx->currlentable);
debug(("recv: litlen %d\n", code));
if (code == -1)
goto finished;
if (code < 256) {
#ifdef ANALYSIS
if (analyse_level > 0)
printf("%lu: literal %d [%d]\n", dctx->bytesout, code,
BITCOUNT(dctx) - dctx->bitcount_before);
#endif
emit_char(dctx, code);
} else if (code == 256) {
if (dctx->lastblock)
dctx->state = END;
else
dctx->state = OUTSIDEBLK;
if (dctx->currlentable != dctx->staticlentable) {
freetable(&dctx->currlentable);
dctx->currlentable = NULL;
}
if (dctx->currdisttable != dctx->staticdisttable) {
freetable(&dctx->currdisttable);
dctx->currdisttable = NULL;
}
} else if (code < 286) { /* static tree can give >285; ignore */
dctx->state = GOTLENSYM;
dctx->sym = code;
}
break;
case GOTLENSYM:
rec = &lencodes[dctx->sym - 257];
if (dctx->nbits < rec->extrabits)
goto finished;
dctx->len =
rec->min + (dctx->bits & ((1 << rec->extrabits) - 1));
if (rec->extrabits)
debug(("recv: litlen-extrabits %d/%d\n",
dctx->len - rec->min, rec->extrabits));
EATBITS(rec->extrabits);
dctx->state = GOTLEN;
break;
case GOTLEN:
code = huflookup(&dctx->bits, &dctx->nbits, dctx->currdisttable);
debug(("recv: dist %d\n", code));
if (code == -1)
goto finished;
dctx->state = GOTDISTSYM;
dctx->sym = code;
break;
case GOTDISTSYM:
rec = &distcodes[dctx->sym];
if (dctx->nbits < rec->extrabits)
goto finished;
dist = rec->min + (dctx->bits & ((1 << rec->extrabits) - 1));
if (rec->extrabits)
debug(("recv: dist-extrabits %d/%d\n",
dist - rec->min, rec->extrabits));
EATBITS(rec->extrabits);
dctx->state = INBLK;
#ifdef ANALYSIS
if (analyse_level > 0)
printf("%lu: copy len=%d dist=%d [%d]\n", dctx->bytesout,
dctx->len, dist,
BITCOUNT(dctx) - dctx->bitcount_before);
#endif
while (dctx->len--)
emit_char(dctx, dctx->window[(dctx->winpos - dist) &
(DWINSIZE - 1)]);
break;
case UNCOMP_LEN:
/*
* Uncompressed block. We expect to see a 16-bit LEN.
*/
if (dctx->nbits < 16)
goto finished;
dctx->uncomplen = dctx->bits & 0xFFFF;
EATBITS(16);
dctx->state = UNCOMP_NLEN;
break;
case UNCOMP_NLEN:
/*
* Uncompressed block. We expect to see a 16-bit NLEN,
* which should be the one's complement of the previous
* LEN.
*/
if (dctx->nbits < 16)
goto finished;
nlen = dctx->bits & 0xFFFF;
EATBITS(16);
if (dctx->uncomplen == 0)
dctx->state = OUTSIDEBLK; /* block is empty */
else
dctx->state = UNCOMP_DATA;
break;
case UNCOMP_DATA:
if (dctx->nbits < 8)
goto finished;
#ifdef ANALYSIS
if (analyse_level > 0)
printf("%lu: uncompressed %d [8]\n", dctx->bytesout,
(int)(dctx->bits & 0xFF));
#endif
emit_char(dctx, dctx->bits & 0xFF);
EATBITS(8);
if (--dctx->uncomplen == 0)
dctx->state = OUTSIDEBLK; /* end of uncompressed block */
break;
case END:
/*
* End of compressed data. We align to a byte boundary,
* and then look for format-specific trailer data.
*/
{
int to_eat = dctx->nbits & 7;
EATBITS(to_eat);
}
if (dctx->type == DEFLATE_TYPE_ZLIB)
dctx->state = ADLER1;
else if (dctx->type == DEFLATE_TYPE_GZIP)
dctx->state = CRC1;
else
dctx->state = FINALSPIN;
break;
case ADLER1:
if (dctx->nbits < 16)
goto finished;
cksum = (dctx->bits & 0xFF) << 8;
EATBITS(8);
cksum |= (dctx->bits & 0xFF);
EATBITS(8);
if (cksum != ((dctx->checksum >> 16) & 0xFFFF)) {
error = DEFLATE_ERR_CHECKSUM;
goto finished;
}
dctx->state = ADLER2;
break;
case ADLER2:
if (dctx->nbits < 16)
goto finished;
cksum = (dctx->bits & 0xFF) << 8;
EATBITS(8);
cksum |= (dctx->bits & 0xFF);
EATBITS(8);
if (cksum != (dctx->checksum & 0xFFFF)) {
error = DEFLATE_ERR_CHECKSUM;
goto finished;
}
dctx->state = FINALSPIN;
break;
case CRC1:
if (dctx->nbits < 16)
goto finished;
cksum = dctx->bits & 0xFFFF;
EATBITS(16);
if (cksum != (dctx->checksum & 0xFFFF)) {
error = DEFLATE_ERR_CHECKSUM;
goto finished;
}
dctx->state = CRC2;
break;
case CRC2:
if (dctx->nbits < 16)
goto finished;
cksum = dctx->bits & 0xFFFF;
EATBITS(16);
if (cksum != ((dctx->checksum >> 16) & 0xFFFF)) {
error = DEFLATE_ERR_CHECKSUM;
goto finished;
}
dctx->state = ILEN1;
break;
case ILEN1:
if (dctx->nbits < 16)
goto finished;
cksum = dctx->bits & 0xFFFF;
EATBITS(16);
if (cksum != (dctx->bytesout & 0xFFFF)) {
error = DEFLATE_ERR_INLEN;
goto finished;
}
dctx->state = ILEN2;
break;
case ILEN2:
if (dctx->nbits < 16)
goto finished;
cksum = dctx->bits & 0xFFFF;
EATBITS(16);
if (cksum != ((dctx->bytesout >> 16) & 0xFFFF)) {
error = DEFLATE_ERR_INLEN;
goto finished;
}
dctx->state = FINALSPIN;
break;
case FINALSPIN:
/* Just ignore any trailing garbage on the data stream. */
/* (We could alternatively throw an error here, if we wanted
* to detect and complain about trailing garbage.) */
EATBITS(dctx->nbits);
break;
}
}
finished:
*outblock = dctx->outblk;
*outlen = dctx->outlen;
return error;
}
#define A(code,str) str
const char *const deflate_error_msg[DEFLATE_NUM_ERRORS] = {
DEFLATE_ERRORLIST(A)
};
#undef A
#define A(code,str) #code
const char *const deflate_error_sym[DEFLATE_NUM_ERRORS] = {
DEFLATE_ERRORLIST(A)
};
#undef A
#ifdef STANDALONE
int main(int argc, char **argv)
{
unsigned char buf[65536];
void *outbuf;
int ret, err, outlen;
deflate_decompress_ctx *dhandle;
deflate_compress_ctx *chandle;
int type = DEFLATE_TYPE_ZLIB, opts = TRUE;
int compress = FALSE, decompress = FALSE;
int got_arg = FALSE;
char *filename = NULL;
FILE *fp;
while (--argc) {
char *p = *++argv;
got_arg = TRUE;
if (p[0] == '-' && opts) {
if (!strcmp(p, "-b"))
type = DEFLATE_TYPE_BARE;
else if (!strcmp(p, "-g"))
type = DEFLATE_TYPE_GZIP;
else if (!strcmp(p, "-c"))
compress = TRUE;
else if (!strcmp(p, "-d"))
decompress = TRUE;
else if (!strcmp(p, "-a"))
analyse_level++, decompress = TRUE;
else if (!strcmp(p, "--"))
opts = FALSE; /* next thing is filename */
else {
fprintf(stderr, "unknown command line option '%s'\n", p);
return 1;
}
} else if (!filename) {
filename = p;
} else {
fprintf(stderr, "can only handle one filename\n");
return 1;
}
}
if (!compress && !decompress) {
fprintf(stderr, "usage: deflate [ -c | -d | -a ] [ -b | -g ]"
" [filename]\n");
return (got_arg ? 1 : 0);
}
if (compress && decompress) {
fprintf(stderr, "please do not specify both compression and"
" decompression\n");
return (got_arg ? 1 : 0);
}
if (compress) {
chandle = deflate_compress_new(type);
dhandle = NULL;
} else {
dhandle = deflate_decompress_new(type);
chandle = NULL;
}
if (filename)
fp = fopen(filename, "rb");
else
fp = stdin;
if (!fp) {
assert(filename);
fprintf(stderr, "unable to open '%s'\n", filename);
return 1;
}
do {
ret = fread(buf, 1, sizeof(buf), fp);
outbuf = NULL;
if (dhandle) {
if (ret > 0)
err = deflate_decompress_data(dhandle, buf, ret,
(void **)&outbuf, &outlen);
else
err = deflate_decompress_data(dhandle, NULL, 0,
(void **)&outbuf, &outlen);
} else {
if (ret > 0)
deflate_compress_data(chandle, buf, ret, DEFLATE_NO_FLUSH,
(void **)&outbuf, &outlen);
else
deflate_compress_data(chandle, buf, ret, DEFLATE_END_OF_DATA,
(void **)&outbuf, &outlen);
err = 0;
}
if (outbuf) {
if (!analyse_level && outlen)
fwrite(outbuf, 1, outlen, stdout);
sfree(outbuf);
}
if (err > 0) {
fprintf(stderr, "decoding error: %s\n", deflate_error_msg[err]);
return 1;
}
} while (ret > 0);
if (dhandle)
deflate_decompress_free(dhandle);
if (chandle)
deflate_compress_free(chandle);
if (filename)
fclose(fp);
return 0;
}
#endif
#ifdef TESTMODE
int main(int argc, char **argv)
{
char *filename = NULL;
FILE *fp;
deflate_compress_ctx *chandle;
deflate_decompress_ctx *dhandle;
unsigned char buf[65536], *outbuf, *outbuf2;
int ret, err, outlen, outlen2;
int dlen = 0, clen = 0;
int opts = TRUE;
while (--argc) {
char *p = *++argv;
if (p[0] == '-' && opts) {
if (!strcmp(p, "--"))
opts = FALSE; /* next thing is filename */
else {
fprintf(stderr, "unknown command line option '%s'\n", p);
return 1;
}
} else if (!filename) {
filename = p;
} else {
fprintf(stderr, "can only handle one filename\n");
return 1;
}
}
if (filename)
fp = fopen(filename, "rb");
else
fp = stdin;
if (!fp) {
assert(filename);
fprintf(stderr, "unable to open '%s'\n", filename);
return 1;
}
chandle = deflate_compress_new(DEFLATE_TYPE_ZLIB);
dhandle = deflate_decompress_new(DEFLATE_TYPE_ZLIB);
do {
ret = fread(buf, 1, sizeof(buf), fp);
if (ret <= 0) {
deflate_compress_data(chandle, NULL, 0, DEFLATE_END_OF_DATA,
(void **)&outbuf, &outlen);
} else {
dlen += ret;
deflate_compress_data(chandle, buf, ret, DEFLATE_NO_FLUSH,
(void **)&outbuf, &outlen);
}
if (outbuf) {
clen += outlen;
err = deflate_decompress_data(dhandle, outbuf, outlen,
(void **)&outbuf2, &outlen2);
sfree(outbuf);
if (outbuf2) {
if (outlen2)
fwrite(outbuf2, 1, outlen2, stdout);
sfree(outbuf2);
}
if (!err && ret <= 0) {
/*
* signal EOF
*/
err = deflate_decompress_data(dhandle, NULL, 0,
(void **)&outbuf2, &outlen2);
assert(outbuf2 == NULL);
}
if (err) {
fprintf(stderr, "decoding error: %s\n",
deflate_error_msg[err]);
return 1;
}
}
} while (ret > 0);
fprintf(stderr, "%d plaintext -> %d compressed\n", dlen, clen);
return 0;
}
#endif
|