1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
/*
* misc.c: miscellaneous useful items
*/
#include <stdarg.h>
#include "halibut.h"
char *adv(char *s) {
return s + 1 + strlen(s);
}
struct stackTag {
void **data;
int sp;
int size;
};
stack stk_new(void) {
stack s;
s = snew(struct stackTag);
s->sp = 0;
s->size = 0;
s->data = NULL;
return s;
}
void stk_free(stack s) {
sfree(s->data);
sfree(s);
}
void stk_push(stack s, void *item) {
if (s->size <= s->sp) {
s->size = s->sp + 32;
s->data = sresize(s->data, s->size, void *);
}
s->data[s->sp++] = item;
}
void *stk_pop(stack s) {
if (s->sp > 0)
return s->data[--s->sp];
else
return NULL;
}
void *stk_top(stack s) {
if (s->sp > 0)
return s->data[s->sp-1];
else
return NULL;
}
/*
* Small routines to amalgamate a string from an input source.
*/
const rdstring empty_rdstring = {0, 0, NULL};
const rdstringc empty_rdstringc = {0, 0, NULL};
void rdadd(rdstring *rs, wchar_t c) {
if (rs->pos >= rs->size-1) {
rs->size = rs->pos + 128;
rs->text = sresize(rs->text, rs->size, wchar_t);
}
rs->text[rs->pos++] = c;
rs->text[rs->pos] = 0;
}
void rdadds(rdstring *rs, wchar_t const *p) {
int len = ustrlen(p);
if (rs->pos >= rs->size - len) {
rs->size = rs->pos + len + 128;
rs->text = sresize(rs->text, rs->size, wchar_t);
}
ustrcpy(rs->text + rs->pos, p);
rs->pos += len;
}
wchar_t *rdtrim(rdstring *rs) {
rs->text = sresize(rs->text, rs->pos + 1, wchar_t);
return rs->text;
}
void rdaddc(rdstringc *rs, char c) {
if (rs->pos >= rs->size-1) {
rs->size = rs->pos + 128;
rs->text = sresize(rs->text, rs->size, char);
}
rs->text[rs->pos++] = c;
rs->text[rs->pos] = 0;
}
void rdaddsc(rdstringc *rs, char const *p) {
rdaddsn(rs, p, strlen(p));
}
void rdaddsn(rdstringc *rs, char const *p, int len) {
if (rs->pos >= rs->size - len) {
rs->size = rs->pos + len + 128;
rs->text = sresize(rs->text, rs->size, char);
}
memcpy(rs->text + rs->pos, p, len);
rs->pos += len;
rs->text[rs->pos] = 0;
}
char *rdtrimc(rdstringc *rs) {
rs->text = sresize(rs->text, rs->pos + 1, char);
return rs->text;
}
static int compare_wordlists_literally(word *a, word *b) {
int t;
while (a && b) {
if (a->type != b->type)
return (a->type < b->type ? -1 : +1); /* FIXME? */
t = a->type;
if ((t != word_Normal && t != word_Code &&
t != word_WeakCode && t != word_Emph) ||
a->alt || b->alt) {
int c;
if (a->text && b->text) {
c = ustricmp(a->text, b->text);
if (c)
return c;
}
c = compare_wordlists_literally(a->alt, b->alt);
if (c)
return c;
a = a->next;
b = b->next;
} else {
wchar_t *ap = a->text, *bp = b->text;
while (*ap && *bp) {
wchar_t ac = *ap, bc = *bp;
if (ac != bc)
return (ac < bc ? -1 : +1);
if (!*++ap && a->next && a->next->type == t && !a->next->alt)
a = a->next, ap = a->text;
if (!*++bp && b->next && b->next->type == t && !b->next->alt)
b = b->next, bp = b->text;
}
if (*ap || *bp)
return (*ap ? +1 : -1);
a = a->next;
b = b->next;
}
}
if (a || b)
return (a ? +1 : -1);
else
return 0;
}
int compare_wordlists(word *a, word *b) {
/*
* First we compare only the alphabetic content of the word
* lists, with case not a factor. If that comes out equal,
* _then_ we compare the word lists literally.
*/
struct {
word *w;
int i;
wchar_t c;
} pos[2];
pos[0].w = a;
pos[1].w = b;
pos[0].i = pos[1].i = 0;
while (1) {
/*
* Find the next alphabetic character in each word list.
*/
int k;
for (k = 0; k < 2; k++) {
/*
* Advance until we hit either an alphabetic character
* or the end of the word list.
*/
while (1) {
if (!pos[k].w) {
/* End of word list. */
pos[k].c = 0;
break;
} else if (!pos[k].w->text || !pos[k].w->text[pos[k].i]) {
/* No characters remaining in this word; move on. */
pos[k].w = pos[k].w->next;
pos[k].i = 0;
} else if (!uisalpha(pos[k].w->text[pos[k].i])) {
/* This character isn't alphabetic; move on. */
pos[k].i++;
} else {
/* We have an alphabetic! Lowercase it and continue. */
pos[k].c = utolower(pos[k].w->text[pos[k].i]);
break;
}
}
}
#ifdef HAS_WCSCOLL
{
wchar_t a[2], b[2];
int ret;
a[0] = pos[0].c;
b[0] = pos[1].c;
a[1] = b[1] = L'\0';
ret = wcscoll(a, b);
if (ret)
return ret;
}
#else
if (pos[0].c < pos[1].c)
return -1;
else if (pos[0].c > pos[1].c)
return +1;
#endif
if (!pos[0].c)
break; /* they're equal */
pos[0].i++;
pos[1].i++;
}
/*
* If we reach here, the strings were alphabetically equal, so
* compare in more detail.
*/
return compare_wordlists_literally(a, b);
}
void mark_attr_ends(word *words)
{
word *w, *wp;
wp = NULL;
for (w = words; w; w = w->next) {
int both;
if (!isvis(w->type))
/* Invisible elements should not affect this calculation */
continue;
both = (isattr(w->type) &&
wp && isattr(wp->type) &&
sameattr(wp->type, w->type));
w->aux |= both ? attr_Always : attr_First;
if (wp && !both) {
/* If previous considered word turns out to have been
* the end of a run, tidy it up. */
int wp_attr = attraux(wp->aux);
wp->aux = (wp->aux & ~attr_mask) |
((wp_attr == attr_Always) ? attr_Last
/* attr_First */ : attr_Only);
}
wp = w;
}
/* Tidy up last word touched */
if (wp) {
int wp_attr = attraux(wp->aux);
wp->aux = (wp->aux & ~attr_mask) |
((wp_attr == attr_Always) ? attr_Last
/* attr_First */ : attr_Only);
}
}
/*
* This function implements the optimal paragraph wrapping
* algorithm, pretty much as used in TeX. A cost function is
* defined for each line of the wrapped paragraph (typically some
* convex function of the difference between the line's length and
* its desired length), and a dynamic programming approach is used
* to optimise globally across all possible layouts of the
* paragraph to find the one with the minimum total cost.
*
* The function as implemented here gives a choice of two options
* for the cost function:
*
* - If `natural_space' is zero, then the algorithm attempts to
* make each line the maximum possible width (either `width' or
* `subsequentwidth' depending on whether it's the first line of
* the paragraph or not), and the cost function is simply the
* square of the unused space at the end of each line. This is a
* simple mechanism suitable for use in fixed-pitch environments
* such as plain text displayed on a terminal.
*
* - However, if `natural_space' is positive, the algorithm
* assumes the medium is fully graphical and that the width of
* space characters can be adjusted finely, and it attempts to
* make each _space character_ the width given in
* `natural_space'. (The provided width function should return
* the _minimum_ acceptable width of a space character in this
* case.) Therefore, the cost function for a line is dependent
* on the number of spaces on that line as well as the amount by
* which the line width differs from the optimum.
*/
wrappedline *wrap_para(word *text, int width, int subsequentwidth,
int (*widthfn)(void *, word *), void *ctx,
int natural_space) {
wrappedline *head = NULL, **ptr = &head;
int nwords, wordsize;
struct wrapword {
word *begin, *end;
int width;
int spacewidth;
int cost;
int nwords;
} *wrapwords;
int i, j, n;
/*
* Break the line up into wrappable components.
*/
nwords = wordsize = 0;
wrapwords = NULL;
while (text) {
if (nwords >= wordsize) {
wordsize = nwords + 64;
wrapwords = srealloc(wrapwords, wordsize * sizeof(*wrapwords));
}
wrapwords[nwords].width = 0;
wrapwords[nwords].begin = text;
while (text) {
wrapwords[nwords].width += widthfn(ctx, text);
wrapwords[nwords].end = text->next;
if (text->next && (text->next->type == word_WhiteSpace ||
text->next->type == word_EmphSpace ||
text->breaks))
break;
text = text->next;
}
if (text && text->next && (text->next->type == word_WhiteSpace ||
text->next->type == word_EmphSpace)) {
wrapwords[nwords].spacewidth = widthfn(ctx, text->next);
text = text->next;
} else {
wrapwords[nwords].spacewidth = 0;
}
nwords++;
if (text)
text = text->next;
}
/*
* Perform the dynamic wrapping algorithm: work backwards from
* nwords-1, determining the optimal wrapping for each terminal
* subsequence of the paragraph.
*/
for (i = nwords; i-- ;) {
int best = -1;
int bestcost = 0;
int cost;
int linelen = 0, spacewidth = 0, minspacewidth = 0;
int nspaces;
int thiswidth = (i == 0 ? width : subsequentwidth);
j = 0;
nspaces = 0;
while (i+j < nwords) {
/*
* See what happens if we put j+1 words on this line.
*/
if (spacewidth) {
nspaces++;
minspacewidth = spacewidth;
}
linelen += spacewidth + wrapwords[i+j].width;
spacewidth = wrapwords[i+j].spacewidth;
j++;
if (linelen > thiswidth) {
/*
* If we're over the width limit, abandon ship,
* _unless_ there is no best-effort yet (which will
* only happen if the first word is too long all by
* itself).
*/
if (best > 0)
break;
}
/*
* Compute the cost of this line. The method of doing
* this differs hugely depending on whether
* natural_space is nonzero or not.
*/
if (natural_space) {
if (!nspaces && linelen > thiswidth) {
/*
* Special case: if there are no spaces at all
* on the line because one single word is too
* long for its line, cost is zero because
* there's nothing we can do about it anyway.
*/
cost = 0;
} else {
int shortfall = thiswidth - linelen;
int spaceextra = shortfall / (nspaces ? nspaces : 1);
int spaceshortfall = natural_space -
(minspacewidth + spaceextra);
if (i+j == nwords && spaceshortfall < 0) {
/*
* Special case: on the very last line of
* the paragraph, we don't score penalty
* points for having to _stretch_ the line,
* since we won't stretch it anyway.
* However, we score penalties as normal
* for having to squeeze it.
*/
cost = 0;
} else {
/*
* Squaring this number is tricky since
* it's liable to be quite big. Let's
* divide it through by 256.
*/
int x = spaceshortfall >> 8;
int xf = spaceshortfall & 0xFF;
/*
* Not counting strange variable-fixed-
* point oddities, we are computing
*
* (x+xf)^2 = x^2 + 2*x*xf + xf*xf
*
* except that _our_ xf is 256 times the
* one listed there.
*/
cost = x * x;
cost += (2 * x * xf) >> 8;
}
}
} else {
if (i+j == nwords) {
/*
* Special case: if we're at the very end of the
* paragraph, we don't score penalty points for the
* white space left on the line.
*/
cost = 0;
} else {
cost = (thiswidth-linelen) * (thiswidth-linelen);
}
}
/*
* Add in the cost of wrapping all lines after this
* point too.
*/
if (i+j < nwords)
cost += wrapwords[i+j].cost;
/*
* We compare bestcost >= cost, not bestcost > cost,
* because in cases where the costs are identical we
* want to try to look like the greedy algorithm,
* because readers are likely to have spent a lot of
* time looking at greedy-wrapped paragraphs and
* there's no point violating the Principle of Least
* Surprise if it doesn't actually gain anything.
*/
if (best < 0 || bestcost >= cost) {
bestcost = cost;
best = j;
}
}
/*
* Now we know the optimal answer for this terminal
* subsequence, so put it in wrapwords.
*/
wrapwords[i].cost = bestcost;
wrapwords[i].nwords = best;
}
/*
* We've wrapped the paragraph. Now build the output
* `wrappedline' list.
*/
i = 0;
while (i < nwords) {
wrappedline *w = snew(wrappedline);
*ptr = w;
ptr = &w->next;
w->next = NULL;
n = wrapwords[i].nwords;
w->begin = wrapwords[i].begin;
w->end = wrapwords[i+n-1].end;
/*
* Count along the words to find nspaces and shortfall.
*/
w->nspaces = 0;
w->shortfall = width;
for (j = 0; j < n; j++) {
w->shortfall -= wrapwords[i+j].width;
if (j < n-1 && wrapwords[i+j].spacewidth) {
w->nspaces++;
w->shortfall -= wrapwords[i+j].spacewidth;
}
}
i += n;
}
sfree(wrapwords);
return head;
}
void wrap_free(wrappedline *w) {
while (w) {
wrappedline *t = w->next;
sfree(w);
w = t;
}
}
void cmdline_cfg_add(paragraph *cfg, char *string)
{
wchar_t *ustring;
int upos, ulen, pos, len;
ulen = 0;
while (cfg->keyword[ulen])
ulen += 1 + ustrlen(cfg->keyword+ulen);
len = 0;
while (cfg->origkeyword[len])
len += 1 + strlen(cfg->origkeyword+len);
ustring = ufroma_locale_dup(string);
upos = ulen;
ulen += 2 + ustrlen(ustring);
cfg->keyword = sresize(cfg->keyword, ulen, wchar_t);
ustrcpy(cfg->keyword+upos, ustring);
cfg->keyword[ulen-1] = L'\0';
pos = len;
len += 2 + strlen(string);
cfg->origkeyword = sresize(cfg->origkeyword, len, char);
strcpy(cfg->origkeyword+pos, string);
cfg->origkeyword[len-1] = '\0';
sfree(ustring);
}
paragraph *cmdline_cfg_new(void)
{
paragraph *p;
p = snew(paragraph);
memset(p, 0, sizeof(*p));
p->type = para_Config;
p->next = NULL;
p->fpos.filename = "<command line>";
p->fpos.line = p->fpos.col = -1;
p->keyword = ustrdup(L"\0");
p->origkeyword = dupstr("\0");
return p;
}
paragraph *cmdline_cfg_simple(char *string, ...)
{
va_list ap;
char *s;
paragraph *p;
p = cmdline_cfg_new();
cmdline_cfg_add(p, string);
va_start(ap, string);
while ((s = va_arg(ap, char *)) != NULL)
cmdline_cfg_add(p, s);
va_end(ap);
return p;
}
|