File: misc.c

package info (click to toggle)
halibut 1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: buster, sid
  • size: 4,084 kB
  • sloc: ansic: 58,429; makefile: 294; perl: 194; lisp: 76; sh: 21
file content (615 lines) | stat: -rw-r--r-- 15,068 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
/*
 * misc.c: miscellaneous useful items
 */

#include <stdarg.h>
#include <stdlib.h>
#include <errno.h>
#include <limits.h>
#include "halibut.h"

char *adv(char *s) {
    return s + 1 + strlen(s);
}

struct stackTag {
    void **data;
    int sp;
    int size;
};

stack stk_new(void) {
    stack s;

    s = snew(struct stackTag);
    s->sp = 0;
    s->size = 0;
    s->data = NULL;

    return s;
}

void stk_free(stack s) {
    sfree(s->data);
    sfree(s);
}

void stk_push(stack s, void *item) {
    if (s->size <= s->sp) {
	s->size = s->sp + 32;
	s->data = sresize(s->data, s->size, void *);
    }
    s->data[s->sp++] = item;
}

void *stk_pop(stack s) {
    if (s->sp > 0)
	return s->data[--s->sp];
    else
	return NULL;
}

void *stk_top(stack s) {
    if (s->sp > 0)
	return s->data[s->sp-1];
    else
	return NULL;
}

/*
 * Small routines to amalgamate a string from an input source.
 */
const rdstring empty_rdstring = {0, 0, NULL};
const rdstringc empty_rdstringc = {0, 0, NULL};

void rdadd(rdstring *rs, wchar_t c) {
    if (rs->pos >= rs->size-1) {
	rs->size = rs->pos + 128;
	rs->text = sresize(rs->text, rs->size, wchar_t);
    }
    rs->text[rs->pos++] = c;
    rs->text[rs->pos] = 0;
}
void rdadds(rdstring *rs, wchar_t const *p) {
    int len = ustrlen(p);
    if (rs->pos >= rs->size - len) {
	rs->size = rs->pos + len + 128;
	rs->text = sresize(rs->text, rs->size, wchar_t);
    }
    ustrcpy(rs->text + rs->pos, p);
    rs->pos += len;
}
wchar_t *rdtrim(rdstring *rs) {
    rs->text = sresize(rs->text, rs->pos + 1, wchar_t);
    return rs->text;
}

void rdaddc(rdstringc *rs, char c) {
    if (rs->pos >= rs->size-1) {
	rs->size = rs->pos + 128;
	rs->text = sresize(rs->text, rs->size, char);
    }
    rs->text[rs->pos++] = c;
    rs->text[rs->pos] = 0;
}
void rdaddsc(rdstringc *rs, char const *p) {
    rdaddsn(rs, p, strlen(p));
}
void rdaddsn(rdstringc *rs, char const *p, int len) {
    if (rs->pos >= rs->size - len) {
	rs->size = rs->pos + len + 128;
	rs->text = sresize(rs->text, rs->size, char);
    }
    memcpy(rs->text + rs->pos, p, len);
    rs->pos += len;
    rs->text[rs->pos] = 0;
}
char *rdtrimc(rdstringc *rs) {
    rs->text = sresize(rs->text, rs->pos + 1, char);
    return rs->text;
}

static int compare_wordlists_literally(word *a, word *b) {
    int t;
    while (a && b) {
	if (a->type != b->type)
	    return (a->type < b->type ? -1 : +1);   /* FIXME? */
	t = a->type;
	if ((t != word_Normal && t != word_Code &&
	     t != word_WeakCode && t != word_Emph && t != word_Strong) ||
	    a->alt || b->alt) {
	    int c;
	    if (a->text && b->text) {
		c = ustricmp(a->text, b->text);
		if (c)
		    return c;
	    }
	    c = compare_wordlists_literally(a->alt, b->alt);
	    if (c)
		return c;
	    a = a->next;
	    b = b->next;
	} else {
	    wchar_t *ap = a->text, *bp = b->text;
	    while (*ap && *bp) {
		wchar_t ac = *ap, bc = *bp;
		if (ac != bc)
		    return (ac < bc ? -1 : +1);
		if (!*++ap && a->next && a->next->type == t && !a->next->alt)
		    a = a->next, ap = a->text;
		if (!*++bp && b->next && b->next->type == t && !b->next->alt)
		    b = b->next, bp = b->text;
	    }
	    if (*ap || *bp)
		return (*ap ? +1 : -1);
	    a = a->next;
	    b = b->next;
	}
    }

    if (a || b)
	return (a ? +1 : -1);
    else
	return 0;
}

int compare_wordlists(word *a, word *b) {
    /*
     * First we compare only the alphabetic content of the word
     * lists, with case not a factor. If that comes out equal,
     * _then_ we compare the word lists literally.
     */
    struct {
	word *w;
	int i;
	wchar_t c;
    } pos[2];

    pos[0].w = a;
    pos[1].w = b;
    pos[0].i = pos[1].i = 0;

    while (1) {
	/*
	 * Find the next alphabetic character in each word list.
	 */
	int k;

	for (k = 0; k < 2; k++) {
	    /*
	     * Advance until we hit either an alphabetic character
	     * or the end of the word list.
	     */
	    while (1) {
		if (!pos[k].w) {
		    /* End of word list. */
		    pos[k].c = 0;
		    break;
		} else if (!pos[k].w->text || !pos[k].w->text[pos[k].i]) {
		    /* No characters remaining in this word; move on. */
		    pos[k].w = pos[k].w->next;
		    pos[k].i = 0;
		} else if (!uisalpha(pos[k].w->text[pos[k].i])) {
		    /* This character isn't alphabetic; move on. */
		    pos[k].i++;
		} else {
		    /* We have an alphabetic! Lowercase it and continue. */
		    pos[k].c = utolower(pos[k].w->text[pos[k].i]);
		    break;
		}
	    }
	}

#ifdef HAS_WCSCOLL
	{
	    wchar_t a[2], b[2];
	    int ret;

	    a[0] = pos[0].c;
	    b[0] = pos[1].c;
	    a[1] = b[1] = L'\0';

	    ret = wcscoll(a, b);
	    if (ret)
		return ret;
	}
#else
	if (pos[0].c < pos[1].c)
	    return -1;
	else if (pos[0].c > pos[1].c)
	    return +1;
#endif

	if (!pos[0].c)
	    break;		       /* they're equal */

	pos[0].i++;
	pos[1].i++;
    }

    /*
     * If we reach here, the strings were alphabetically equal, so
     * compare in more detail.
     */
    return compare_wordlists_literally(a, b);
}

void mark_attr_ends(word *words)
{
    word *w, *wp;

    wp = NULL;
    for (w = words; w; w = w->next) {
	int both;
	if (!isvis(w->type))
	    /* Invisible elements should not affect this calculation */
	    continue;
	both = (isattr(w->type) &&
		wp && isattr(wp->type) &&
		sameattr(wp->type, w->type));
	w->aux |= both ? attr_Always : attr_First;
	if (wp && !both) {
	    /* If previous considered word turns out to have been
	     * the end of a run, tidy it up. */
	    int wp_attr = attraux(wp->aux);
	    wp->aux = (wp->aux & ~attr_mask) |
		((wp_attr == attr_Always) ? attr_Last
			 /* attr_First */ : attr_Only);
	}
	wp = w;
    }

    /* Tidy up last word touched */
    if (wp) {
	int wp_attr = attraux(wp->aux);
	wp->aux = (wp->aux & ~attr_mask) |
	    ((wp_attr == attr_Always) ? attr_Last
		     /* attr_First */ : attr_Only);
    }
}

/*
 * This function implements the optimal paragraph wrapping
 * algorithm, pretty much as used in TeX. A cost function is
 * defined for each line of the wrapped paragraph (typically some
 * convex function of the difference between the line's length and
 * its desired length), and a dynamic programming approach is used
 * to optimise globally across all possible layouts of the
 * paragraph to find the one with the minimum total cost.
 * 
 * The function as implemented here gives a choice of two options
 * for the cost function:
 * 
 *  - If `natural_space' is zero, then the algorithm attempts to
 *    make each line the maximum possible width (either `width' or
 *    `subsequentwidth' depending on whether it's the first line of
 *    the paragraph or not), and the cost function is simply the
 *    square of the unused space at the end of each line. This is a
 *    simple mechanism suitable for use in fixed-pitch environments
 *    such as plain text displayed on a terminal.
 * 
 *  - However, if `natural_space' is positive, the algorithm
 *    assumes the medium is fully graphical and that the width of
 *    space characters can be adjusted finely, and it attempts to
 *    make each _space character_ the width given in
 *    `natural_space'. (The provided width function should return
 *    the _minimum_ acceptable width of a space character in this
 *    case.) Therefore, the cost function for a line is dependent
 *    on the number of spaces on that line as well as the amount by
 *    which the line width differs from the optimum.
 */
wrappedline *wrap_para(word *text, int width, int subsequentwidth,
		       int (*widthfn)(void *, word *), void *ctx,
		       int natural_space) {
    wrappedline *head = NULL, **ptr = &head;
    int nwords, wordsize;
    struct wrapword {
	word *begin, *end;
	int width;
	int spacewidth;
	int cost;
	int nwords;
    } *wrapwords;
    int i, j, n;

    /*
     * Break the line up into wrappable components.
     */
    nwords = wordsize = 0;
    wrapwords = NULL;
    while (text) {
	if (nwords >= wordsize) {
	    wordsize = nwords + 64;
	    wrapwords = srealloc(wrapwords, wordsize * sizeof(*wrapwords));
	}
	wrapwords[nwords].width = 0;
	wrapwords[nwords].begin = text;
	while (text) {
	    wrapwords[nwords].width += widthfn(ctx, text);
	    wrapwords[nwords].end = text->next;
	    if (text->next && (text->next->type == word_WhiteSpace ||
			       text->next->type == word_EmphSpace ||
			       text->next->type == word_StrongSpace ||
			       text->breaks))
		break;
	    text = text->next;
	}
	if (text && text->next && (text->next->type == word_WhiteSpace ||
                                   text->next->type == word_EmphSpace ||
                                   text->next->type == word_StrongSpace)) {
	    wrapwords[nwords].spacewidth = widthfn(ctx, text->next);
	    text = text->next;
	} else {
	    wrapwords[nwords].spacewidth = 0;
	}
	nwords++;
	if (text)
	    text = text->next;
    }

    /*
     * Perform the dynamic wrapping algorithm: work backwards from
     * nwords-1, determining the optimal wrapping for each terminal
     * subsequence of the paragraph.
     */
    for (i = nwords; i-- ;) {
	int best = -1;
	int bestcost = 0;
	int cost;
	int linelen = 0, spacewidth = 0, minspacewidth = 0;
	int nspaces;
	int thiswidth = (i == 0 ? width : subsequentwidth);

	j = 0;
	nspaces = 0;
	while (i+j < nwords) {
	    /*
	     * See what happens if we put j+1 words on this line.
	     */
	    if (spacewidth) {
		nspaces++;
		minspacewidth = spacewidth;
	    }
	    linelen += spacewidth + wrapwords[i+j].width;
	    spacewidth = wrapwords[i+j].spacewidth;
	    j++;
	    if (linelen > thiswidth) {
		/*
		 * If we're over the width limit, abandon ship,
		 * _unless_ there is no best-effort yet (which will
		 * only happen if the first word is too long all by
		 * itself).
		 */
		if (best > 0)
		    break;
	    }

	    /*
	     * Compute the cost of this line. The method of doing
	     * this differs hugely depending on whether
	     * natural_space is nonzero or not.
	     */
	    if (natural_space) {
		if (!nspaces && linelen > thiswidth) {
		    /*
		     * Special case: if there are no spaces at all
		     * on the line because one single word is too
		     * long for its line, cost is zero because
		     * there's nothing we can do about it anyway.
		     */
		    cost = 0;
		} else {
		    int shortfall = thiswidth - linelen;
		    int spaceextra = shortfall / (nspaces ? nspaces : 1);
		    int spaceshortfall = natural_space -
			(minspacewidth + spaceextra);

		    if (i+j == nwords && spaceshortfall < 0) {
			/*
			 * Special case: on the very last line of
			 * the paragraph, we don't score penalty
			 * points for having to _stretch_ the line,
			 * since we won't stretch it anyway.
			 * However, we score penalties as normal
			 * for having to squeeze it.
			 */
			cost = 0;
		    } else {
			/*
			 * Squaring this number is tricky since
			 * it's liable to be quite big. Let's
			 * divide it through by 256.
			 */
			int x = spaceshortfall >> 8;
			int xf = spaceshortfall & 0xFF;

			/*
			 * Not counting strange variable-fixed-
			 * point oddities, we are computing
			 * 
			 *   (x+xf)^2 = x^2 + 2*x*xf + xf*xf
			 * 
			 * except that _our_ xf is 256 times the
			 * one listed there.
			 */

			cost = x * x;
			cost += (2 * x * xf) >> 8;
		    }
		}
	    } else {
		if (i+j == nwords) {
		    /*
		     * Special case: if we're at the very end of the
		     * paragraph, we don't score penalty points for the
		     * white space left on the line.
		     */
		    cost = 0;
		} else {
		    cost = (thiswidth-linelen) * (thiswidth-linelen);
		}
	    }

	    /*
	     * Add in the cost of wrapping all lines after this
	     * point too.
	     */
	    if (i+j < nwords)
		cost += wrapwords[i+j].cost;

	    /*
	     * We compare bestcost >= cost, not bestcost > cost,
	     * because in cases where the costs are identical we
	     * want to try to look like the greedy algorithm,
	     * because readers are likely to have spent a lot of
	     * time looking at greedy-wrapped paragraphs and
	     * there's no point violating the Principle of Least
	     * Surprise if it doesn't actually gain anything.
	     */
	    if (best < 0 || bestcost >= cost) {
		bestcost = cost;
		best = j;
	    }
	}
	/*
	 * Now we know the optimal answer for this terminal
	 * subsequence, so put it in wrapwords.
	 */
	wrapwords[i].cost = bestcost;
	wrapwords[i].nwords = best;
    }

    /*
     * We've wrapped the paragraph. Now build the output
     * `wrappedline' list.
     */
    i = 0;
    while (i < nwords) {
	wrappedline *w = snew(wrappedline);
	*ptr = w;
	ptr = &w->next;
	w->next = NULL;

	n = wrapwords[i].nwords;
	w->begin = wrapwords[i].begin;
	w->end = wrapwords[i+n-1].end;

	/*
	 * Count along the words to find nspaces and shortfall.
	 */
	w->nspaces = 0;
	w->shortfall = width;
	for (j = 0; j < n; j++) {
	    w->shortfall -= wrapwords[i+j].width;
	    if (j < n-1 && wrapwords[i+j].spacewidth) {
		w->nspaces++;
		w->shortfall -= wrapwords[i+j].spacewidth;
	    }
	}
	i += n;
    }

    sfree(wrapwords);

    return head;
}

void wrap_free(wrappedline *w) {
    while (w) {
	wrappedline *t = w->next;
	sfree(w);
	w = t;
    }
}

void cmdline_cfg_add(paragraph *cfg, char *string)
{
    wchar_t *ustring;
    int upos, ulen, pos, len;

    ulen = 0;
    while (cfg->keyword[ulen])
	ulen += 1 + ustrlen(cfg->keyword+ulen);
    len = 0;
    while (cfg->origkeyword[len])
	len += 1 + strlen(cfg->origkeyword+len);

    ustring = ufroma_locale_dup(string);

    upos = ulen;
    ulen += 2 + ustrlen(ustring);
    cfg->keyword = sresize(cfg->keyword, ulen, wchar_t);
    ustrcpy(cfg->keyword+upos, ustring);
    cfg->keyword[ulen-1] = L'\0';

    pos = len;
    len += 2 + strlen(string);
    cfg->origkeyword = sresize(cfg->origkeyword, len, char);
    strcpy(cfg->origkeyword+pos, string);
    cfg->origkeyword[len-1] = '\0';

    sfree(ustring);
}

paragraph *cmdline_cfg_new(void)
{
    paragraph *p;

    p = snew(paragraph);
    memset(p, 0, sizeof(*p));
    p->type = para_Config;
    p->next = NULL;
    p->fpos.filename = "<command line>";
    p->fpos.line = p->fpos.col = -1;
    p->keyword = ustrdup(L"\0");
    p->origkeyword = dupstr("\0");

    return p;
}

paragraph *cmdline_cfg_simple(char *string, ...)
{
    va_list ap;
    char *s;
    paragraph *p;

    p = cmdline_cfg_new();
    cmdline_cfg_add(p, string);

    va_start(ap, string);
    while ((s = va_arg(ap, char *)) != NULL)
	cmdline_cfg_add(p, s);
    va_end(ap);

    return p;
}

time_t current_time(void)
{
    char *source_date_epoch;

    source_date_epoch = getenv("SOURCE_DATE_EPOCH");
    if (source_date_epoch) {
	char *endptr;
	long epoch;

	errno = 0;
	epoch = strtol(source_date_epoch, &endptr, 10);

	if ((errno == ERANGE && (epoch == LONG_MAX || epoch == LONG_MIN)) ||
	    (errno != 0 && epoch == 0)) {
	    err_epoch_strtol();
	    exit(EXIT_FAILURE);
	}
	if (endptr == source_date_epoch) {
	    err_epoch_nodigits(endptr);
	    exit(EXIT_FAILURE);
	}
	if (*endptr != '\0') {
	    err_epoch_trailing_garbage(endptr);
	    exit(EXIT_FAILURE);
	}
	return epoch;
    } else
	return time(NULL);
}