1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
/*
* euc.c - routines to handle the various EUC multibyte encodings.
*/
#ifndef ENUM_CHARSETS
#include "charset.h"
#include "internal.h"
struct euc {
int nchars[3]; /* GR, SS2+GR, SS3+GR */
long int (*to_ucs)(unsigned long state);
unsigned long (*from_ucs)(long int ucs);
};
static void read_euc(charset_spec const *charset, long int input_chr,
charset_state *state,
void (*emit)(void *ctx, long int output), void *emitctx)
{
struct euc const *euc = (struct euc *)charset->data;
/*
* For EUC input, our state variable divides into three parts:
*
* - Topmost nibble (bits 31:28) is nonzero if we're
* accumulating a multibyte character, and it indicates
* which section we're in: 1 for GR chars, 2 for things
* beginning with SS2, 3 for things beginning with SS3.
*
* - Next nibble (bits 27:24) indicates how many bytes of the
* character we've accumulated so far.
*
* - The rest (bits 23:0) are those bytes in full, accumulated
* as a large integer (so that seeing A1 A2 A3, in a
* hypothetical EUC whose GR encoding is three-byte, runs
* our state variable from 0 -> 0x110000A1 -> 0x1200A1A2 ->
* 0x13A1A2A3, at which point it gets translated and output
* and resets to zero).
*/
if (state->s0 != 0) {
/*
* At this point, no matter whether we had an SS2 or SS3
* introducer or not, we _always_ expect a GR character.
* Anything else causes us to emit ERROR for an incomplete
* character, and then reset to state 0 to process the
* character in its own way.
*/
if (input_chr < 0xA1 || input_chr == 0xFF) {
emit(emitctx, ERROR);
state->s0 = 0;
} else
state->s0 = (((state->s0 & 0xFF000000) + 0x01000000) |
((state->s0 & 0x0000FFFF) << 8) | input_chr);
}
if (state->s0 == 0) {
/*
* The input character determines which of the four
* possible charsets we're going to be in.
*/
if (input_chr < 0x80) { /* this is always ASCII */
emit(emitctx, input_chr);
} else if (input_chr == 0x8E) {/* SS2 means charset 2 */
state->s0 = 0x20000000;
} else if (input_chr == 0x8F) {/* SS3 means charset 3 */
state->s0 = 0x30000000;
} else if (input_chr < 0xA1 || input_chr == 0xFF) { /* errors */
emit(emitctx, ERROR);
} else { /* A1-FE means charset 1 */
state->s0 = 0x11000000 | input_chr;
}
}
/*
* Finally, if we have accumulated a complete character, output
* it.
*/
if (state->s0 != 0 &&
((state->s0 & 0x0F000000) >> 24) >=
(unsigned)euc->nchars[(state->s0 >> 28)-1]) {
emit(emitctx, euc->to_ucs(state->s0));
state->s0 = 0;
}
}
/*
* All EUCs are stateless multi-byte encodings (in the sense that
* just after any character has been completed, the state is always
* the same); hence when writing them, there is no need to use the
* charset_state.
*/
static bool write_euc(charset_spec const *charset, long int input_chr,
charset_state *state,
void (*emit)(void *ctx, long int output), void *emitctx)
{
struct euc const *euc = (struct euc *)charset->data;
unsigned long c;
int cset, len;
UNUSEDARG(state);
if (input_chr == -1)
return true; /* stateless; no cleanup required */
/* ASCII is the easy bit, and is always the same. */
if (input_chr < 0x80) {
emit(emitctx, input_chr);
return true;
}
c = euc->from_ucs(input_chr);
if (!c) {
return false;
}
cset = c >> 28;
len = euc->nchars[cset-1];
c &= 0xFFFFFF;
if (cset > 1)
emit(emitctx, 0x8C + cset); /* SS2/SS3 */
while (len--)
emit(emitctx, (c >> (8*len)) & 0xFF);
return true;
}
/*
* EUC-CN encodes GB2312 only.
*/
static long int euc_cn_to_ucs(unsigned long state)
{
switch (state >> 28) {
case 1: return gb2312_to_unicode(((state >> 8) & 0xFF) - 0xA1,
((state ) & 0xFF) - 0xA1);
default: return ERROR;
}
}
static unsigned long euc_cn_from_ucs(long int ucs)
{
int r, c;
if (unicode_to_gb2312(ucs, &r, &c))
return 0x10000000 | ((r+0xA1) << 8) | (c+0xA1);
else
return 0;
}
static const struct euc euc_cn = {
{2,0,0}, euc_cn_to_ucs, euc_cn_from_ucs
};
const charset_spec charset_CS_EUC_CN = {
CS_EUC_CN, read_euc, write_euc, &euc_cn
};
/*
* EUC-KR encodes KS X 1001 only.
*/
static long int euc_kr_to_ucs(unsigned long state)
{
switch (state >> 28) {
case 1: return ksx1001_to_unicode(((state >> 8) & 0xFF) - 0xA1,
((state ) & 0xFF) - 0xA1);
default: return ERROR;
}
}
static unsigned long euc_kr_from_ucs(long int ucs)
{
int r, c;
if (unicode_to_ksx1001(ucs, &r, &c))
return 0x10000000 | ((r+0xA1) << 8) | (c+0xA1);
else
return 0;
}
static const struct euc euc_kr = {
{2,0,0}, euc_kr_to_ucs, euc_kr_from_ucs
};
const charset_spec charset_CS_EUC_KR = {
CS_EUC_KR, read_euc, write_euc, &euc_kr
};
/*
* EUC-JP encodes several character sets.
*/
static long int euc_jp_to_ucs(unsigned long state)
{
switch (state >> 28) {
case 1: return jisx0208_to_unicode(((state >> 8) & 0xFF) - 0xA1,
((state ) & 0xFF) - 0xA1);
case 2:
/*
* This is the top half of JIS X 0201. That means A1-DF map
* to FF61-FF9F, and nothing else is valid.
*/
{
int c = state & 0xFF;
if (c >= 0xA1 && c <= 0xDF)
return c + (0xFF61 - 0xA1);
else
return ERROR;
}
/* (no break needed since all control paths have returned) */
case 3: return jisx0212_to_unicode(((state >> 8) & 0xFF) - 0xA1,
((state ) & 0xFF) - 0xA1);
default: return ERROR; /* placate optimisers */
}
}
static unsigned long euc_jp_from_ucs(long int ucs)
{
int r, c;
if (ucs >= 0xFF61 && ucs <= 0xFF9F)
return 0x20000000 | (ucs - (0xFF61 - 0xA1));
else if (unicode_to_jisx0208(ucs, &r, &c))
return 0x10000000 | ((r+0xA1) << 8) | (c+0xA1);
else if (unicode_to_jisx0212(ucs, &r, &c))
return 0x30000000 | ((r+0xA1) << 8) | (c+0xA1);
else
return 0;
}
static const struct euc euc_jp = {
{2,1,2}, euc_jp_to_ucs, euc_jp_from_ucs
};
const charset_spec charset_CS_EUC_JP = {
CS_EUC_JP, read_euc, write_euc, &euc_jp
};
/*
* EUC-TW encodes CNS 11643 (all planes).
*/
static long int euc_tw_to_ucs(unsigned long state)
{
int plane;
switch (state >> 28) {
case 1: return cns11643_to_unicode(0, ((state >> 8) & 0xFF) - 0xA1,
((state ) & 0xFF) - 0xA1);
case 2:
plane = ((state >> 8) & 0xFF) - 0xA1;
if (plane >= 7) return ERROR;
return cns11643_to_unicode(plane, ((state >> 8) & 0xFF) - 0xA1,
((state ) & 0xFF) - 0xA1);
default: return ERROR;
}
}
static unsigned long euc_tw_from_ucs(long int ucs)
{
int p, r, c;
if (unicode_to_cns11643(ucs, &p, &r, &c)) {
if (p == 0)
return 0x10000000 | ((r+0xA1) << 8) | (c+0xA1);
else
return 0x20000000 |
((p + 0xA1) << 16) | ((r+0xA1) << 8) | (c+0xA1);
} else
return 0;
}
static const struct euc euc_tw = {
{2,3,0}, euc_tw_to_ucs, euc_tw_from_ucs
};
const charset_spec charset_CS_EUC_TW = {
CS_EUC_TW, read_euc, write_euc, &euc_tw
};
#else /* ENUM_CHARSETS */
ENUM_CHARSET(CS_EUC_CN)
ENUM_CHARSET(CS_EUC_KR)
ENUM_CHARSET(CS_EUC_JP)
ENUM_CHARSET(CS_EUC_TW)
#endif /* ENUM_CHARSETS */
|