1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
#include <cmath>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <string.h>
#include "HalideBuffer.h"
#include "fft_forward_c2c.h"
#include "fft_forward_r2c.h"
#include "fft_inverse_c2c.h"
#include "fft_inverse_c2r.h"
namespace {
const float kPi = 3.14159265358979310000f;
const int32_t kSize = 16;
} // namespace
using Halide::Runtime::Buffer;
// Note that real_buffer() is 3D (with the 3rd dimension having extent 0)
// because the fft is written generically to require 3D inputs, even when they are real.
// Hence, the resulting buffer must be accessed with buf(i, j, 0).
Buffer<float, 3> real_buffer(int32_t y_size = kSize) {
return Buffer<float, 3>::make_interleaved(kSize, y_size, 1);
}
Buffer<float, 3> complex_buffer(int32_t y_size = kSize) {
return Buffer<float, 3>::make_interleaved(kSize, y_size, 2);
}
float &re(Buffer<float, 3> &b, int x, int y) {
return b(x, y, 0);
}
float &im(Buffer<float, 3> &b, int x, int y) {
return b(x, y, 1);
}
float re(const Buffer<float, 3> &b, int x, int y) {
return b(x, y, 0);
}
float im(const Buffer<float, 3> &b, int x, int y) {
return b(x, y, 1);
}
int main(int argc, char **argv) {
std::cout << std::fixed << std::setprecision(2);
// Forward real to complex test.
{
std::cout << "Forward real to complex test.\n";
float signal_1d[kSize];
for (size_t i = 0; i < kSize; i++) {
signal_1d[i] = 0;
for (size_t k = 1; k < 5; k++) {
signal_1d[i] += cos(2 * kPi * (k * (i / (float)kSize) + (k / 16.0f)));
}
}
auto in = real_buffer();
for (int j = 0; j < kSize; j++) {
for (int i = 0; i < kSize; i++) {
in(i, j, 0) = signal_1d[i] + signal_1d[j];
}
}
auto out = complex_buffer(kSize / 2 + 1);
int halide_result;
halide_result = fft_forward_r2c(in, out);
if (halide_result != 0) {
std::cerr << "fft_forward_r2c failed returning " << halide_result << "\n";
exit(1);
}
for (size_t i = 1; i < 5; i++) {
// Check horizontal bins
float real = re(out, i, 0);
float imaginary = im(out, i, 0);
float magnitude = sqrt(real * real + imaginary * imaginary);
if (fabs(magnitude - .5f) > .001) {
std::cerr << "fft_forward_r2c bad magnitude for horizontal bin " << i << ":" << magnitude << "\n";
exit(1);
}
float phase_angle = atan2(imaginary, real);
if (fabs(phase_angle - (i / 16.0f) * 2 * kPi) > .001) {
std::cerr << "fft_forward_r2c bad phase angle for horizontal bin " << i << ": " << phase_angle << "\n";
exit(1);
}
// Check vertical bins
real = re(out, 0, i);
imaginary = im(out, 0, i);
magnitude = sqrt(real * real + imaginary * imaginary);
if (fabs(magnitude - .5f) > .001) {
std::cerr << "fft_forward_r2c bad magnitude for vertical bin " << i << ":" << magnitude << "\n";
exit(1);
}
phase_angle = atan2(imaginary, real);
if (fabs(phase_angle - (i / 16.0f) * 2 * kPi) > .001) {
std::cerr << "fft_forward_r2c bad phase angle for vertical bin " << i << ": " << phase_angle << "\n";
exit(1);
}
}
// Check all other components are close to zero.
for (size_t j = 0; j < kSize / 2 + 1; j++) {
for (size_t i = 0; i < kSize; i++) {
// The first four non-DC bins in x and y have non-zero
// values. The horizontal ones are mirrored into the
// negative frequency components as well.
if (!((j == 0 && ((i > 0 && i < 5) || (i > kSize - 5))) ||
(i == 0 && j > 0 && j < 5))) {
float real = re(out, i, j);
float imaginary = im(out, i, j);
if (fabs(real) > .001) {
std::cerr << "fft_forward_r2c real component at (" << i << ", " << j << ") is non-zero: " << real << "\n";
exit(1);
}
if (fabs(imaginary) > .001) {
std::cerr << "fft_forward_r2c imaginary component at (" << i << ", " << j << ") is non-zero: " << imaginary << "\n";
exit(1);
}
}
}
}
}
// Inverse complex to real test.
{
std::cout << "Inverse complex to real test.\n";
auto in = complex_buffer();
in.fill(0);
// There are four components that get summed to form the magnitude, which we want to be 1.
// The components are each of the positive and negative frequencies and each of the
// real and complex components. The +/- frequencies sum algebraically and the complex
// components contribute to the magnitude as the sides of triangle like any 2D vector.
float term_magnitude = 1.0f / (2.0f * sqrt(2.0f));
re(in, 1, 0) = term_magnitude;
im(in, 1, 0) = term_magnitude;
// Negative frequencies count backward from end, no DC term
re(in, kSize - 1, 0) = term_magnitude;
im(in, kSize - 1, 0) = -term_magnitude; // complex conjugate
auto out = real_buffer();
int halide_result;
halide_result = fft_inverse_c2r(in, out);
if (halide_result != 0) {
std::cerr << "fft_inverse_c2r failed returning " << halide_result << "\n";
exit(1);
}
for (size_t j = 0; j < kSize; j++) {
for (size_t i = 0; i < kSize; i++) {
float sample = out(i, j, 0);
float expected = cos(2 * kPi * (i / 16.0f + .125f));
if (fabs(sample - expected) > .001) {
std::cerr << "fft_inverse_c2r mismatch at (" << i << ", " << j << ") " << sample << " vs. " << expected << "\n";
exit(1);
}
}
}
}
// Forward complex to complex test.
{
std::cout << "Forward complex to complex test.\n";
auto in = complex_buffer();
float signal_1d_real[kSize];
float signal_1d_complex[kSize];
for (size_t i = 0; i < kSize; i++) {
signal_1d_real[i] = 0;
signal_1d_complex[i] = 0;
for (size_t k = 1; k < 5; k++) {
signal_1d_real[i] += cos(2 * kPi * (k * (i / (float)kSize) + (k / 16.0f)));
signal_1d_complex[i] += sin(2 * kPi * (k * (i / (float)kSize) + (k / 16.0f)));
}
}
for (int j = 0; j < kSize; j++) {
for (int i = 0; i < kSize; i++) {
re(in, i, j) = signal_1d_real[i] + signal_1d_real[j];
im(in, i, j) = signal_1d_complex[i] + signal_1d_complex[j];
}
}
auto out = complex_buffer();
int halide_result;
halide_result = fft_forward_c2c(in, out);
if (halide_result != 0) {
std::cerr << "fft_forward_c2c failed returning " << halide_result << "\n";
exit(1);
}
for (size_t i = 1; i < 5; i++) {
// Check horizontal bins
float real = re(out, i, 0);
float imaginary = im(out, i, 0);
float magnitude = sqrt(real * real + imaginary * imaginary);
if (fabs(magnitude - 1.0f) > .001) {
std::cerr << "fft_forward_c2c bad magnitude for horizontal bin " << i << ":" << magnitude << "\n";
exit(1);
}
float phase_angle = atan2(imaginary, real);
if (fabs(phase_angle - (i / 16.0f) * 2 * kPi) > .001) {
std::cerr << "fft_forward_c2c bad phase angle for horizontal bin " << i << ": " << phase_angle << "\n";
exit(1);
}
// Check vertical bins
real = re(out, 0, i);
imaginary = im(out, 0, i);
magnitude = sqrt(real * real + imaginary * imaginary);
if (fabs(magnitude - 1.0f) > .001) {
std::cerr << "fft_forward_c2c bad magnitude for vertical bin " << i << ":" << magnitude << "\n";
exit(1);
}
phase_angle = atan2(imaginary, real);
if (fabs(phase_angle - (i / 16.0f) * 2 * kPi) > .001) {
std::cerr << "fft_forward_c2c bad phase angle for vertical bin " << i << ": " << phase_angle << "\n";
exit(1);
}
}
// Check all other components are close to zero.
for (size_t j = 0; j < kSize; j++) {
for (size_t i = 0; i < kSize; i++) {
// The first four non-DC bins in x and y have non-zero
// values. The input is chose so the mirrored negative
// frequency components are all zero due to
// interference of the real and complex parts.
if (!((j == 0 && (i > 0 && i < 5)) ||
(i == 0 && j > 0 && j < 5))) {
float real = re(out, i, j);
float imaginary = im(out, i, j);
if (fabs(real) > .001) {
std::cerr << "fft_forward_c2c real component at (" << i << ", " << j << ") is non-zero: " << real << "\n";
exit(1);
}
if (fabs(imaginary) > .001) {
std::cerr << "fft_forward_c2c imaginary component at (" << i << ", " << j << ") is non-zero: " << imaginary << "\n";
exit(1);
}
}
}
}
}
// Inverse complex to complex test.
{
std::cout << "Inverse complex to complex test.\n";
auto in = complex_buffer();
in.fill(0);
re(in, 1, 0) = .5f;
im(in, 1, 0) = .5f;
re(in, kSize - 1, 0) = .5f;
im(in, kSize - 1, 0) = .5f; // Not conjugate. Result will not be real
auto out = complex_buffer();
int halide_result;
halide_result = fft_inverse_c2c(in, out);
if (halide_result != 0) {
std::cerr << "fft_inverse_c2c failed returning " << halide_result << "\n";
exit(1);
}
for (size_t j = 0; j < kSize; j++) {
for (size_t i = 0; i < kSize; i++) {
float real_sample = re(out, i, j);
float imaginary_sample = im(out, i, j);
float real_expected = 1 / sqrt(2) * (cos(2 * kPi * (i / 16.0f + .125)) + cos(2 * kPi * (i * (kSize - 1) / 16.0f + .125)));
float imaginary_expected = 1 / sqrt(2) * (sin(2 * kPi * (i / 16.0f + .125)) + sin(2 * kPi * (i * (kSize - 1) / 16.0f + .125)));
if (fabs(real_sample - real_expected) > .001) {
std::cerr << "fft_inverse_c2c real mismatch at (" << i << ", " << j << ") " << real_sample << " vs. " << real_expected << "\n";
exit(1);
}
if (fabs(imaginary_sample - imaginary_expected) > .001) {
std::cerr << "fft_inverse_c2c imaginary mismatch at (" << i << ", " << j << ") " << imaginary_sample << " vs. " << imaginary_expected << "\n";
exit(1);
}
}
}
}
std::cout << "Success!\n";
exit(0);
}
|