File: interpolate.py

package info (click to toggle)
halide 14.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 49,124 kB
  • sloc: cpp: 238,722; makefile: 4,303; python: 4,047; java: 1,575; sh: 1,384; pascal: 211; xml: 165; javascript: 43; ansic: 34
file content (202 lines) | stat: -rw-r--r-- 7,194 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""
Fast image interpolation using a pyramid.
"""

import halide as hl

from datetime import datetime
import imageio
import numpy as np
import os.path

int_t = hl.Int(32)
float_t = hl.Float(32)


def get_interpolate(input, levels):
    """
    Build function, schedules it, and invokes jit compiler
    :return: halide.hl.Func
    """

    # THE ALGORITHM

    downsampled = [hl.Func('downsampled%d' % i) for i in range(levels)]
    downx = [hl.Func('downx%d' % l) for l in range(levels)]
    interpolated = [hl.Func('interpolated%d' % i) for i in range(levels)]

    upsampled = [hl.Func('upsampled%d' % l) for l in range(levels)]
    upsampledx = [hl.Func('upsampledx%d' % l) for l in range(levels)]
    x = hl.Var('x')
    y = hl.Var('y')
    c = hl.Var('c')

    clamped = hl.Func('clamped')
    clamped[x, y, c] = input[hl.clamp(x, 0, input.width() - 1), hl.clamp(y, 0, input.height() - 1), c]

    # This triggers a bug in llvm 3.3 (3.2 and trunk are fine), so we
    # rewrite it in a way that doesn't trigger the bug. The rewritten
    # form assumes the input alpha is zero or one.
    # downsampled[0][x, y, c] = hl.select(c < 3, clamped[x, y, c] * clamped[x, y, 3], clamped[x, y, 3])
    downsampled[0][x, y, c] = clamped[x, y, c] * clamped[x, y, 3]

    for l in range(1, levels):
        prev = downsampled[l - 1]

        if l == 4:
            # Also add a boundary condition at a middle pyramid level
            # to prevent the footprint of the downsamplings to extend
            # too far off the base image. Otherwise we look 512
            # pixels off each edge.
            w = input.width() / (1 << l)
            h = input.height() / (1 << l)
            prev = hl.lambda_func(x, y, c, prev[hl.clamp(x, 0, w), hl.clamp(y, 0, h), c])

        downx[l][x, y, c] = (prev[x * 2 - 1, y, c] + 2.0 * prev[x * 2, y, c] + prev[x * 2 + 1, y, c]) * 0.25
        downsampled[l][x, y, c] = (downx[l][x, y * 2 - 1, c] + 2.0 * downx[l][x, y * 2, c] + downx[l][
            x, y * 2 + 1, c]) * 0.25

    interpolated[levels - 1][x, y, c] = downsampled[levels - 1][x, y, c]
    for l in range(levels - 1)[::-1]:
        upsampledx[l][x, y, c] = (interpolated[l + 1][x / 2, y, c] + interpolated[l + 1][(x + 1) / 2, y, c]) / 2.0
        upsampled[l][x, y, c] = (upsampledx[l][x, y / 2, c] + upsampledx[l][x, (y + 1) / 2, c]) / 2.0
        interpolated[l][x, y, c] = downsampled[l][x, y, c] + (1.0 - downsampled[l][x, y, 3]) * upsampled[l][x, y, c]

    normalize = hl.Func('normalize')
    normalize[x, y, c] = interpolated[0][x, y, c] / interpolated[0][x, y, 3]

    final = hl.Func('final')
    final[x, y, c] = normalize[x, y, c]

    print("Finished function setup.")

    # THE SCHEDULE
    target = hl.get_target_from_environment()
    if target.has_gpu_feature():
        sched = 4
    else:
        sched = 2

    if sched == 0:
        print("Flat schedule.")
        for l in range(levels):
            downsampled[l].compute_root()
            interpolated[l].compute_root()

        final.compute_root()

    elif sched == 1:
        print("Flat schedule with vectorization.")
        for l in range(levels):
            downsampled[l].compute_root().vectorize(x, 4)
            interpolated[l].compute_root().vectorize(x, 4)

        final.compute_root()

    elif sched == 2:
        print("Flat schedule with parallelization + vectorization")
        xi, yi = hl.Var('xi'), hl.Var('yi')
        clamped.compute_root().parallel(y).bound(c, 0, 4).reorder(c, x, y).reorder_storage(c, x, y).vectorize(c, 4)
        for l in range(1, levels - 1):
            if l > 0:
                downsampled[l].compute_root().parallel(y).reorder(c, x, y).reorder_storage(c, x, y).vectorize(c, 4)
            interpolated[l].compute_root().parallel(y).reorder(c, x, y).reorder_storage(c, x, y).vectorize(c, 4)
            interpolated[l].unroll(x, 2).unroll(y, 2)

        final.reorder(c, x, y).bound(c, 0, 3).parallel(y)
        final.tile(x, y, xi, yi, 2, 2).unroll(xi).unroll(yi)
        final.bound(x, 0, input.width())
        final.bound(y, 0, input.height())

    elif sched == 3:
        print("Flat schedule with vectorization sometimes.")
        for l in range(levels):
            if l + 4 < levels:
                downsampled[l].compute_root().vectorize(x, 4)
                interpolated[l].compute_root().vectorize(x, 4)
            else:
                downsampled[l].compute_root()
                interpolated[l].compute_root()

        final.compute_root()

    elif sched == 4:
        print("GPU schedule.")

        # Some gpus don't have enough memory to process the entire
        # image, so we process the image in tiles.
        yo, yi, xo, xi, ci = hl.Var('yo'), hl.Var('yi'), hl.Var('xo'), hl.Var("xi"), hl.Var("ci")
        final.reorder(c, x, y).bound(c, 0, 3).vectorize(x, 4)
        final.tile(x, y, xo, yo, xi, yi, input.width() / 4, input.height() / 4)
        normalize.compute_at(final, xo).reorder(c, x, y).gpu_tile(x, y, xi, yi, 16, 16).unroll(c)

        # Start from level 1 to save memory - level zero will be computed on demand
        for l in range(1, levels):
            tile_size = 32 >> l
            if tile_size < 1: tile_size = 1
            if tile_size > 16: tile_size = 16
            downsampled[l].compute_root().gpu_tile(x, y, c, xi, yi, ci, tile_size, tile_size, 4)
            interpolated[l].compute_at(final, xo).gpu_tile(x, y, c, xi, yi, ci, tile_size, tile_size, 4)

    else:
        print("No schedule with this number.")
        exit(1)

    # JIT compile the pipeline eagerly, so we don't interfere with timing
    final.compile_jit(target)

    return final


def get_input_data():
    image_path = os.path.join(os.path.dirname(__file__), "../../apps/images/rgba.png")
    assert os.path.exists(image_path), "Could not find %s" % image_path

    rgba_data = imageio.imread(image_path)

    # input data is in range [0, 1]
    input_data = np.copy(rgba_data, order="F").astype(np.float32) / 255.0
    return input_data


def main():
    input = hl.ImageParam(float_t, 3, "input")
    levels = 10

    interpolate = get_interpolate(input, levels)

    # preparing input and output memory buffers (numpy ndarrays)
    input_data = get_input_data()
    assert input_data.shape[2] == 4
    input_image = hl.Buffer(input_data)
    input.set(input_image)

    input_width, input_height = input_data.shape[:2]

    t0 = datetime.now()
    output_image = interpolate.realize([input_width, input_height, 3])
    t1 = datetime.now()

    elapsed = (t1 - t0).total_seconds()
    print('Interpolated in {:.5f} secs'.format(elapsed))

    output_data = np.asanyarray(output_image)

    # convert output
    input_data = (input_data * 255).astype(np.uint8)
    output_data = (output_data * 255).astype(np.uint8)

    # save results
    input_path = "interpolate_input.png"
    output_path = "interpolate_result.png"
    imageio.imsave(input_path, input_data)
    imageio.imsave(output_path, output_data)

    print()
    print('blur realized on output image. Result saved at {} (input data copy at {})'.format(output_path, input_path))
    print()
    print("End of game. Have a nice day!")


if __name__ == '__main__':
    main()