1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
#include "Halide.h"
#include "halide_benchmark.h"
using namespace Halide;
using namespace Halide::Tools;
using std::vector;
double run_test_1(bool auto_schedule) {
Var x("x"), y("y"), dx("dx"), dy("dy"), c("c");
Func f("f");
f(x, y, dx, dy) = x + y + dx + dy;
int search_area = 7;
RDom dom(-search_area / 2, search_area, -search_area / 2, search_area, "dom");
// If 'f' is inlined into 'r', the only storage layout that the auto scheduler
// needs to care about is that of 'r'.
Func r("r");
r(x, y, c) += f(x, y + 1, dom.x, dom.y) * f(x, y - 1, dom.x, dom.y) * c;
Target target = get_jit_target_from_environment();
Pipeline p(r);
if (auto_schedule) {
// Provide estimates on the pipeline output
r.set_estimates({{0, 1024}, {0, 1024}, {0, 3}});
// Auto-schedule the pipeline
p.auto_schedule(target);
} else {
/*
r.update(0).fuse(c, y, par).parallel(par).reorder(x, dom.x, dom.y).vectorize(x, 4);
r.fuse(c, y, par).parallel(par).vectorize(x, 4); */
// The sequential schedule in this case seems to perform best which is
// odd have to investigate this further.
}
r.print_loop_nest();
// Run the schedule
Buffer<int> out(1024, 1024, 3);
double t = benchmark(3, 10, [&]() {
p.realize(out);
});
return t * 1000;
}
double run_test_2(bool auto_schedule) {
Var x("x"), y("y"), z("z"), c("c");
int W = 1024;
int H = 1920;
Buffer<uint8_t> left_im(W, H, 3);
Buffer<uint8_t> right_im(W, H, 3);
for (int y = 0; y < left_im.height(); y++) {
for (int x = 0; x < left_im.width(); x++) {
for (int c = 0; c < 3; c++) {
left_im(x, y, c) = rand() & 0xfff;
right_im(x, y, c) = rand() & 0xfff;
}
}
}
Func left = BoundaryConditions::repeat_edge(left_im);
Func right = BoundaryConditions::repeat_edge(right_im);
Func diff;
diff(x, y, z, c) = min(absd(left(x, y, c), right(x + 2 * z, y, c)),
absd(left(x, y, c), right(x + 2 * z + 1, y, c)));
Target target = get_jit_target_from_environment();
Pipeline p(diff);
if (auto_schedule) {
// Provide estimates on the pipeline output
diff.set_estimates({{0, left_im.width()}, {0, left_im.height()}, {0, 32}, {0, 3}});
// Auto-schedule the pipeline
p.auto_schedule(target);
} else {
Var t("t");
diff.reorder(c, z).fuse(c, z, t).parallel(t).vectorize(x, 16);
}
diff.print_loop_nest();
// Run the schedule
Buffer<uint8_t> out(left_im.width(), left_im.height(), 32, 3);
double t = benchmark(3, 10, [&]() {
p.realize(out);
});
return t * 1000;
}
double run_test_3(bool auto_schedule) {
Buffer<uint8_t> im(1024, 1028, 14, 14);
Var x("x"), y("y"), dx("dx"), dy("dy"), c("c");
Func f("f");
f(x, y, dx, dy) = im(x, y, dx, dy);
int search_area = 7;
RDom dom(-search_area / 2, search_area, -search_area / 2, search_area, "dom");
Func r("r");
r(x, y, c) += f(x, y + 1, search_area / 2 + dom.x, search_area / 2 + dom.y) *
f(x, y + 2, search_area / 2 + dom.x, search_area / 2 + dom.y) * c;
Target target = get_jit_target_from_environment();
Pipeline p(r);
if (auto_schedule) {
// Provide estimates on the pipeline output
r.set_estimates({{0, 1024}, {0, 1024}, {0, 3}});
// Auto-schedule the pipeline
p.auto_schedule(target);
} else {
Var par("par");
r.update(0).fuse(c, y, par).parallel(par).reorder(x, dom.x, dom.y).vectorize(x, 4);
r.fuse(c, y, par).parallel(par).vectorize(x, 4);
}
r.print_loop_nest();
// Run the schedule
Buffer<int> out(1024, 1024, 3);
double t = benchmark(3, 10, [&]() {
p.realize(out);
});
return t * 1000;
}
int main(int argc, char **argv) {
if (get_jit_target_from_environment().arch == Target::WebAssembly) {
printf("[SKIP] Autoschedulers do not support WebAssembly.\n");
return 0;
}
if (argc != 2) {
fprintf(stderr, "Usage: %s <autoscheduler-lib>\n", argv[0]);
return 1;
}
load_plugin(argv[1]);
const double slowdown_factor = 6.0;
{
std::cout << "Test 1:\n";
double manual_time = run_test_1(false);
double auto_time = run_test_1(true);
std::cout << "======================\n"
<< "Manual time: " << manual_time << "ms\n"
<< "Auto time: " << auto_time << "ms\n"
<< "======================\n";
if (auto_time > manual_time * slowdown_factor) {
fprintf(stderr, "Warning: Auto-scheduler is much much slower than it should be.\n");
}
}
{
std::cout << "Test 2:"
<< "\n";
double manual_time = run_test_2(false);
double auto_time = run_test_2(true);
std::cout << "======================\n"
<< "Manual time: " << manual_time << "ms\n"
<< "Auto time: " << auto_time << "ms\n"
<< "======================\n";
if (auto_time > manual_time * slowdown_factor) {
fprintf(stderr, "Warning: Auto-scheduler is much much slower than it should be.\n");
}
}
{
std::cout << "Test 3:\n";
double manual_time = run_test_3(false);
double auto_time = run_test_3(true);
std::cout << "======================\n"
<< "Manual time: " << manual_time << "ms\n"
<< "Auto time: " << auto_time << "ms\n"
<< "======================\n";
if (auto_time > manual_time * slowdown_factor) {
fprintf(stderr, "Warning: Auto-scheduler is much much slower than it should be.\n");
}
}
printf("Success!\n");
return 0;
}
|