1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
#include "Halide.h"
#include <limits>
using namespace Halide;
bool check_infinity_case(bool use_first, float16_t value, const char *value_name,
int increment, float16_t expected_first, float16_t expected_second,
const char *first_name, const char *second_name) {
if (value != (use_first ? expected_first : expected_second)) {
printf("%s %d is %x, not %s.\n", value_name, increment, value.to_bits(),
(use_first ? first_name : second_name));
return false;
}
return true;
}
int main(int argc, char **argv) {
Var x;
Buffer<float16_t> in1 = lambda(x, cast<float16_t>(-0.5f) + cast<float16_t>(x) / (128)).realize({128});
Buffer<bfloat16_t> in2 = lambda(x, cast<bfloat16_t>(-0.5f) + cast<bfloat16_t>(x) / (128)).realize({128});
// Check the Halide-side float 16 conversion math matches the C++-side math.
in1.for_each_element([&](int i) {
float16_t correct = Halide::float16_t(-0.5f) + Halide::float16_t(i) / Halide::float16_t(128.0f);
if (in1(i) != correct) {
printf("in1(%d) = %f instead of %f\n", i, float(in2(i)), float(correct));
abort();
}
});
in2.for_each_element([&](int i) {
bfloat16_t correct = Halide::bfloat16_t(-0.5f) + Halide::bfloat16_t(i) / Halide::bfloat16_t(128.0f);
if (in2(i) != correct) {
printf("in2(%d) = %f instead of %f\n", i, float(in2(i)), float(correct));
abort();
}
});
// Check some basic math works on float16. More math is tested in
// correctness_vector_math.
Func wrap1, wrap2;
wrap1(x) = in1(x);
wrap2(x) = in2(x);
Func f;
f(x) = abs(sqrt(abs(wrap1(x) * 4.0f)) - sqrt(abs(wrap2(x))) * 2.0f);
f.compute_root().vectorize(x, 16);
wrap1.compute_at(f, x).vectorize(x);
wrap2.compute_at(f, x).vectorize(x);
RDom r(0, 128);
Func g;
g() = maximum(cast<double>(f(r)));
double d = evaluate<double>(g());
if (d != 0) {
printf("Should be zero: %f\n", d);
return -1;
}
// Check scalar parameters
{
Param<float16_t> a;
Param<bfloat16_t> b;
a.set(float16_t(1.5f));
b.set(bfloat16_t(2.75f));
float result = evaluate<float>(cast<float>(a) + cast<float>(b));
if (result != 4.25f) {
printf("Incorrect result: %f != 4.25f\n", result);
return 1;
}
}
// Check scalar parameters work using a problematic case
{
Param<float16_t> a, b, c;
a.set(float16_t(24.062500f));
b.set(float16_t(30.187500f));
c.set(float16_t(0));
float16_t result = evaluate<float16_t>(lerp(a, b, c));
if (float(result) != 24.062500f) {
printf("Incorrect result: %f != 24.0625f\n", (float)result);
return 1;
}
}
{
Param<bfloat16_t> a, b, c;
a.set(bfloat16_t(24.5f));
b.set(bfloat16_t(30.5f));
c.set(bfloat16_t(0));
bfloat16_t result = evaluate<bfloat16_t>(lerp(a, b, c));
if (float(result) != 24.5f) {
printf("Incorrect result: %f != 24.5f\n", (float)result);
return 1;
}
}
// Check that ties round towards a zero last bit on narrowing conversions
{
bfloat16_t start = bfloat16_t(37.2789f);
for (uint16_t x = 0; x < 8; x++) {
bfloat16_t a = bfloat16_t::make_from_bits(start.to_bits() + x);
bfloat16_t b = bfloat16_t::make_from_bits(start.to_bits() + x + 1);
bfloat16_t ab = bfloat16_t(((float)a + (float)b) / 2);
if (a > ab || ab > b) {
printf("Misordered: %x %x %x\n", a.to_bits(), ab.to_bits(), b.to_bits());
}
bool ok = (((a.to_bits() & 1) && (ab == b)) ||
((b.to_bits() & 1) && (ab == a)));
if (!ok) {
printf("Incorrect rounding: %x %x %x\n", a.to_bits(), ab.to_bits(), b.to_bits());
return -1;
}
}
}
// Check that ties round towards a zero last bit on narrowing conversions
{
float16_t start = float16_t(37.2789f);
for (uint16_t x = 0; x < 8; x++) {
float16_t a = float16_t::make_from_bits(start.to_bits() + x);
float16_t b = float16_t::make_from_bits(start.to_bits() + x + 1);
float16_t ab = float16_t(((float)a + (float)b) / 2);
if (a > ab || ab > b) {
printf("Misordered: %x %x %x\n", a.to_bits(), ab.to_bits(), b.to_bits());
}
bool ok = (((a.to_bits() & 1) && (ab == b)) ||
((b.to_bits() & 1) && (ab == a)));
if (!ok) {
printf("Incorrect rounding: %x %x %x\n", a.to_bits(), ab.to_bits(), b.to_bits());
return -1;
}
}
}
// Check rounding intrinsics
{
Func noise;
Var x;
noise(x) = (random_int() % 256) * 0.1f;
noise.compute_root();
Func trunc_f32 = lambda(x, trunc(noise(x)));
Func round_f32 = lambda(x, round(noise(x)));
Func ceil_f32 = lambda(x, ceil(noise(x)));
Func floor_f32 = lambda(x, floor(noise(x)));
Func trunc_f16 = lambda(x, trunc(cast<float16_t>(noise(x))));
Func round_f16 = lambda(x, round(cast<float16_t>(noise(x))));
Func ceil_f16 = lambda(x, ceil(cast<float16_t>(noise(x))));
Func floor_f16 = lambda(x, floor(cast<float16_t>(noise(x))));
std::vector<Func> funcs = {trunc_f32, round_f32, ceil_f32, floor_f32,
trunc_f16, round_f16, ceil_f16, floor_f16};
for (auto f : funcs) {
f.compute_root().vectorize(x, 16);
}
const char *names[] = {"trunc", "round", "ceil", "floor"};
Pipeline p(funcs);
Realization r = p.realize({1024});
for (int i = 0; i < 1024; i++) {
for (int j = 0; j < 4; j++) {
float f32 = Buffer<float>(r[j])(i);
float f16 = float(Buffer<float16_t>(r[j + 4])(i));
if (f32 != f16) {
printf("%s outputs do not match: %f %f\n",
names[j], f32, f16);
return -1;
}
}
}
}
Target target = get_jit_target_from_environment();
if (target.has_feature(Target::CUDA) ||
target.has_feature(Target::Metal)) {
// Check we can pass a float16 to a GPU kernel. Skip OpenCL
// because support is spotty.
Var x, y;
ImageParam input(Float(16), 2);
Param<float16_t> mul("mul");
Func output;
output(x, y) = x * y * (input(x, y) * mul);
Var xi, yi;
output.gpu_tile(x, y, xi, yi, 8, 8);
mul.set(float16_t(2.0f));
Buffer<float16_t> in(8, 8);
in.fill(float16_t(0.25f));
input.set(in);
Buffer<float16_t> buf = output.realize({8, 8});
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
float16_t correct = float16_t((x * y) / 2.0f);
if (buf(x, y).to_bits() != correct.to_bits()) {
printf("buf(%d, %d) = 0x%x instead of 0x%x\n",
x, y, buf(x, y).to_bits(), correct.to_bits());
return -1;
}
}
}
}
{
// Check constants are emitted correctly
Func out;
float16_t constant(100.0f);
out() = constant;
Buffer<float16_t> buf = out.realize();
if (buf(0) != constant) {
printf("buf(0) = %f instead of %f\n", float(buf(0)), float(constant));
return -1;
}
}
// Enable to read assembly generated by the conversion routines
if ((false)) { // Intentional dead code. Extra parens to pacify clang-tidy.
Func src, to_f16, from_f16;
src(x) = cast<float>(x);
to_f16(x) = cast<float16_t>(src(x));
from_f16(x) = cast<float>(to_f16(x));
src.compute_root().vectorize(x, 8, TailStrategy::RoundUp);
to_f16.compute_root().vectorize(x, 8, TailStrategy::RoundUp);
from_f16.compute_root().vectorize(x, 8, TailStrategy::RoundUp);
from_f16.compile_to_assembly("/dev/stdout", {}, Target("host-no_asserts-no_bounds_query-no_runtime-disable_llvm_loop_unroll-disable_llvm_loop_vectorize"));
}
// Check infinity handling for both float16_t and Halide codegen.
{
std::pair<int, bool> test_cases[] =
{{1, false}, {16, true}, {256, true}};
for (const auto &test_case : test_cases) {
float16_t max_pos_val = float16_t::make_from_bits(0x7bff);
float16_t min_neg_val = float16_t::make_from_bits(0xfbff);
float16_t increment(test_case.first);
float16_t max_plus_increment(max_pos_val + increment);
if (!check_infinity_case(test_case.second, max_plus_increment,
"float16_t maximum value plus", test_case.first,
float16_t::make_infinity(), max_pos_val,
"positive infinity", "maximum positive value")) {
return -1;
}
float16_t min_minus_increment(min_neg_val - increment);
if (!check_infinity_case(test_case.second, min_minus_increment,
"float16_t minimum value minus", test_case.first,
float16_t::make_negative_infinity(), min_neg_val,
"negative infinity", "maximum negative value")) {
return -1;
}
Param<float16_t> a("a"), b("b");
a.set(max_pos_val);
b.set(increment);
float16_t c = evaluate<float16_t>(a + b);
if (!check_infinity_case(test_case.second, c,
"Halide float16_t maximum value plus", test_case.first,
float16_t::make_infinity(), max_pos_val,
"positive infinity", "maximum positive value")) {
return -1;
}
a.set(min_neg_val);
c = evaluate<float16_t>(a - b);
if (!check_infinity_case(test_case.second, c,
"Halide float16_t minimum value minus", test_case.first,
float16_t::make_negative_infinity(), min_neg_val,
"negative infinity", "maximum negative value")) {
return -1;
}
float pos_inf = std::numeric_limits<float>::infinity();
float16_t fp16_pos_inf(pos_inf);
if (fp16_pos_inf != float16_t::make_infinity()) {
printf("Conversion of 32-bit positive infinity to 16-bit float is %x, not positive infinity.\n", fp16_pos_inf.to_bits());
return -1;
}
float neg_inf = -std::numeric_limits<float>::infinity();
float16_t fp16_neg_inf(neg_inf);
if (fp16_neg_inf != float16_t::make_negative_infinity()) {
printf("Conversion of 32-bit negative infinity to 16-bit float is %x, not negative infinity.\n", fp16_neg_inf.to_bits());
return -1;
}
Param<float> f_in("f_in");
f_in.set(pos_inf);
c = evaluate<float16_t>(cast(Float(16), f_in));
if (c != float16_t::make_infinity()) {
printf("Halide conversion of 32-bit positive infinity to 16-bit float is %x, not positive infinity.\n", c.to_bits());
return -1;
}
f_in.set(neg_inf);
c = evaluate<float16_t>(cast(Float(16), f_in));
if (c != float16_t::make_negative_infinity()) {
printf("Halide conversion of 32-bit negative infinity to 16-bit float is %x, not negative infinity.\n", c.to_bits());
return -1;
}
}
}
printf("Success!\n");
return 0;
}
|