File: fuzz_bounds.cpp

package info (click to toggle)
halide 14.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 49,124 kB
  • sloc: cpp: 238,722; makefile: 4,303; python: 4,047; java: 1,575; sh: 1,384; pascal: 211; xml: 165; javascript: 43; ansic: 34
file content (515 lines) | stat: -rw-r--r-- 15,996 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
#include "Halide.h"
#include <array>
#include <random>
#include <stdio.h>
#include <time.h>

namespace {

using std::map;
using std::string;
using namespace Halide;
using namespace Halide::Internal;

#define internal_assert _halide_user_assert

const int fuzz_var_count = 5;

std::mt19937 rng(0);

Type fuzz_types[] = {UInt(1), UInt(8), UInt(16), UInt(32), Int(8), Int(16), Int(32)};
const int fuzz_type_count = sizeof(fuzz_types) / sizeof(fuzz_types[0]);

std::string fuzz_var(int i) {
    return std::string(1, 'a' + i);
}

// This is modified for each round.
static Type global_var_type = Int(32);

Expr random_var() {
    int fuzz_count = rng() % fuzz_var_count;
    return Variable::make(global_var_type, fuzz_var(fuzz_count));
}

Type random_type(int width) {
    Type T = fuzz_types[rng() % fuzz_type_count];

    if (width > 1) {
        T = T.with_lanes(width);
    }
    return T;
}

int get_random_divisor(Type t) {
    std::vector<int> divisors = {t.lanes()};
    for (int dd = 2; dd < t.lanes(); dd++) {
        if (t.lanes() % dd == 0) {
            divisors.push_back(dd);
        }
    }

    return divisors[rng() % divisors.size()];
}

Expr random_leaf(Type T, bool overflow_undef = false, bool imm_only = false) {
    if (T.is_int() && T.bits() == 32) {
        overflow_undef = true;
    }
    if (T.is_scalar()) {
        int var = rng() % fuzz_var_count + 1;
        if (!imm_only && var < fuzz_var_count) {
            auto v1 = random_var();
            return cast(T, v1);
        } else if (overflow_undef) {
            // For Int(32), we don't care about correctness during
            // overflow, so just use numbers that are unlikely to
            // overflow.
            return cast(T, (int)(rng() % 256 - 128));
        } else {
            return cast(T, (int)(rng() - RAND_MAX / 2));
        }
    } else {
        int lanes = get_random_divisor(T);
        if (rng() % 2 == 0) {
            auto e1 = random_leaf(T.with_lanes(T.lanes() / lanes), overflow_undef);
            auto e2 = random_leaf(T.with_lanes(T.lanes() / lanes), overflow_undef);
            return Ramp::make(e1, e2, lanes);
        } else {
            auto e1 = random_leaf(T.with_lanes(T.lanes() / lanes), overflow_undef);
            return Broadcast::make(e1, lanes);
        }
    }
}

Expr random_expr(Type T, int depth, bool overflow_undef = false);

Expr random_condition(Type T, int depth, bool maybe_scalar) {
    typedef Expr (*make_bin_op_fn)(Expr, Expr);
    static make_bin_op_fn make_bin_op[] = {
        EQ::make,
        NE::make,
        LT::make,
        LE::make,
        GT::make,
        GE::make,
    };
    const int op_count = sizeof(make_bin_op) / sizeof(make_bin_op[0]);

    if (maybe_scalar && rng() % T.lanes() == 0) {
        T = T.element_of();
    }

    Expr a = random_expr(T, depth);
    Expr b = random_expr(T, depth);
    int op = rng() % op_count;
    return make_bin_op[op](a, b);
}

Expr random_expr(Type T, int depth, bool overflow_undef) {
    typedef Expr (*make_bin_op_fn)(Expr, Expr);
    static make_bin_op_fn make_bin_op[] = {
        Add::make,
        Sub::make,
        Mul::make,
        Min::make,
        Max::make,
        Div::make,
        Mod::make,
    };

    static make_bin_op_fn make_bool_bin_op[] = {
        And::make,
        Or::make,
    };

    if (T.is_int() && T.bits() == 32) {
        overflow_undef = true;
    }

    if (depth-- <= 0) {
        return random_leaf(T, overflow_undef);
    }

    const int bin_op_count = sizeof(make_bin_op) / sizeof(make_bin_op[0]);
    const int bool_bin_op_count = sizeof(make_bool_bin_op) / sizeof(make_bool_bin_op[0]);
    const int op_count = bin_op_count + bool_bin_op_count + 5;

    int op = rng() % op_count;
    switch (op) {
    case 0:
        return random_leaf(T);
    case 1: {
        auto c = random_condition(T, depth, true);
        auto e1 = random_expr(T, depth, overflow_undef);
        auto e2 = random_expr(T, depth, overflow_undef);
        return Select::make(c, e1, e2);
    }
    case 2:
        if (T.lanes() != 1) {
            int lanes = get_random_divisor(T);
            auto e1 = random_expr(T.with_lanes(T.lanes() / lanes), depth, overflow_undef);
            return Broadcast::make(e1, lanes);
        }
        break;
    case 3:
        if (T.lanes() != 1) {
            int lanes = get_random_divisor(T);
            auto e1 = random_expr(T.with_lanes(T.lanes() / lanes), depth, overflow_undef);
            auto e2 = random_expr(T.with_lanes(T.lanes() / lanes), depth, overflow_undef);
            return Ramp::make(e1, e2, lanes);
        }
        break;

    case 4:
        if (T.is_bool()) {
            auto e1 = random_expr(T, depth);
            return Not::make(e1);
        }
        break;

    case 5:
        // When generating boolean expressions, maybe throw in a condition on non-bool types.
        if (T.is_bool()) {
            return random_condition(random_type(T.lanes()), depth, false);
        }
        break;

    case 6: {
        // Get a random type that isn't T or int32 (int32 can overflow and we don't care about that).
        Type subT;
        do {
            subT = random_type(T.lanes());
        } while (subT == T || (subT.is_int() && subT.bits() == 32));
        auto e1 = random_expr(subT, depth, overflow_undef);
        return Cast::make(T, e1);
    }

    default:
        make_bin_op_fn maker;
        if (T.is_bool()) {
            maker = make_bool_bin_op[op % bool_bin_op_count];
        } else {
            maker = make_bin_op[op % bin_op_count];
        }
        Expr a = random_expr(T, depth, overflow_undef);
        Expr b = random_expr(T, depth, overflow_undef);
        return maker(a, b);
    }
    // If we got here, try again.
    return random_expr(T, depth, overflow_undef);
}

// These are here to enable copy of failed output expressions and pasting them into the test for debugging.
Expr ramp(Expr b, Expr s, int w) {
    return Ramp::make(b, s, w);
}
Expr x1(Expr x) {
    return Broadcast::make(x, 2);
}
Expr x2(Expr x) {
    return Broadcast::make(x, 2);
}
Expr x3(Expr x) {
    return Broadcast::make(x, 3);
}
Expr x4(Expr x) {
    return Broadcast::make(x, 2);
}
Expr x6(Expr x) {
    return Broadcast::make(x, 6);
}
Expr x8(Expr x) {
    return Broadcast::make(x, 8);
}
Expr uint1(Expr x) {
    return Cast::make(UInt(1), x);
}
Expr uint8(Expr x) {
    return Cast::make(UInt(8), x);
}
Expr uint16(Expr x) {
    return Cast::make(UInt(16), x);
}
Expr uint32(Expr x) {
    return Cast::make(UInt(32), x);
}
Expr int8(Expr x) {
    return Cast::make(Int(8), x);
}
Expr int16(Expr x) {
    return Cast::make(Int(16), x);
}
Expr int32(Expr x) {
    return Cast::make(Int(32), x);
}
Expr uint1x2(Expr x) {
    return Cast::make(UInt(1).with_lanes(2), x);
}
Expr uint8x2(Expr x) {
    return Cast::make(UInt(8).with_lanes(2), x);
}
Expr uint16x2(Expr x) {
    return Cast::make(UInt(16).with_lanes(2), x);
}
Expr uint32x2(Expr x) {
    return Cast::make(UInt(32).with_lanes(2), x);
}
Expr uint32x3(Expr x) {
    return Cast::make(UInt(32).with_lanes(3), x);
}
Expr int8x2(Expr x) {
    return Cast::make(Int(8).with_lanes(2), x);
}
Expr int16x2(Expr x) {
    return Cast::make(Int(16).with_lanes(2), x);
}
Expr int16x3(Expr x) {
    return Cast::make(Int(16).with_lanes(3), x);
}
Expr int32x2(Expr x) {
    return Cast::make(Int(32).with_lanes(2), x);
}

Expr a(Variable::make(global_var_type, fuzz_var(0)));
Expr b(Variable::make(global_var_type, fuzz_var(1)));
Expr c(Variable::make(global_var_type, fuzz_var(2)));
Expr d(Variable::make(global_var_type, fuzz_var(3)));
Expr e(Variable::make(global_var_type, fuzz_var(4)));

int random_in_range(int min_value, int max_value) {
    if (min_value == max_value) {
        return min_value;
    }
    return (rng() % (max_value - min_value)) + min_value;
}

std::ostream &operator<<(std::ostream &stream, const Interval &interval) {
    stream << "[" << interval.min << ", " << interval.max << "]";
    return stream;
}

Interval random_interval(Type T) {
    Interval interval;

    int min_value = -128;
    int max_value = 128;

    Type t = T.element_of();
    if ((t.is_uint() || (t.is_int() && t.bits() <= 16))) {
        Expr t_min = t.min();
        Expr t_max = t.max();
        if (auto ptr = as_const_int(t_min)) {
            min_value = *ptr;
        } else if (auto ptr = as_const_uint(t_min)) {
            min_value = *ptr;
        } else {
            std::cerr << "random_interval failed to find min of: " << T << "\n";
        }
        if (auto ptr = as_const_int(t_max)) {
            max_value = *ptr;
        } else if (auto ptr = as_const_uint(t_max)) {
            // can't represent all uint32_t in int type
            if (*ptr <= 128) {
                max_value = *ptr;
            }
        } else {
            std::cerr << "random_interval failed to find max of: " << T << "\n";
        }
    }

    // Try to get rid of very large values that might overflow.
    min_value = std::max(min_value, -128);
    max_value = std::min(max_value, 128);

    // change the min_value for the calculation of max
    min_value = random_in_range(min_value, max_value);
    interval.min = cast(T, min_value);

    max_value = random_in_range(min_value, max_value);
    interval.max = cast(T, max_value);

    if (min_value > max_value || (interval.is_bounded() && can_prove(interval.min > interval.max))) {
        std::cerr << "random_interval failed: ";
        std::cerr << min_value << " > " << max_value << "\n";
        std::cerr << interval.min << " > " << interval.max << "\n";
        std::cerr << interval << "\n";
        internal_assert(false) << "random_interval failed\n";
    }

    return interval;
}

int sample_interval(const Interval &interval) {
    // Values chosen so intervals don't repeatedly produce signed_overflow when simplified.
    int min_value = -128;
    int max_value = 128;

    if (interval.has_lower_bound()) {
        if (auto ptr = as_const_int(interval.min)) {
            min_value = *ptr;
        } else if (auto ptr = as_const_uint(interval.min)) {
            min_value = *ptr;
        } else {
            internal_assert(false) << "sample_interval (min) failed: " << interval.min << "\n";
        }
    }

    if (interval.has_upper_bound()) {
        if (auto ptr = as_const_int(interval.max)) {
            max_value = *ptr;
        } else if (auto ptr = as_const_uint(interval.max)) {
            max_value = *ptr;
        } else {
            internal_assert(false) << "sample_interval (max) failed: " << interval.max << "\n";
        }
    }

    int value = random_in_range(min_value, max_value);
    return value;
}

bool test_bounds(Expr test, const Interval &interval, Type T, const map<string, Expr> &vars) {
    for (int j = 0; j < T.lanes(); j++) {
        Expr a_j = test;
        if (T.lanes() != 1) {
            a_j = extract_lane(test, j);
        }

        Expr a_j_v = simplify(substitute(vars, a_j));

        if (!is_const(a_j_v)) {
            // Probably overflow, abort.
            continue;
        }

        // This fuzzer only looks for constant bounds, otherwise it's probably overflow.
        if (interval.has_upper_bound()) {
            if (!can_prove(a_j_v <= interval.max)) {
                std::cerr << "can't prove upper bound: " << (a_j_v <= interval.max) << "\n";
                for (auto v = vars.begin(); v != vars.end(); v++) {
                    std::cerr << v->first << " = " << v->second << "\n";
                }

                std::cerr << test << "\n";
                std::cerr << interval << "\n";
                std::cerr << "In vector lane " << j << ":\n";
                std::cerr << a_j << " -> " << a_j_v << "\n";
                return false;
            }
        }

        if (interval.has_lower_bound()) {
            if (!can_prove(a_j_v >= interval.min)) {
                std::cerr << "can't prove lower bound: " << (a_j_v >= interval.min) << "\n";
                std::cerr << "Expr: " << test << "\n";
                std::cerr << "Interval: " << interval << "\n";

                for (auto v = vars.begin(); v != vars.end(); v++) {
                    std::cerr << v->first << " = " << v->second << "\n";
                }

                std::cerr << "In vector lane " << j << ":\n";
                std::cerr << a_j << " -> " << a_j_v << "\n";
                return false;
            }
        }
    }
    return true;
}

bool test_expression_bounds(Expr test, int trials, int samples_per_trial) {

    map<string, Expr> vars;
    for (int i = 0; i < fuzz_var_count; i++) {
        vars[fuzz_var(i)] = Expr();
    }

    for (int i = 0; i < trials; i++) {
        Scope<Interval> scope;

        for (auto v = vars.begin(); v != vars.end(); v++) {
            // This type is used because the variables will be this type for a given round.
            Interval interval = random_interval(global_var_type);
            scope.push(v->first, interval);
        }

        Interval interval = bounds_of_expr_in_scope(test, scope);
        interval.min = simplify(interval.min);
        interval.max = simplify(interval.max);

        if (!(interval.has_upper_bound() || interval.has_lower_bound())) {
            // For now, return. Assumes that no other combo
            // will produce a bounded interval (not necessarily true).
            // This is to shorten the amount of output from this test.
            return true;  // any result is allowed
        }

        if ((interval.has_upper_bound() && is_signed_integer_overflow(interval.max)) ||
            (interval.has_lower_bound() && is_signed_integer_overflow(interval.min))) {
            // Quit for now, assume other intervals will produce the same results.
            return true;
        }

        if (!is_const(interval.min) || !is_const(interval.max)) {
            // Likely signed_integer_overflow, give up now.
            return true;
        }

        for (int j = 0; j < samples_per_trial; j++) {
            for (std::map<string, Expr>::iterator v = vars.begin(); v != vars.end(); v++) {
                Interval interval = scope.get(v->first);
                v->second = cast(global_var_type, sample_interval(interval));
            }

            if (!test_bounds(test, interval, test.type(), vars)) {
                std::cerr << "scope {"
                          << "\n";
                for (auto v = vars.begin(); v != vars.end(); v++) {
                    std::cerr << "\t" << v->first << " : " << scope.get(v->first) << "\n";
                }
                std::cerr << "}"
                          << "\n";
                return false;
            }
        }
    }
    return true;
}

}  // namespace

int main(int argc, char **argv) {
    // Number of random expressions to test.
    const int count = 100;
    // Depth of the randomly generated expression trees.
    const int depth = 3;
    // Number of trials to test the generated expressions for.
    const int trials = 10;
    // Number of samples of the intervals per trial to test.
    const int samples = 10;

    // We want different fuzz tests every time, to increase coverage.
    // We also report the seed to enable reproducing failures.
    int fuzz_seed = argc > 1 ? atoi(argv[1]) : time(nullptr);
    rng.seed(fuzz_seed);
    std::cout << "bounds inference fuzz test seed: " << fuzz_seed << "\n";

    std::array<int, 6> vector_widths = {1, 2, 3, 4, 6, 8};
    for (int n = 0; n < count; n++) {
        // int width = 1;
        int width = vector_widths[rng() % vector_widths.size()];
        // This is the type that will be the innermost (leaf) value type.
        Type expr_type = random_type(width);
        Type var_type = random_type(1);
        global_var_type = var_type;
        // Generate a random expr...
        Expr test = random_expr(expr_type, depth);
        if (!test_expression_bounds(test, trials, samples)) {
            return -1;
        }
    }

    std::cout << "Success!\n";
    return 0;
}