1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
#include "Halide.h"
#include <array>
#include <random>
#include <stdio.h>
#include <time.h>
namespace {
using std::map;
using std::string;
using namespace Halide;
using namespace Halide::Internal;
#define internal_assert _halide_user_assert
const int fuzz_var_count = 5;
std::mt19937 rng(0);
Type fuzz_types[] = {UInt(1), UInt(8), UInt(16), UInt(32), Int(8), Int(16), Int(32)};
const int fuzz_type_count = sizeof(fuzz_types) / sizeof(fuzz_types[0]);
std::string fuzz_var(int i) {
return std::string(1, 'a' + i);
}
// This is modified for each round.
static Type global_var_type = Int(32);
Expr random_var() {
int fuzz_count = rng() % fuzz_var_count;
return Variable::make(global_var_type, fuzz_var(fuzz_count));
}
Type random_type(int width) {
Type T = fuzz_types[rng() % fuzz_type_count];
if (width > 1) {
T = T.with_lanes(width);
}
return T;
}
int get_random_divisor(Type t) {
std::vector<int> divisors = {t.lanes()};
for (int dd = 2; dd < t.lanes(); dd++) {
if (t.lanes() % dd == 0) {
divisors.push_back(dd);
}
}
return divisors[rng() % divisors.size()];
}
Expr random_leaf(Type T, bool overflow_undef = false, bool imm_only = false) {
if (T.is_int() && T.bits() == 32) {
overflow_undef = true;
}
if (T.is_scalar()) {
int var = rng() % fuzz_var_count + 1;
if (!imm_only && var < fuzz_var_count) {
auto v1 = random_var();
return cast(T, v1);
} else if (overflow_undef) {
// For Int(32), we don't care about correctness during
// overflow, so just use numbers that are unlikely to
// overflow.
return cast(T, (int)(rng() % 256 - 128));
} else {
return cast(T, (int)(rng() - RAND_MAX / 2));
}
} else {
int lanes = get_random_divisor(T);
if (rng() % 2 == 0) {
auto e1 = random_leaf(T.with_lanes(T.lanes() / lanes), overflow_undef);
auto e2 = random_leaf(T.with_lanes(T.lanes() / lanes), overflow_undef);
return Ramp::make(e1, e2, lanes);
} else {
auto e1 = random_leaf(T.with_lanes(T.lanes() / lanes), overflow_undef);
return Broadcast::make(e1, lanes);
}
}
}
Expr random_expr(Type T, int depth, bool overflow_undef = false);
Expr random_condition(Type T, int depth, bool maybe_scalar) {
typedef Expr (*make_bin_op_fn)(Expr, Expr);
static make_bin_op_fn make_bin_op[] = {
EQ::make,
NE::make,
LT::make,
LE::make,
GT::make,
GE::make,
};
const int op_count = sizeof(make_bin_op) / sizeof(make_bin_op[0]);
if (maybe_scalar && rng() % T.lanes() == 0) {
T = T.element_of();
}
Expr a = random_expr(T, depth);
Expr b = random_expr(T, depth);
int op = rng() % op_count;
return make_bin_op[op](a, b);
}
Expr random_expr(Type T, int depth, bool overflow_undef) {
typedef Expr (*make_bin_op_fn)(Expr, Expr);
static make_bin_op_fn make_bin_op[] = {
Add::make,
Sub::make,
Mul::make,
Min::make,
Max::make,
Div::make,
Mod::make,
};
static make_bin_op_fn make_bool_bin_op[] = {
And::make,
Or::make,
};
if (T.is_int() && T.bits() == 32) {
overflow_undef = true;
}
if (depth-- <= 0) {
return random_leaf(T, overflow_undef);
}
const int bin_op_count = sizeof(make_bin_op) / sizeof(make_bin_op[0]);
const int bool_bin_op_count = sizeof(make_bool_bin_op) / sizeof(make_bool_bin_op[0]);
const int op_count = bin_op_count + bool_bin_op_count + 5;
int op = rng() % op_count;
switch (op) {
case 0:
return random_leaf(T);
case 1: {
auto c = random_condition(T, depth, true);
auto e1 = random_expr(T, depth, overflow_undef);
auto e2 = random_expr(T, depth, overflow_undef);
return Select::make(c, e1, e2);
}
case 2:
if (T.lanes() != 1) {
int lanes = get_random_divisor(T);
auto e1 = random_expr(T.with_lanes(T.lanes() / lanes), depth, overflow_undef);
return Broadcast::make(e1, lanes);
}
break;
case 3:
if (T.lanes() != 1) {
int lanes = get_random_divisor(T);
auto e1 = random_expr(T.with_lanes(T.lanes() / lanes), depth, overflow_undef);
auto e2 = random_expr(T.with_lanes(T.lanes() / lanes), depth, overflow_undef);
return Ramp::make(e1, e2, lanes);
}
break;
case 4:
if (T.is_bool()) {
auto e1 = random_expr(T, depth);
return Not::make(e1);
}
break;
case 5:
// When generating boolean expressions, maybe throw in a condition on non-bool types.
if (T.is_bool()) {
return random_condition(random_type(T.lanes()), depth, false);
}
break;
case 6: {
// Get a random type that isn't T or int32 (int32 can overflow and we don't care about that).
Type subT;
do {
subT = random_type(T.lanes());
} while (subT == T || (subT.is_int() && subT.bits() == 32));
auto e1 = random_expr(subT, depth, overflow_undef);
return Cast::make(T, e1);
}
default:
make_bin_op_fn maker;
if (T.is_bool()) {
maker = make_bool_bin_op[op % bool_bin_op_count];
} else {
maker = make_bin_op[op % bin_op_count];
}
Expr a = random_expr(T, depth, overflow_undef);
Expr b = random_expr(T, depth, overflow_undef);
return maker(a, b);
}
// If we got here, try again.
return random_expr(T, depth, overflow_undef);
}
// These are here to enable copy of failed output expressions and pasting them into the test for debugging.
Expr ramp(Expr b, Expr s, int w) {
return Ramp::make(b, s, w);
}
Expr x1(Expr x) {
return Broadcast::make(x, 2);
}
Expr x2(Expr x) {
return Broadcast::make(x, 2);
}
Expr x3(Expr x) {
return Broadcast::make(x, 3);
}
Expr x4(Expr x) {
return Broadcast::make(x, 2);
}
Expr x6(Expr x) {
return Broadcast::make(x, 6);
}
Expr x8(Expr x) {
return Broadcast::make(x, 8);
}
Expr uint1(Expr x) {
return Cast::make(UInt(1), x);
}
Expr uint8(Expr x) {
return Cast::make(UInt(8), x);
}
Expr uint16(Expr x) {
return Cast::make(UInt(16), x);
}
Expr uint32(Expr x) {
return Cast::make(UInt(32), x);
}
Expr int8(Expr x) {
return Cast::make(Int(8), x);
}
Expr int16(Expr x) {
return Cast::make(Int(16), x);
}
Expr int32(Expr x) {
return Cast::make(Int(32), x);
}
Expr uint1x2(Expr x) {
return Cast::make(UInt(1).with_lanes(2), x);
}
Expr uint8x2(Expr x) {
return Cast::make(UInt(8).with_lanes(2), x);
}
Expr uint16x2(Expr x) {
return Cast::make(UInt(16).with_lanes(2), x);
}
Expr uint32x2(Expr x) {
return Cast::make(UInt(32).with_lanes(2), x);
}
Expr uint32x3(Expr x) {
return Cast::make(UInt(32).with_lanes(3), x);
}
Expr int8x2(Expr x) {
return Cast::make(Int(8).with_lanes(2), x);
}
Expr int16x2(Expr x) {
return Cast::make(Int(16).with_lanes(2), x);
}
Expr int16x3(Expr x) {
return Cast::make(Int(16).with_lanes(3), x);
}
Expr int32x2(Expr x) {
return Cast::make(Int(32).with_lanes(2), x);
}
Expr a(Variable::make(global_var_type, fuzz_var(0)));
Expr b(Variable::make(global_var_type, fuzz_var(1)));
Expr c(Variable::make(global_var_type, fuzz_var(2)));
Expr d(Variable::make(global_var_type, fuzz_var(3)));
Expr e(Variable::make(global_var_type, fuzz_var(4)));
int random_in_range(int min_value, int max_value) {
if (min_value == max_value) {
return min_value;
}
return (rng() % (max_value - min_value)) + min_value;
}
std::ostream &operator<<(std::ostream &stream, const Interval &interval) {
stream << "[" << interval.min << ", " << interval.max << "]";
return stream;
}
Interval random_interval(Type T) {
Interval interval;
int min_value = -128;
int max_value = 128;
Type t = T.element_of();
if ((t.is_uint() || (t.is_int() && t.bits() <= 16))) {
Expr t_min = t.min();
Expr t_max = t.max();
if (auto ptr = as_const_int(t_min)) {
min_value = *ptr;
} else if (auto ptr = as_const_uint(t_min)) {
min_value = *ptr;
} else {
std::cerr << "random_interval failed to find min of: " << T << "\n";
}
if (auto ptr = as_const_int(t_max)) {
max_value = *ptr;
} else if (auto ptr = as_const_uint(t_max)) {
// can't represent all uint32_t in int type
if (*ptr <= 128) {
max_value = *ptr;
}
} else {
std::cerr << "random_interval failed to find max of: " << T << "\n";
}
}
// Try to get rid of very large values that might overflow.
min_value = std::max(min_value, -128);
max_value = std::min(max_value, 128);
// change the min_value for the calculation of max
min_value = random_in_range(min_value, max_value);
interval.min = cast(T, min_value);
max_value = random_in_range(min_value, max_value);
interval.max = cast(T, max_value);
if (min_value > max_value || (interval.is_bounded() && can_prove(interval.min > interval.max))) {
std::cerr << "random_interval failed: ";
std::cerr << min_value << " > " << max_value << "\n";
std::cerr << interval.min << " > " << interval.max << "\n";
std::cerr << interval << "\n";
internal_assert(false) << "random_interval failed\n";
}
return interval;
}
int sample_interval(const Interval &interval) {
// Values chosen so intervals don't repeatedly produce signed_overflow when simplified.
int min_value = -128;
int max_value = 128;
if (interval.has_lower_bound()) {
if (auto ptr = as_const_int(interval.min)) {
min_value = *ptr;
} else if (auto ptr = as_const_uint(interval.min)) {
min_value = *ptr;
} else {
internal_assert(false) << "sample_interval (min) failed: " << interval.min << "\n";
}
}
if (interval.has_upper_bound()) {
if (auto ptr = as_const_int(interval.max)) {
max_value = *ptr;
} else if (auto ptr = as_const_uint(interval.max)) {
max_value = *ptr;
} else {
internal_assert(false) << "sample_interval (max) failed: " << interval.max << "\n";
}
}
int value = random_in_range(min_value, max_value);
return value;
}
bool test_bounds(Expr test, const Interval &interval, Type T, const map<string, Expr> &vars) {
for (int j = 0; j < T.lanes(); j++) {
Expr a_j = test;
if (T.lanes() != 1) {
a_j = extract_lane(test, j);
}
Expr a_j_v = simplify(substitute(vars, a_j));
if (!is_const(a_j_v)) {
// Probably overflow, abort.
continue;
}
// This fuzzer only looks for constant bounds, otherwise it's probably overflow.
if (interval.has_upper_bound()) {
if (!can_prove(a_j_v <= interval.max)) {
std::cerr << "can't prove upper bound: " << (a_j_v <= interval.max) << "\n";
for (auto v = vars.begin(); v != vars.end(); v++) {
std::cerr << v->first << " = " << v->second << "\n";
}
std::cerr << test << "\n";
std::cerr << interval << "\n";
std::cerr << "In vector lane " << j << ":\n";
std::cerr << a_j << " -> " << a_j_v << "\n";
return false;
}
}
if (interval.has_lower_bound()) {
if (!can_prove(a_j_v >= interval.min)) {
std::cerr << "can't prove lower bound: " << (a_j_v >= interval.min) << "\n";
std::cerr << "Expr: " << test << "\n";
std::cerr << "Interval: " << interval << "\n";
for (auto v = vars.begin(); v != vars.end(); v++) {
std::cerr << v->first << " = " << v->second << "\n";
}
std::cerr << "In vector lane " << j << ":\n";
std::cerr << a_j << " -> " << a_j_v << "\n";
return false;
}
}
}
return true;
}
bool test_expression_bounds(Expr test, int trials, int samples_per_trial) {
map<string, Expr> vars;
for (int i = 0; i < fuzz_var_count; i++) {
vars[fuzz_var(i)] = Expr();
}
for (int i = 0; i < trials; i++) {
Scope<Interval> scope;
for (auto v = vars.begin(); v != vars.end(); v++) {
// This type is used because the variables will be this type for a given round.
Interval interval = random_interval(global_var_type);
scope.push(v->first, interval);
}
Interval interval = bounds_of_expr_in_scope(test, scope);
interval.min = simplify(interval.min);
interval.max = simplify(interval.max);
if (!(interval.has_upper_bound() || interval.has_lower_bound())) {
// For now, return. Assumes that no other combo
// will produce a bounded interval (not necessarily true).
// This is to shorten the amount of output from this test.
return true; // any result is allowed
}
if ((interval.has_upper_bound() && is_signed_integer_overflow(interval.max)) ||
(interval.has_lower_bound() && is_signed_integer_overflow(interval.min))) {
// Quit for now, assume other intervals will produce the same results.
return true;
}
if (!is_const(interval.min) || !is_const(interval.max)) {
// Likely signed_integer_overflow, give up now.
return true;
}
for (int j = 0; j < samples_per_trial; j++) {
for (std::map<string, Expr>::iterator v = vars.begin(); v != vars.end(); v++) {
Interval interval = scope.get(v->first);
v->second = cast(global_var_type, sample_interval(interval));
}
if (!test_bounds(test, interval, test.type(), vars)) {
std::cerr << "scope {"
<< "\n";
for (auto v = vars.begin(); v != vars.end(); v++) {
std::cerr << "\t" << v->first << " : " << scope.get(v->first) << "\n";
}
std::cerr << "}"
<< "\n";
return false;
}
}
}
return true;
}
} // namespace
int main(int argc, char **argv) {
// Number of random expressions to test.
const int count = 100;
// Depth of the randomly generated expression trees.
const int depth = 3;
// Number of trials to test the generated expressions for.
const int trials = 10;
// Number of samples of the intervals per trial to test.
const int samples = 10;
// We want different fuzz tests every time, to increase coverage.
// We also report the seed to enable reproducing failures.
int fuzz_seed = argc > 1 ? atoi(argv[1]) : time(nullptr);
rng.seed(fuzz_seed);
std::cout << "bounds inference fuzz test seed: " << fuzz_seed << "\n";
std::array<int, 6> vector_widths = {1, 2, 3, 4, 6, 8};
for (int n = 0; n < count; n++) {
// int width = 1;
int width = vector_widths[rng() % vector_widths.size()];
// This is the type that will be the innermost (leaf) value type.
Type expr_type = random_type(width);
Type var_type = random_type(1);
global_var_type = var_type;
// Generate a random expr...
Expr test = random_expr(expr_type, depth);
if (!test_expression_bounds(test, trials, samples)) {
return -1;
}
}
std::cout << "Success!\n";
return 0;
}
|