File: fuzz_simplify.cpp

package info (click to toggle)
halide 14.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 49,124 kB
  • sloc: cpp: 238,722; makefile: 4,303; python: 4,047; java: 1,575; sh: 1,384; pascal: 211; xml: 165; javascript: 43; ansic: 34
file content (364 lines) | stat: -rw-r--r-- 10,630 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#include "Halide.h"
#include <array>
#include <random>
#include <stdio.h>
#include <time.h>

// Test the simplifier in Halide by testing for equivalence of randomly generated expressions.
namespace {

using std::map;
using std::string;
using namespace Halide;
using namespace Halide::Internal;

const int fuzz_var_count = 5;

// use std::mt19937 instead of rand() to ensure consistent behavior on all systems
std::mt19937 rng(0);

Type fuzz_types[] = {UInt(1), UInt(8), UInt(16), UInt(32), Int(8), Int(16), Int(32)};
const int fuzz_type_count = sizeof(fuzz_types) / sizeof(fuzz_types[0]);

std::string fuzz_var(int i) {
    return std::string(1, 'a' + i);
}

Expr random_var() {
    int fuzz_count = rng() % fuzz_var_count;
    return Variable::make(Int(0), fuzz_var(fuzz_count));
}

Type random_type(int width) {
    Type T = fuzz_types[rng() % fuzz_type_count];

    if (width > 1) {
        T = T.with_lanes(width);
    }
    return T;
}

int get_random_divisor(Type t) {
    std::vector<int> divisors = {t.lanes()};
    for (int dd = 2; dd < t.lanes(); dd++) {
        if (t.lanes() % dd == 0) {
            divisors.push_back(dd);
        }
    }

    return divisors[rng() % divisors.size()];
}

Expr random_leaf(Type T, bool overflow_undef = false, bool imm_only = false) {
    if (T.is_int() && T.bits() == 32) {
        overflow_undef = true;
    }
    if (T.is_scalar()) {
        int var = rng() % fuzz_var_count + 1;
        if (!imm_only && var < fuzz_var_count) {
            auto v1 = random_var();
            return cast(T, v1);
        } else {
            if (overflow_undef) {
                // For Int(32), we don't care about correctness during
                // overflow, so just use numbers that are unlikely to
                // overflow.
                return cast(T, (int)(rng() % 256 - 128));
            } else {
                return cast(T, (int)(rng() - RAND_MAX / 2));
            }
        }
    } else {
        int lanes = get_random_divisor(T);
        if (rng() % 2 == 0) {
            auto e1 = random_leaf(T.with_lanes(T.lanes() / lanes), overflow_undef);
            auto e2 = random_leaf(T.with_lanes(T.lanes() / lanes), overflow_undef);
            return Ramp::make(e1, e2, lanes);
        } else {
            auto e1 = random_leaf(T.with_lanes(T.lanes() / lanes), overflow_undef);
            return Broadcast::make(e1, lanes);
        }
    }
}

Expr random_expr(Type T, int depth, bool overflow_undef = false);

Expr random_condition(Type T, int depth, bool maybe_scalar) {
    typedef Expr (*make_bin_op_fn)(Expr, Expr);
    static make_bin_op_fn make_bin_op[] = {
        EQ::make,
        NE::make,
        LT::make,
        LE::make,
        GT::make,
        GE::make,
    };
    const int op_count = sizeof(make_bin_op) / sizeof(make_bin_op[0]);

    if (maybe_scalar && rng() % T.lanes() == 0) {
        T = T.element_of();
    }

    Expr a = random_expr(T, depth);
    Expr b = random_expr(T, depth);
    int op = rng() % op_count;
    return make_bin_op[op](a, b);
}

Expr make_absd(Expr a, Expr b) {
    // random_expr() assumes that the result type is the same as the input type,
    // which isn't true for all absd variants, so force the issue.
    return cast(a.type(), absd(a, b));
}

Expr random_expr(Type T, int depth, bool overflow_undef) {
    typedef Expr (*make_bin_op_fn)(Expr, Expr);
    static make_bin_op_fn make_bin_op[] = {
        Add::make,
        Sub::make,
        Mul::make,
        Min::make,
        Max::make,
        Div::make,
        Mod::make,
        make_absd,
    };

    static make_bin_op_fn make_bool_bin_op[] = {
        And::make,
        Or::make,
    };

    if (T.is_int() && T.bits() == 32) {
        overflow_undef = true;
    }

    if (depth-- <= 0) {
        return random_leaf(T, overflow_undef);
    }

    const int bin_op_count = sizeof(make_bin_op) / sizeof(make_bin_op[0]);
    const int bool_bin_op_count = sizeof(make_bool_bin_op) / sizeof(make_bool_bin_op[0]);
    const int op_count = bin_op_count + bool_bin_op_count + 5;

    int op = rng() % op_count;
    switch (op) {
    case 0:
        return random_leaf(T);
    case 1: {
        auto c = random_condition(T, depth, true);
        auto e1 = random_expr(T, depth, overflow_undef);
        auto e2 = random_expr(T, depth, overflow_undef);
        return Select::make(c, e1, e2);
    }
    case 2:
        if (T.lanes() != 1) {
            int lanes = get_random_divisor(T);
            auto e1 = random_expr(T.with_lanes(T.lanes() / lanes), depth, overflow_undef);
            return Broadcast::make(e1, lanes);
        }
        break;
    case 3:
        if (T.lanes() != 1) {
            int lanes = get_random_divisor(T);
            auto e1 = random_expr(T.with_lanes(T.lanes() / lanes), depth, overflow_undef);
            auto e2 = random_expr(T.with_lanes(T.lanes() / lanes), depth, overflow_undef);
            return Ramp::make(e1, e2, lanes);
        }
        break;

    case 4:
        if (T.is_bool()) {
            auto e1 = random_expr(T, depth);
            return Not::make(e1);
        }
        break;

    case 5:
        // When generating boolean expressions, maybe throw in a condition on non-bool types.
        if (T.is_bool()) {
            return random_condition(random_type(T.lanes()), depth, false);
        }
        break;

    case 6: {
        // Get a random type that isn't T or int32 (int32 can overflow and we don't care about that).
        Type subT;
        do {
            subT = random_type(T.lanes());
        } while (subT == T || (subT.is_int() && subT.bits() == 32));
        auto e1 = random_expr(subT, depth, overflow_undef);
        return Cast::make(T, e1);
    }

    default:
        make_bin_op_fn maker;
        if (T.is_bool()) {
            maker = make_bool_bin_op[op % bool_bin_op_count];
        } else {
            maker = make_bin_op[op % bin_op_count];
        }
        Expr a = random_expr(T, depth, overflow_undef);
        Expr b = random_expr(T, depth, overflow_undef);
        return maker(a, b);
    }
    // If we got here, try again.
    return random_expr(T, depth, overflow_undef);
}

bool test_simplification(Expr a, Expr b, Type T, const map<string, Expr> &vars) {
    for (int j = 0; j < T.lanes(); j++) {
        Expr a_j = a;
        Expr b_j = b;
        if (T.lanes() != 1) {
            a_j = extract_lane(a, j);
            b_j = extract_lane(b, j);
        }

        Expr a_j_v = simplify(substitute(vars, a_j));
        Expr b_j_v = simplify(substitute(vars, b_j));
        // If the simplifier didn't produce constants, there must be
        // undefined behavior in this expression. Ignore it.
        if (!Internal::is_const(a_j_v) || !Internal::is_const(b_j_v)) {
            continue;
        }
        if (!equal(a_j_v, b_j_v)) {
            for (map<string, Expr>::const_iterator i = vars.begin(); i != vars.end(); i++) {
                std::cout << i->first << " = " << i->second << "\n";
            }

            std::cout << a << "\n";
            std::cout << b << "\n";
            std::cout << "In vector lane " << j << ":\n";
            std::cout << a_j << " -> " << a_j_v << "\n";
            std::cout << b_j << " -> " << b_j_v << "\n";
            return false;
        }
    }
    return true;
}

bool test_expression(Expr test, int samples) {
    Expr simplified = simplify(test);

    map<string, Expr> vars;
    for (int i = 0; i < fuzz_var_count; i++) {
        vars[fuzz_var(i)] = Expr();
    }

    for (int i = 0; i < samples; i++) {
        for (std::map<string, Expr>::iterator v = vars.begin(); v != vars.end(); v++) {
            // Don't let the random leaf depend on v itself.
            do {
                v->second = random_leaf(test.type().element_of(), true);
            } while (expr_uses_var(v->second, v->first));
        }

        if (!test_simplification(test, simplified, test.type(), vars)) {
            return false;
        }
    }
    return true;
}

// These are here to enable copy of failed output expressions and pasting them into the test for debugging.
Expr ramp(Expr b, Expr s, int w) {
    return Ramp::make(b, s, w);
}
Expr x1(Expr x) {
    return Broadcast::make(x, 2);
}
Expr x2(Expr x) {
    return Broadcast::make(x, 2);
}
Expr x3(Expr x) {
    return Broadcast::make(x, 3);
}
Expr x4(Expr x) {
    return Broadcast::make(x, 4);
}
Expr x6(Expr x) {
    return Broadcast::make(x, 6);
}
Expr x8(Expr x) {
    return Broadcast::make(x, 8);
}
Expr uint1(Expr x) {
    return Cast::make(UInt(1), x);
}
Expr uint8(Expr x) {
    return Cast::make(UInt(8), x);
}
Expr uint16(Expr x) {
    return Cast::make(UInt(16), x);
}
Expr uint32(Expr x) {
    return Cast::make(UInt(32), x);
}
Expr int8(Expr x) {
    return Cast::make(Int(8), x);
}
Expr int16(Expr x) {
    return Cast::make(Int(16), x);
}
Expr int32(Expr x) {
    return Cast::make(Int(32), x);
}
Expr uint1x2(Expr x) {
    return Cast::make(UInt(1).with_lanes(2), x);
}
Expr uint8x2(Expr x) {
    return Cast::make(UInt(8).with_lanes(2), x);
}
Expr uint16x2(Expr x) {
    return Cast::make(UInt(16).with_lanes(2), x);
}
Expr uint32x2(Expr x) {
    return Cast::make(UInt(32).with_lanes(2), x);
}
Expr int8x2(Expr x) {
    return Cast::make(Int(8).with_lanes(2), x);
}
Expr int16x2(Expr x) {
    return Cast::make(Int(16).with_lanes(2), x);
}
Expr int32x2(Expr x) {
    return Cast::make(Int(32).with_lanes(2), x);
}

Expr a(Variable::make(Int(0), fuzz_var(0)));
Expr b(Variable::make(Int(0), fuzz_var(1)));
Expr c(Variable::make(Int(0), fuzz_var(2)));
Expr d(Variable::make(Int(0), fuzz_var(3)));
Expr e(Variable::make(Int(0), fuzz_var(4)));

}  // namespace

int main(int argc, char **argv) {
    // Number of random expressions to test.
    const int count = 10000;
    // Depth of the randomly generated expression trees.
    const int depth = 5;
    // Number of samples to test the generated expressions for.
    const int samples = 3;

    // We want different fuzz tests every time, to increase coverage.
    // We also report the seed to enable reproducing failures.
    int fuzz_seed = argc > 1 ? atoi(argv[1]) : time(nullptr);
    rng.seed(fuzz_seed);
    std::cout << "Simplify fuzz test seed: " << fuzz_seed << "\n";

    std::array<int, 6> vector_widths = {1, 2, 3, 4, 6, 8};
    for (int n = 0; n < count; n++) {
        int width = vector_widths[rng() % vector_widths.size()];
        Type VT = random_type(width);
        // Generate a random expr...
        Expr test = random_expr(VT, depth);
        if (!test_expression(test, samples)) {
            return -1;
        }
    }

    std::cout << "Success!\n";
    return 0;
}