1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#include "Halide.h"
#include "halide_benchmark.h"
using namespace Halide;
int fib(int N, int a, int b) {
while (N > 2) {
a += b;
std::swap(a, b);
N--;
}
return b;
}
int main(int argc, char **argv) {
Target target = get_jit_target_from_environment();
if (!target.has_gpu_feature()) {
printf("[SKIP] No GPU target enabled.\n");
return 0;
}
if (target.has_feature(Target::D3D12Compute)) {
// https://github.com/halide/Halide/issues/5000
printf("[SKIP] Allocation cache not yet implemented for D3D12Compute.\n");
return 0;
}
const int N = 30;
Var x, y, xi, yi;
// Fixed size, overlapping lifetimes, looped 300 times. Should have 3 allocations live and OOM if there's a leak.
Func f1[N];
f1[0](x, y) = 1.0f;
f1[0].compute_root().gpu_tile(x, y, xi, yi, 8, 8);
f1[1](x, y) = 2.0f;
f1[1].compute_root().gpu_tile(x, y, xi, yi, 8, 8);
for (int i = 2; i < N; i++) {
f1[i](x, y) = f1[i - 1](x, y) + f1[i - 2](x, y);
f1[i].compute_root().gpu_tile(x, y, xi, yi, 8, 8);
}
// Decreasing size, overlapping lifetimes, looped 300 times. Should OOM on leak.
Func f2[N];
f2[0](x, y) = 3.0f;
f2[0].compute_root().gpu_tile(x, y, xi, yi, 8, 8);
f2[1](x, y) = 4.0f;
f2[1].compute_root().gpu_tile(x, y, xi, yi, 8, 8);
for (int i = 2; i < N; i++) {
f2[i](x, y) = f2[i - 1](x + 1, y) + f2[i - 2](x, y);
f2[i].compute_root().gpu_tile(x, y, xi, yi, 8, 8);
}
Func f3[N];
f3[0](x, y) = 5.0f;
f3[0].compute_root().gpu_tile(x, y, xi, yi, 8, 8);
f3[1](x, y) = 6.0f;
f3[1].compute_root().gpu_tile(x, y, xi, yi, 8, 8);
for (int i = 2; i < N; i++) {
f3[i](x, y) = f3[i - 1](x, clamp(y, 0, i)) + f3[i - 2](x, clamp(y, 0, i));
f3[i].compute_root().gpu_tile(x, y, xi, yi, 8, 8);
}
float correct1 = fib(N, 1, 2), correct2 = fib(N, 3, 4), correct3 = fib(N, 5, 6);
auto test1 = [&](bool use_cache, bool validate = true) {
Halide::Internal::JITSharedRuntime::reuse_device_allocations(use_cache);
for (int i = 0; i < 300; i++) {
Buffer<float> result = f1[N - 1].realize({128, 128});
if (validate) {
result.copy_to_host();
result.for_each_value([=](float f) {
if (f != correct1) {
printf("result is %f instead of %f\n", f, correct1);
abort();
}
});
} else {
result.device_sync();
}
}
// We don't want the cache to persist across these tests
Halide::Internal::JITSharedRuntime::reuse_device_allocations(false);
};
auto test2 = [&](bool use_cache, bool validate = true) {
Halide::Internal::JITSharedRuntime::reuse_device_allocations(use_cache);
for (int i = 0; i < 300; i++) {
Buffer<float> result = f2[N - 1].realize({128, 128});
if (validate) {
result.copy_to_host();
result.for_each_value([=](float f) {
if (f != correct2) {
printf("result is %f instead of %f\n", f, correct2);
abort();
}
});
} else {
result.device_sync();
}
}
// We don't want the cache to persist across these tests
Halide::Internal::JITSharedRuntime::reuse_device_allocations(false);
};
auto test3 = [&](bool use_cache, bool validate = true) {
Halide::Internal::JITSharedRuntime::reuse_device_allocations(use_cache);
// Increasing size, overlapping lifetimes, looped 300 times. Should OOM on leak.
for (int i = 0; i < 300; i++) {
Buffer<float> result = f3[N - 1].realize({128, 128});
if (validate) {
result.copy_to_host();
result.for_each_value([=](float f) {
if (f != correct3) {
printf("result is %f instead of %f\n", f, correct3);
abort();
}
});
} else {
result.device_sync();
}
}
// We don't want the cache to persist across these tests
Halide::Internal::JITSharedRuntime::reuse_device_allocations(false);
};
// First run them serially (compilation of a Func isn't thread-safe).
//test1(true);
//test2(true);
//test3(true);
//return 0;
// Now run all at the same time to check for concurrency issues.
// FIXME: Skipping OpenGLCompute, which has concurrency
// issues. Probably due to using the GL context on the wrong
// thread.
if (!target.has_feature(Target::OpenGLCompute)) {
Halide::Internal::ThreadPool<void> pool(1);
std::vector<std::future<void>> futures;
futures.emplace_back(pool.async(test1, true));
futures.emplace_back(pool.async(test1, true));
futures.emplace_back(pool.async(test2, true));
futures.emplace_back(pool.async(test2, true));
futures.emplace_back(pool.async(test3, true));
futures.emplace_back(pool.async(test3, true));
for (auto &f : futures) {
f.get();
}
}
// Now benchmark with and without, (just informational, as this isn't a performance test)
double t1 = Tools::benchmark([&]() {
test1(true, false);
test2(true, false);
test3(true, false);
});
double t2 = Tools::benchmark([&]() {
test1(false, false);
test2(false, false);
test3(false, false);
});
printf("Runtime with cache: %f\n"
"Without cache: %f\n",
t1, t2);
printf("Success!\n");
return 0;
}
|