File: simd_op_check.cpp

package info (click to toggle)
halide 14.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 49,124 kB
  • sloc: cpp: 238,722; makefile: 4,303; python: 4,047; java: 1,575; sh: 1,384; pascal: 211; xml: 165; javascript: 43; ansic: 34
file content (2326 lines) | stat: -rw-r--r-- 129,424 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
#include "simd_op_check.h"
#include "Halide.h"

#include <stdarg.h>
#include <stdio.h>
#include <string.h>

using namespace Halide;
using namespace Halide::ConciseCasts;

namespace {

// This tests that we can correctly generate all the simd ops
using std::string;
using std::vector;

constexpr int max_i8 = 127;
constexpr int max_i16 = 32767;
constexpr int max_i32 = 0x7fffffff;
constexpr int max_u8 = 255;
constexpr int max_u16 = 65535;
const Expr max_u32 = UInt(32).max();

class SimdOpCheck : public SimdOpCheckTest {
public:
    SimdOpCheck(Target t, int w = 768, int h = 128)
        : SimdOpCheckTest(t, w, h) {
        // We only test the skylake variant of avx512 here
        use_avx512 = (target.has_feature(Target::AVX512_Cannonlake) ||
                      target.has_feature(Target::AVX512_Skylake));
        if (target.has_feature(Target::AVX512) && !use_avx512) {
            std::cerr << "Warning: This test is only configured for the skylake variant of avx512. Expect failures\n";
        }
        use_avx2 = use_avx512 || (target.has_feature(Target::AVX512) || target.has_feature(Target::AVX2));
        use_avx = use_avx2 || target.has_feature(Target::AVX);
        use_sse41 = use_avx || target.has_feature(Target::SSE41);

        // There's no separate target for SSSE3; we currently enable it in
        // lockstep with SSE4.1
        use_ssse3 = use_sse41;
        // There's no separate target for SSS4.2; we currently assume that
        // it should be used iff AVX is being used.
        use_sse42 = use_avx;

        use_vsx = target.has_feature(Target::VSX);
        use_power_arch_2_07 = target.has_feature(Target::POWER_ARCH_2_07);
        use_wasm_simd128 = target.has_feature(Target::WasmSimd128);
        use_wasm_sat_float_to_int = target.has_feature(Target::WasmSatFloatToInt);
        use_wasm_sign_ext = target.has_feature(Target::WasmSignExt);
    }

    void add_tests() override {
        // Queue up a bunch of tasks representing each test to run.
        if (target.arch == Target::X86) {
            check_sse_all();
        } else if (target.arch == Target::ARM) {
            check_neon_all();
        } else if (target.arch == Target::POWERPC) {
            check_altivec_all();
        } else if (target.arch == Target::WebAssembly) {
            check_wasm_all();
        }
    }

    void check_sse_all() {
        Expr f64_1 = in_f64(x), f64_2 = in_f64(x + 16), f64_3 = in_f64(x + 32);
        Expr f32_1 = in_f32(x), f32_2 = in_f32(x + 16), f32_3 = in_f32(x + 32);
        Expr i8_1 = in_i8(x), i8_2 = in_i8(x + 16), i8_3 = in_i8(x + 32);
        Expr u8_1 = in_u8(x), u8_2 = in_u8(x + 16), u8_3 = in_u8(x + 32);
        Expr i16_1 = in_i16(x), i16_2 = in_i16(x + 16), i16_3 = in_i16(x + 32);
        Expr u16_1 = in_u16(x), u16_2 = in_u16(x + 16), u16_3 = in_u16(x + 32);
        Expr i32_1 = in_i32(x), i32_2 = in_i32(x + 16), i32_3 = in_i32(x + 32);
        Expr u32_1 = in_u32(x), u32_2 = in_u32(x + 16), u32_3 = in_u32(x + 32);
        Expr i64_1 = in_i64(x), i64_2 = in_i64(x + 16), i64_3 = in_i64(x + 32);
        Expr u64_1 = in_u64(x), u64_2 = in_u64(x + 16), u64_3 = in_u64(x + 32);
        Expr bool_1 = (f32_1 > 0.3f), bool_2 = (f32_1 < -0.3f), bool_3 = (f32_1 != -0.34f);

        // MMX and SSE1 (in 64 and 128 bits)
        for (int w = 1; w <= 4; w++) {
            // LLVM promotes these to wider types for 64-bit vectors,
            // which is probably fine. Often you're 64-bits wide because
            // you're about to upcast, and using the wider types makes the
            // upcast cheap.
            if (w > 1) {
                check("paddb", 8 * w, u8_1 + u8_2);
                check("psubb", 8 * w, u8_1 - u8_2);
                check("paddw", 4 * w, u16_1 + u16_2);
                check("psubw", 4 * w, u16_1 - u16_2);
                check("pmullw", 4 * w, i16_1 * i16_2);
                check("paddd", 2 * w, i32_1 + i32_2);
                check("psubd", 2 * w, i32_1 - i32_2);
            }

            check("paddsb", 8 * w, i8_sat(i16(i8_1) + i16(i8_2)));
            // Add a test with a constant as there was a bug on this.
            check("paddsb", 8 * w, i8_sat(i16(i8_1) + i16(3)));

            check("psubsb", 8 * w, i8_sat(i16(i8_1) - i16(i8_2)));

            check("paddusb", 8 * w, u8(min(u16(u8_1) + u16(u8_2), max_u8)));
            check("psubusb", 8 * w, u8(max(i16(u8_1) - i16(u8_2), 0)));
            check("paddsw", 4 * w, i16_sat(i32(i16_1) + i32(i16_2)));
            check("psubsw", 4 * w, i16_sat(i32(i16_1) - i32(i16_2)));
            check("paddusw", 4 * w, u16(min(u32(u16_1) + u32(u16_2), max_u16)));
            check("psubusw", 4 * w, u16(max(i32(u16_1) - i32(u16_2), 0)));
            check("pmulhw", 4 * w, i16((i32(i16_1) * i32(i16_2)) / (256 * 256)));
            check("pmulhw", 4 * w, i16((i32(i16_1) * i32(i16_2)) >> cast<unsigned>(16)));
            check("pmulhw", 4 * w, i16((i32(i16_1) * i32(i16_2)) >> cast<int>(16)));
            check("pmulhw", 4 * w, i16((i32(i16_1) * i32(i16_2)) << cast<int>(-16)));

            // Add a test with a constant as there was a bug on this.
            check("pmulhw", 4 * w, i16((3 * i32(i16_2)) / (256 * 256)));

            // There was a bug with this case too. CSE was lifting out the
            // information that made it possible to do the narrowing.
            check("pmulhw", 4 * w, select(in_u8(0) == 0, i16((3 * i32(i16_2)) / (256 * 256)), i16((5 * i32(i16_2)) / (256 * 256))));

            check("pmulhuw", 4 * w, i16_1 / 15);

            // Shifts by amounts other than 16 can also use this instruction, by
            // preshifting an arg (when there are bits of headroom), or
            // postshifting the result.
            check("pmulhuw", 4 * w, u16((u32(u16_1) * u32(u8_2)) >> 13));
            check("pmulhw", 4 * w, i16((i32(i16_1) * i32(i16_2)) >> 17));
            check("pmulhuw", 4 * w, u16((u32(u16_1) * u32(u16_2)) >> 18));

            if (w > 1) {  // LLVM does a lousy job at the comparisons for 64-bit types
                check("pcmp*b", 8 * w, select(u8_1 == u8_2, u8(1), u8(2)));
                check("pcmp*b", 8 * w, select(u8_1 > u8_2, u8(1), u8(2)));
                check("pcmp*w", 4 * w, select(u16_1 == u16_2, u16(1), u16(2)));
                check("pcmp*w", 4 * w, select(u16_1 > u16_2, u16(1), u16(2)));
                check("pcmp*d", 2 * w, select(u32_1 == u32_2, u32(1), u32(2)));
                check("pcmp*d", 2 * w, select(u32_1 > u32_2, u32(1), u32(2)));
            }

            // SSE 1
            check("addps", 2 * w, f32_1 + f32_2);
            check("subps", 2 * w, f32_1 - f32_2);
            check("mulps", 2 * w, f32_1 * f32_2);

            // Padding out the lanes of a div isn't necessarily a good
            // idea, and so llvm doesn't do it.
            if (w > 1) {
                // LLVM no longer generates division instructions with
                // fast-math on (instead it uses the approximate
                // reciprocal, a newtown rhapson step, and a
                // multiplication by the numerator).
                // check("divps", 2*w, f32_1 / f32_2);
            }

            check(use_avx512 ? "vrsqrt*ps" : "rsqrtps", 2 * w, fast_inverse_sqrt(f32_1));
            check(use_avx512 ? "vrcp*ps" : "rcpps", 2 * w, fast_inverse(f32_1));
            check("sqrtps", 2 * w, sqrt(f32_2));
            check("maxps", 2 * w, max(f32_1, f32_2));
            check("minps", 2 * w, min(f32_1, f32_2));
            check("pavgb", 8 * w, u8((u16(u8_1) + u16(u8_2) + 1) / 2));
            check("pavgb", 8 * w, u8((u16(u8_1) + u16(u8_2) + 1) >> 1));
            check("pavgw", 4 * w, u16((u32(u16_1) + u32(u16_2) + 1) / 2));
            check("pavgw", 4 * w, u16((u32(u16_1) + u32(u16_2) + 1) >> 1));

            // Rounding right shifts should also use pavg
            check("pavgb", 8 * w, rounding_shift_right(u8_1, 2));
            check("pavgw", 4 * w, rounding_shift_right(u16_1, 2));

            check("pmaxsw", 4 * w, max(i16_1, i16_2));
            check("pminsw", 4 * w, min(i16_1, i16_2));
            check("pmaxub", 8 * w, max(u8_1, u8_2));
            check("pminub", 8 * w, min(u8_1, u8_2));

            const char *check_pmulhuw = (use_avx2 && w > 3) ? "vpmulhuw*ymm" : "pmulhuw";
            check(check_pmulhuw, 4 * w, u16((u32(u16_1) * u32(u16_2)) / (256 * 256)));
            check(check_pmulhuw, 4 * w, u16((u32(u16_1) * u32(u16_2)) >> cast<unsigned>(16)));
            check(check_pmulhuw, 4 * w, u16((u32(u16_1) * u32(u16_2)) >> cast<int>(16)));
            check(check_pmulhuw, 4 * w, u16((u32(u16_1) * u32(u16_2)) << cast<int>(-16)));
            check(check_pmulhuw, 4 * w, u16_1 / 15);

            check("cmpeqps", 2 * w, select(f32_1 == f32_2, 1.0f, 2.0f));
            check("cmpltps", 2 * w, select(f32_1 < f32_2, 1.0f, 2.0f));

            // These get normalized to not of eq, and not of lt with the args flipped
            // check("cmpneqps", 2*w, cast<int32_t>(f32_1 != f32_2));
            // check("cmpleps", 2*w, cast<int32_t>(f32_1 <= f32_2));
        }

        // These guys get normalized to the integer versions for widths
        // other than 128-bits. Avx512 has mask-register versions.
        // check("andnps", 4, bool_1 & (~bool_2));
        check(use_avx512 ? "korw" : "orps", 4, bool_1 | bool_2);
        check(use_avx512 ? "kxorw" : "xorps", 4, bool_1 ^ bool_2);
        if (!use_avx512) {
            // avx512 implicitly ands the predicates by masking the second
            // comparison using the result of the first. Clever!
            check("andps", 4, bool_1 & bool_2);
        }

        // These ones are not necessary, because we just flip the args and cmpltps or cmpleps
        // check("cmpnleps", 4, select(f32_1 > f32_2, 1.0f, 2.0f));
        // check("cmpnltps", 4, select(f32_1 >= f32_2, 1.0f, 2.0f));

        check("shufps", 4, in_f32(2 * x));

        // SSE 2

        for (int w : {2, 4}) {
            check("addpd", w, f64_1 + f64_2);
            check("subpd", w, f64_1 - f64_2);
            check("mulpd", w, f64_1 * f64_2);
            check("divpd", w, f64_1 / f64_2);
            check("sqrtpd", w, sqrt(f64_2));
            check("maxpd", w, max(f64_1, f64_2));
            check("minpd", w, min(f64_1, f64_2));

            check("cmpeqpd", w, select(f64_1 == f64_2, 1.0f, 2.0f));
            // check("cmpneqpd", w, select(f64_1 != f64_2, 1.0f, 2.0f));
            // check("cmplepd", w, select(f64_1 <= f64_2, 1.0f, 2.0f));
            check("cmpltpd", w, select(f64_1 < f64_2, 1.0f, 2.0f));

            // llvm is pretty inconsistent about which ops get generated
            // for casts. We don't intend to catch these for now, so skip
            // them.

            // check("cvttpd2dq", 4, i32(f64_1));
            // check("cvtdq2pd", 4, f64(i32_1));
            // check("cvttps2dq", 4, i32(f32_1));
            // check("cvtdq2ps", 4, f32(i32_1));
            // check("cvtps2pd", 4, f64(f32_1));
            // check("cvtpd2ps", 4, f32(f64_1));

            check("paddq", w, i64_1 + i64_2);
            check("psubq", w, i64_1 - i64_2);
            check(use_avx512 ? "vpmullq" : "pmuludq", w, u64_1 * u64_2);

            const char *check_suffix = "";
            if (use_avx2 && w > 3) {
                check_suffix = "*ymm";
            }
            check(std::string("packssdw") + check_suffix, 4 * w, i16_sat(i32_1));
            check(std::string("packsswb") + check_suffix, 8 * w, i8_sat(i16_1));
            check(std::string("packuswb") + check_suffix, 8 * w, u8_sat(i16_1));
        }

        // SSE 3 / SSSE 3

        if (use_ssse3) {
            for (int w = 2; w <= 4; w++) {
                check("pmulhrsw", 4 * w, i16((i32(i16_1) * i32(i16_2) + 16384) >> 15));
                check("pmulhrsw", 4 * w, i16_sat((i32(i16_1) * i32(i16_2) + 16384) >> 15));
                check("pabsb", 8 * w, abs(i8_1));
                check("pabsw", 4 * w, abs(i16_1));
                check("pabsd", 2 * w, abs(i32_1));
            }

            // Horizontal ops. Our support for them uses intrinsics
            // from LLVM 9+.

            // Paradoxically, haddps is a bad way to do horizontal
            // adds down to a single scalar on most x86. A better
            // sequence (according to Peter Cordes on stackoverflow)
            // is movshdup, addps, movhlps, addss. haddps is still
            // good if you're only partially reducing and your result
            // is at least one native vector, if only to save code
            // size, but LLVM really really tries to avoid it and
            // replace it with shuffles whenever it can, so we won't
            // test for it.
            //
            // See:
            // https://stackoverflow.com/questions/6996764/fastest-way-to-do-horizontal-float-vector-sum-on-x86

            // For reducing down to a scalar we expect to see addps
            // and movshdup. We'll sniff for the movshdup.
            check("movshdup", 1, sum(in_f32(RDom(0, 2) + 2 * x)));
            check("movshdup", 1, sum(in_f32(RDom(0, 4) + 4 * x)));
            check("movshdup", 1, sum(in_f32(RDom(0, 16) + 16 * x)));

            // The integer horizontal add operations are pretty
            // terrible on all x86 variants, and LLVM does its best to
            // avoid generating those too, so we won't test that here
            // either.

            // Min reductions should use phminposuw when
            // possible. This only exists for u16. X86 is weird.
            check("phminposuw", 1, minimum(in_u16(RDom(0, 8) + 8 * x)));

            // Max reductions can use the same instruction by first
            // flipping the bits.
            check("phminposuw", 1, maximum(in_u16(RDom(0, 8) + 8 * x)));

            // Reductions over signed ints can flip the sign bit
            // before and after (equivalent to adding 128).
            check("phminposuw", 1, minimum(in_i16(RDom(0, 8) + 8 * x)));
            check("phminposuw", 1, maximum(in_i16(RDom(0, 8) + 8 * x)));

            // Reductions over 8-bit ints can widen first
            check("phminposuw", 1, minimum(in_u8(RDom(0, 16) + 16 * x)));
            check("phminposuw", 1, maximum(in_u8(RDom(0, 16) + 16 * x)));
            check("phminposuw", 1, minimum(in_i8(RDom(0, 16) + 16 * x)));
            check("phminposuw", 1, maximum(in_i8(RDom(0, 16) + 16 * x)));

            for (int w = 2; w <= 8; w++) {
                const char *check_pmaddubsw =
                    (use_avx2 && w >= 4) ? "vpmaddubsw" : "pmaddubsw";

                RDom r2(0, 2);
                check(check_pmaddubsw, 4 * w, saturating_sum(i16(in_u8(2 * x + r2)) * in_i8(2 * x + r2 + 32)));
                check(check_pmaddubsw, 4 * w, saturating_sum(i16(in_i8(2 * x + r2)) * in_u8(2 * x + r2 + 32)));
            }
        }

        // SSE 4.1

        for (int w = 2; w <= 8; w++) {
            // We generated pmaddwd when we do a sum of widening multiplies
            const char *check_pmaddwd =
                (use_avx2 && w >= 4) ? "vpmaddwd" : "pmaddwd";
            check(check_pmaddwd, 2 * w, i32(i16_1) * 3 + i32(i16_2) * 4);
            check(check_pmaddwd, 2 * w, i32(i16_1) * 3 - i32(i16_2) * 4);

            // And also for dot-products
            RDom r4(0, 4);
            check(check_pmaddwd, 2 * w, sum(i32(in_i16(x * 4 + r4)) * in_i16(x * 4 + r4 + 32)));
        }

        // llvm doesn't distinguish between signed and unsigned multiplies
        // check("pmuldq", 4, i64(i32_1) * i64(i32_2));

        if (use_sse41) {
            for (int w = 2; w <= 4; w++) {
                if (!use_avx512) {
                    check("pmuludq", 2 * w, u64(u32_1) * u64(u32_2));
                }
                check("pmulld", 2 * w, i32_1 * i32_2);

                if (!use_avx512) {
                    // avx512 uses a variety of predicated mov ops instead of blend
                    check("blend*ps", 2 * w, select(f32_1 > 0.7f, f32_1, f32_2));
                    check("blend*pd", w, select(f64_1 > cast<double>(0.7f), f64_1, f64_2));
                    check("pblend*b", 8 * w, select(u8_1 > 7, u8_1, u8_2));
                    check("pblend*b", 8 * w, select(u8_1 == 7, u8_1, u8_2));
                    check("pblend*b", 8 * w, select(u8_1 <= 7, i8_1, i8_2));
                }

                check("pmaxsb", 8 * w, max(i8_1, i8_2));
                check("pminsb", 8 * w, min(i8_1, i8_2));
                check("pmaxuw", 4 * w, max(u16_1, u16_2));
                check("pminuw", 4 * w, min(u16_1, u16_2));
                check("pmaxud", 2 * w, max(u32_1, u32_2));
                check("pminud", 2 * w, min(u32_1, u32_2));
                check("pmaxsd", 2 * w, max(i32_1, i32_2));
                check("pminsd", 2 * w, min(i32_1, i32_2));

                check("roundps", 2 * w, round(f32_1));
                check("roundpd", w, round(f64_1));
                check("roundps", 2 * w, floor(f32_1));
                check("roundpd", w, floor(f64_1));
                check("roundps", 2 * w, ceil(f32_1));
                check("roundpd", w, ceil(f64_1));

                check("pcmpeqq", w, select(i64_1 == i64_2, i64(1), i64(2)));
                check("packusdw", 4 * w, u16_sat(i32_1));
            }
        }

        // SSE 4.2
        if (use_sse42) {
            check("pcmpgtq", 2, select(i64_1 > i64_2, i64(1), i64(2)));
        }

        // AVX
        if (use_avx) {
            check("vsqrtps*ymm", 8, sqrt(f32_1));
            check("vsqrtpd*ymm", 4, sqrt(f64_1));
            check(use_avx512 ? "vrsqrt*ps" : "vrsqrtps*ymm", 8, fast_inverse_sqrt(f32_1));
            check(use_avx512 ? "vrcp*ps" : "vrcpps*ymm", 8, fast_inverse(f32_1));

#if 0
            // Not implemented in the front end.
            check("vandnps", 8, bool1 & (!bool2));
            check("vandps", 8, bool1 & bool2);
            check("vorps", 8, bool1 | bool2);
            check("vxorps", 8, bool1 ^ bool2);
#endif

            check("vaddps*ymm", 8, f32_1 + f32_2);
            check("vaddpd*ymm", 4, f64_1 + f64_2);
            check("vmulps*ymm", 8, f32_1 * f32_2);
            check("vmulpd*ymm", 4, f64_1 * f64_2);
            check("vsubps*ymm", 8, f32_1 - f32_2);
            check("vsubpd*ymm", 4, f64_1 - f64_2);
            // LLVM no longer generates division instruction when fast-math is on
            // check("vdivps", 8, f32_1 / f32_2);
            // check("vdivpd", 4, f64_1 / f64_2);
            check("vminps*ymm", 8, min(f32_1, f32_2));
            check("vminpd*ymm", 4, min(f64_1, f64_2));
            check("vmaxps*ymm", 8, max(f32_1, f32_2));
            check("vmaxpd*ymm", 4, max(f64_1, f64_2));
            check("vroundps*ymm", 8, round(f32_1));
            check("vroundpd*ymm", 4, round(f64_1));

            check("vcmpeqpd*ymm", 4, select(f64_1 == f64_2, 1.0f, 2.0f));
            // check("vcmpneqpd", 4, select(f64_1 != f64_2, 1.0f, 2.0f));
            // check("vcmplepd", 4, select(f64_1 <= f64_2, 1.0f, 2.0f));
            check("vcmpltpd*ymm", 4, select(f64_1 < f64_2, 1.0f, 2.0f));
            check("vcmpeqps*ymm", 8, select(f32_1 == f32_2, 1.0f, 2.0f));
            // check("vcmpneqps", 8, select(f32_1 != f32_2, 1.0f, 2.0f));
            // check("vcmpleps", 8, select(f32_1 <= f32_2, 1.0f, 2.0f));
            check("vcmpltps*ymm", 8, select(f32_1 < f32_2, 1.0f, 2.0f));

            // avx512 can do predicated mov ops instead of blends
            check(use_avx512 ? "vmov*%k" : "vblend*ps*ymm", 8, select(f32_1 > 0.7f, f32_1, f32_2));
            check(use_avx512 ? "vmov*%k" : "vblend*pd*ymm", 4, select(f64_1 > cast<double>(0.7f), f64_1, f64_2));

            check("vcvttps2dq*ymm", 8, i32(f32_1));
            check("vcvtdq2ps*ymm", 8, f32(i32_1));
            check(use_avx512 ? "vcvttpd2dq*ymm" : "vcvttpd2dq*xmm", 8, i32(f64_1));
            check(use_avx512 ? "vcvtdq2pd*zmm" : "vcvtdq2pd*ymm", 8, f64(i32_1));
            check(use_avx512 ? "vcvtps2pd*zmm" : "vcvtps2pd*ymm", 8, f64(f32_1));
            check(use_avx512 ? "vcvtpd2ps*ymm" : "vcvtpd2ps*xmm", 8, f32(f64_1));

            // Newer llvms will just vpshufd straight from memory for reversed loads
            // check("vperm", 8, in_f32(100-x));
        }

        // AVX 2

        if (use_avx2) {
            check("vpaddb*ymm", 32, u8_1 + u8_2);
            check("vpsubb*ymm", 32, u8_1 - u8_2);
            check("vpaddsb*ymm", 32, i8_sat(i16(i8_1) + i16(i8_2)));
            check("vpsubsb*ymm", 32, i8_sat(i16(i8_1) - i16(i8_2)));
            check("vpaddusb*ymm", 32, u8(min(u16(u8_1) + u16(u8_2), max_u8)));
            check("vpsubusb*ymm", 32, u8(max(i16(u8_1) - i16(u8_2), 0)));
            check("vpaddw*ymm", 16, u16_1 + u16_2);
            check("vpsubw*ymm", 16, u16_1 - u16_2);
            check("vpaddsw*ymm", 16, i16_sat(i32(i16_1) + i32(i16_2)));
            check("vpsubsw*ymm", 16, i16_sat(i32(i16_1) - i32(i16_2)));
            check("vpaddusw*ymm", 16, u16(min(u32(u16_1) + u32(u16_2), max_u16)));
            check("vpsubusw*ymm", 16, u16(max(i32(u16_1) - i32(u16_2), 0)));
            check("vpaddd*ymm", 8, i32_1 + i32_2);
            check("vpsubd*ymm", 8, i32_1 - i32_2);
            check("vpmulhw*ymm", 16, i16((i32(i16_1) * i32(i16_2)) / (256 * 256)));
            check("vpmulhw*ymm", 16, i16((i32(i16_1) * i32(i16_2)) >> cast<unsigned>(16)));
            check("vpmulhw*ymm", 16, i16((i32(i16_1) * i32(i16_2)) >> cast<int>(16)));
            check("vpmulhw*ymm", 16, i16((i32(i16_1) * i32(i16_2)) << cast<int>(-16)));
            check("vpmullw*ymm", 16, i16_1 * i16_2);

            check("vpmulhrsw*ymm", 16, i16((((i32(i16_1) * i32(i16_2)) + 16384)) / 32768));
            check("vpmulhrsw*ymm", 16, i16_sat((((i32(i16_1) * i32(i16_2)) + 16384)) / 32768));

            check("vpcmp*b*ymm", 32, select(u8_1 == u8_2, u8(1), u8(2)));
            check("vpcmp*b*ymm", 32, select(u8_1 > u8_2, u8(1), u8(2)));
            check("vpcmp*w*ymm", 16, select(u16_1 == u16_2, u16(1), u16(2)));
            check("vpcmp*w*ymm", 16, select(u16_1 > u16_2, u16(1), u16(2)));
            check("vpcmp*d*ymm", 8, select(u32_1 == u32_2, u32(1), u32(2)));
            check("vpcmp*d*ymm", 8, select(u32_1 > u32_2, u32(1), u32(2)));

            check("vpavgb*ymm", 32, u8((u16(u8_1) + u16(u8_2) + 1) / 2));
            check("vpavgw*ymm", 16, u16((u32(u16_1) + u32(u16_2) + 1) / 2));
            check("vpmaxsw*ymm", 16, max(i16_1, i16_2));
            check("vpminsw*ymm", 16, min(i16_1, i16_2));
            check("vpmaxub*ymm", 32, max(u8_1, u8_2));
            check("vpminub*ymm", 32, min(u8_1, u8_2));

            check(use_avx512 ? "vpaddq*zmm" : "vpaddq*ymm", 8, i64_1 + i64_2);
            check(use_avx512 ? "vpsubq*zmm" : "vpsubq*ymm", 8, i64_1 - i64_2);
            check(use_avx512 ? "vpmullq" : "vpmuludq*ymm", 8, u64_1 * u64_2);

            check("vpabsb*ymm", 32, abs(i8_1));
            check("vpabsw*ymm", 16, abs(i16_1));
            check("vpabsd*ymm", 8, abs(i32_1));

            // llvm doesn't distinguish between signed and unsigned multiplies
            // check("vpmuldq", 8, i64(i32_1) * i64(i32_2));
            if (!use_avx512) {
                // AVX512 uses widening loads instead
                check("vpmuludq*ymm", 8, u64(u32_1) * u64(u32_2));
            }
            check("vpmulld*ymm", 8, i32_1 * i32_2);

            if (use_avx512) {
                // avx512 does vector blends with a mov + predicate register
                check("vmov*%k", 32, select(u8_1 > 7, u8_1, u8_2));
            } else {
                check("vpblend*b*ymm", 32, select(u8_1 > 7, u8_1, u8_2));
            }

            if (use_avx512) {
                check("vpmaxsb*zmm", 64, max(i8_1, i8_2));
                check("vpminsb*zmm", 64, min(i8_1, i8_2));
                check("vpmaxuw*zmm", 32, max(u16_1, u16_2));
                check("vpminuw*zmm", 32, min(u16_1, u16_2));
                check("vpmaxud*zmm", 16, max(u32_1, u32_2));
                check("vpminud*zmm", 16, min(u32_1, u32_2));
                check("vpmaxsd*zmm", 16, max(i32_1, i32_2));
                check("vpminsd*zmm", 16, min(i32_1, i32_2));
            }
            check("vpmaxsb*ymm", 32, max(i8_1, i8_2));
            check("vpminsb*ymm", 32, min(i8_1, i8_2));
            check("vpmaxuw*ymm", 16, max(u16_1, u16_2));
            check("vpminuw*ymm", 16, min(u16_1, u16_2));
            check("vpmaxud*ymm", 8, max(u32_1, u32_2));
            check("vpminud*ymm", 8, min(u32_1, u32_2));
            check("vpmaxsd*ymm", 8, max(i32_1, i32_2));
            check("vpminsd*ymm", 8, min(i32_1, i32_2));

            check("vpcmpeqq*ymm", 4, select(i64_1 == i64_2, i64(1), i64(2)));
            check("vpackusdw*ymm", 16, u16(clamp(i32_1, 0, max_u16)));
            check("vpcmpgtq*ymm", 4, select(i64_1 > i64_2, i64(1), i64(2)));
        }

        if (use_avx512) {
#if 0
            // Not yet implemented
            check("vrangeps", 16, clamp(f32_1, 3.0f, 9.0f));
            check("vrangepd", 8, clamp(f64_1, f64(3), f64(9)));

            check("vreduceps", 16, f32_1 - floor(f32_1));
            check("vreduceps", 16, f32_1 - floor(f32_1*8)/8);
            check("vreduceps", 16, f32_1 - trunc(f32_1));
            check("vreduceps", 16, f32_1 - trunc(f32_1*8)/8);
            check("vreducepd", 8, f64_1 - floor(f64_1));
            check("vreducepd", 8, f64_1 - floor(f64_1*8)/8);
            check("vreducepd", 8, f64_1 - trunc(f64_1));
            check("vreducepd", 8, f64_1 - trunc(f64_1*8)/8);
#endif
        }
        if (use_avx512) {
            check("vpabsq", 8, abs(i64_1));
            check("vpmaxuq", 8, max(u64_1, u64_2));
            check("vpminuq", 8, min(u64_1, u64_2));
            check("vpmaxsq", 8, max(i64_1, i64_2));
            check("vpminsq", 8, min(i64_1, i64_2));
        }
        if (use_avx512 && target.has_feature(Target::AVX512_SapphireRapids)) {
            check("vcvtne2ps2bf16*zmm", 32, cast(BFloat(16), f32_1));
            check("vcvtneps2bf16*ymm", 16, cast(BFloat(16), f32_1));
            check("vcvtneps2bf16*xmm", 8, cast(BFloat(16), f32_1));
            check("vcvtneps2bf16*xmm", 4, cast(BFloat(16), f32_1));

            {
                // 16 bit, 2 element dot product
                RDom r(0, 2);
                check("vdpbf16ps*zmm", 16, sum(f32(in_bf16(2 * x + r)) * in_bf16(2 * x + r + 32)));
                check("vdpbf16ps*ymm", 8, sum(f32(in_bf16(2 * x + r)) * in_bf16(2 * x + r + 32)));
                check("vdpbf16ps*xmm", 4, sum(f32(in_bf16(2 * x + r)) * in_bf16(2 * x + r + 32)));
                check("vpdpwssd*zmm", 16, sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
                check("vpdpwssd*ymm", 8, sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
                check("vpdpwssd*xmm", 4, sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
            }
            {
                // 8 bit, 4 element dot product
                RDom r(0, 4);
                check("vpdpbusd*zmm", 16, sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
                check("vpdpbusd*zmm", 16, sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
                check("vpdpbusd*ymm", 8, sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
                check("vpdpbusd*ymm", 8, sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
                check("vpdpbusd*xmm", 4, sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
                check("vpdpbusd*xmm", 4, sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
            }
            {
                // 16 bit, 2 element saturaing dot product
                RDom r(0, 2);
                check("vpdpwssds*zmm", 16, saturating_sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
                check("vpdpwssds*ymm", 8, saturating_sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
                check("vpdpwssds*xmm", 4, saturating_sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
            }
            {
                // 8 bit, 4 element saturating dot product
                RDom r(0, 4);
                check("vpdpbusds*zmm", 16, saturating_sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
                check("vpdpbusds*zmm", 16, saturating_sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
                check("vpdpbusds*ymm", 8, saturating_sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
                check("vpdpbusds*ymm", 8, saturating_sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
                check("vpdpbusds*xmm", 4, saturating_sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
                check("vpdpbusds*xmm", 4, saturating_sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
            }
        }
    }

    void check_neon_all() {
        Expr f64_1 = in_f64(x), f64_2 = in_f64(x + 16), f64_3 = in_f64(x + 32);
        Expr f32_1 = in_f32(x), f32_2 = in_f32(x + 16), f32_3 = in_f32(x + 32);
        Expr i8_1 = in_i8(x), i8_2 = in_i8(x + 16), i8_3 = in_i8(x + 32);
        Expr u8_1 = in_u8(x), u8_2 = in_u8(x + 16), u8_3 = in_u8(x + 32);
        Expr i16_1 = in_i16(x), i16_2 = in_i16(x + 16), i16_3 = in_i16(x + 32);
        Expr u16_1 = in_u16(x), u16_2 = in_u16(x + 16), u16_3 = in_u16(x + 32);
        Expr i32_1 = in_i32(x), i32_2 = in_i32(x + 16), i32_3 = in_i32(x + 32);
        Expr u32_1 = in_u32(x), u32_2 = in_u32(x + 16), u32_3 = in_u32(x + 32);
        Expr i64_1 = in_i64(x), i64_2 = in_i64(x + 16), i64_3 = in_i64(x + 32);
        Expr u64_1 = in_u64(x), u64_2 = in_u64(x + 16), u64_3 = in_u64(x + 32);
        Expr bool_1 = (f32_1 > 0.3f), bool_2 = (f32_1 < -0.3f), bool_3 = (f32_1 != -0.34f);

        // Table copied from the Cortex-A9 TRM.

        // In general neon ops have the 64-bit version, the 128-bit
        // version (ending in q), and the widening version that takes
        // 64-bit args and produces a 128-bit result (ending in l). We try
        // to peephole match any with vector, so we just try 64-bits, 128
        // bits, 192 bits, and 256 bits for everything.

        bool arm32 = (target.bits == 32);

        for (int w = 1; w <= 4; w++) {

            // VABA     I       -       Absolute Difference and Accumulate
            check(arm32 ? "vaba.s8" : "saba", 8 * w, i8_1 + absd(i8_2, i8_3));
            check(arm32 ? "vaba.u8" : "uaba", 8 * w, u8_1 + absd(u8_2, u8_3));
            check(arm32 ? "vaba.s16" : "saba", 4 * w, i16_1 + absd(i16_2, i16_3));
            check(arm32 ? "vaba.u16" : "uaba", 4 * w, u16_1 + absd(u16_2, u16_3));
            check(arm32 ? "vaba.s32" : "saba", 2 * w, i32_1 + absd(i32_2, i32_3));
            check(arm32 ? "vaba.u32" : "uaba", 2 * w, u32_1 + absd(u32_2, u32_3));

            // VABAL    I       -       Absolute Difference and Accumulate Long
            check(arm32 ? "vabal.s8" : "sabal", 8 * w, i16_1 + absd(i8_2, i8_3));
            check(arm32 ? "vabal.u8" : "uabal", 8 * w, u16_1 + absd(u8_2, u8_3));
            check(arm32 ? "vabal.s16" : "sabal", 4 * w, i32_1 + absd(i16_2, i16_3));
            check(arm32 ? "vabal.u16" : "uabal", 4 * w, u32_1 + absd(u16_2, u16_3));
            check(arm32 ? "vabal.s32" : "sabal", 2 * w, i64_1 + absd(i32_2, i32_3));
            check(arm32 ? "vabal.u32" : "uabal", 2 * w, u64_1 + absd(u32_2, u32_3));

            // VABD     I, F    -       Absolute Difference
            check(arm32 ? "vabd.s8" : "sabd", 8 * w, absd(i8_2, i8_3));
            check(arm32 ? "vabd.u8" : "uabd", 8 * w, absd(u8_2, u8_3));
            check(arm32 ? "vabd.s16" : "sabd", 4 * w, absd(i16_2, i16_3));
            check(arm32 ? "vabd.u16" : "uabd", 4 * w, absd(u16_2, u16_3));
            check(arm32 ? "vabd.s32" : "sabd", 2 * w, absd(i32_2, i32_3));
            check(arm32 ? "vabd.u32" : "uabd", 2 * w, absd(u32_2, u32_3));

            // Via widening, taking abs, then narrowing
            check(arm32 ? "vabd.s8" : "sabd", 8 * w, u8(abs(i16(i8_2) - i8_3)));
            check(arm32 ? "vabd.u8" : "uabd", 8 * w, u8(abs(i16(u8_2) - u8_3)));
            check(arm32 ? "vabd.s16" : "sabd", 4 * w, u16(abs(i32(i16_2) - i16_3)));
            check(arm32 ? "vabd.u16" : "uabd", 4 * w, u16(abs(i32(u16_2) - u16_3)));
            check(arm32 ? "vabd.s32" : "sabd", 2 * w, u32(abs(i64(i32_2) - i32_3)));
            check(arm32 ? "vabd.u32" : "uabd", 2 * w, u32(abs(i64(u32_2) - u32_3)));

            // VABDL    I       -       Absolute Difference Long
            check(arm32 ? "vabdl.s8" : "sabdl", 8 * w, i16(absd(i8_2, i8_3)));
            check(arm32 ? "vabdl.u8" : "uabdl", 8 * w, u16(absd(u8_2, u8_3)));
            check(arm32 ? "vabdl.s16" : "sabdl", 4 * w, i32(absd(i16_2, i16_3)));
            check(arm32 ? "vabdl.u16" : "uabdl", 4 * w, u32(absd(u16_2, u16_3)));
            check(arm32 ? "vabdl.s32" : "sabdl", 2 * w, i64(absd(i32_2, i32_3)));
            check(arm32 ? "vabdl.u32" : "uabdl", 2 * w, u64(absd(u32_2, u32_3)));

            // Via widening then taking an abs
            check(arm32 ? "vabdl.s8" : "sabdl", 8 * w, abs(i16(i8_2) - i16(i8_3)));
            check(arm32 ? "vabdl.u8" : "uabdl", 8 * w, abs(i16(u8_2) - i16(u8_3)));
            check(arm32 ? "vabdl.s16" : "sabdl", 4 * w, abs(i32(i16_2) - i32(i16_3)));
            check(arm32 ? "vabdl.u16" : "uabdl", 4 * w, abs(i32(u16_2) - i32(u16_3)));
            check(arm32 ? "vabdl.s32" : "sabdl", 2 * w, abs(i64(i32_2) - i64(i32_3)));
            check(arm32 ? "vabdl.u32" : "uabdl", 2 * w, abs(i64(u32_2) - i64(u32_3)));

            // VABS     I, F    F, D    Absolute
            check(arm32 ? "vabs.f32" : "fabs", 2 * w, abs(f32_1));
            check(arm32 ? "vabs.s32" : "abs", 2 * w, abs(i32_1));
            check(arm32 ? "vabs.s16" : "abs", 4 * w, abs(i16_1));
            check(arm32 ? "vabs.s8" : "abs", 8 * w, abs(i8_1));

            // VACGE    F       -       Absolute Compare Greater Than or Equal
            // VACGT    F       -       Absolute Compare Greater Than
            // VACLE    F       -       Absolute Compare Less Than or Equal
            // VACLT    F       -       Absolute Compare Less Than

            // VADD     I, F    F, D    Add
            check(arm32 ? "vadd.i8" : "add", 8 * w, i8_1 + i8_2);
            check(arm32 ? "vadd.i8" : "add", 8 * w, u8_1 + u8_2);
            check(arm32 ? "vadd.i16" : "add", 4 * w, i16_1 + i16_2);
            check(arm32 ? "vadd.i16" : "add", 4 * w, u16_1 + u16_2);
            check(arm32 ? "vadd.i32" : "add", 2 * w, i32_1 + i32_2);
            check(arm32 ? "vadd.i32" : "add", 2 * w, u32_1 + u32_2);
            check(arm32 ? "vadd.f32" : "fadd", 2 * w, f32_1 + f32_2);
            check(arm32 ? "vadd.i64" : "add", 2 * w, i64_1 + i64_2);
            check(arm32 ? "vadd.i64" : "add", 2 * w, u64_1 + u64_2);

            // VADDHN   I       -       Add and Narrow Returning High Half
            check(arm32 ? "vaddhn.i16" : "addhn", 8 * w, i8((i16_1 + i16_2) / 256));
            check(arm32 ? "vaddhn.i16" : "addhn", 8 * w, u8((u16_1 + u16_2) / 256));
            check(arm32 ? "vaddhn.i32" : "addhn", 4 * w, i16((i32_1 + i32_2) / 65536));
            check(arm32 ? "vaddhn.i32" : "addhn", 4 * w, u16((u32_1 + u32_2) / 65536));
            check(arm32 ? "vaddhn.i64" : "addhn", 4 * w, i32((i64_1 + i64_2) >> 32));
            check(arm32 ? "vaddhn.i64" : "addhn", 4 * w, u32((u64_1 + u64_2) >> 32));

            // VADDL    I       -       Add Long
            check(arm32 ? "vaddl.s8" : "saddl", 8 * w, i16(i8_1) + i16(i8_2));
            check(arm32 ? "vaddl.u8" : "uaddl", 8 * w, u16(u8_1) + u16(u8_2));
            check(arm32 ? "vaddl.s16" : "saddl", 4 * w, i32(i16_1) + i32(i16_2));
            check(arm32 ? "vaddl.u16" : "uaddl", 4 * w, u32(u16_1) + u32(u16_2));
            check(arm32 ? "vaddl.s32" : "saddl", 2 * w, i64(i32_1) + i64(i32_2));
            check(arm32 ? "vaddl.u32" : "uaddl", 2 * w, u64(u32_1) + u64(u32_2));

            // VADDW    I       -       Add Wide
            check(arm32 ? "vaddw.s8" : "saddw", 8 * w, i8_1 + i16_1);
            check(arm32 ? "vaddw.u8" : "uaddw", 8 * w, u8_1 + u16_1);
            check(arm32 ? "vaddw.s16" : "saddw", 4 * w, i16_1 + i32_1);
            check(arm32 ? "vaddw.u16" : "uaddw", 4 * w, u16_1 + u32_1);
            check(arm32 ? "vaddw.s32" : "saddw", 2 * w, i32_1 + i64_1);
            check(arm32 ? "vaddw.u32" : "uaddw", 2 * w, u32_1 + u64_1);

            // VAND     X       -       Bitwise AND
            // Not implemented in front-end yet
            // check("vand", 4, bool1 & bool2);
            // check("vand", 2, bool1 & bool2);

            // VBIC     I       -       Bitwise Clear
            // VBIF     X       -       Bitwise Insert if False
            // VBIT     X       -       Bitwise Insert if True
            // skip these ones

            // VBSL     X       -       Bitwise Select
            check(arm32 ? "vbsl" : "bsl", 2 * w, select(f32_1 > f32_2, 1.0f, 2.0f));

            // VCEQ     I, F    -       Compare Equal
            check(arm32 ? "vceq.i8" : "cmeq", 8 * w, select(i8_1 == i8_2, i8(1), i8(2)));
            check(arm32 ? "vceq.i8" : "cmeq", 8 * w, select(u8_1 == u8_2, u8(1), u8(2)));
            check(arm32 ? "vceq.i16" : "cmeq", 4 * w, select(i16_1 == i16_2, i16(1), i16(2)));
            check(arm32 ? "vceq.i16" : "cmeq", 4 * w, select(u16_1 == u16_2, u16(1), u16(2)));
            check(arm32 ? "vceq.i32" : "cmeq", 2 * w, select(i32_1 == i32_2, i32(1), i32(2)));
            check(arm32 ? "vceq.i32" : "cmeq", 2 * w, select(u32_1 == u32_2, u32(1), u32(2)));
            check(arm32 ? "vceq.f32" : "fcmeq", 2 * w, select(f32_1 == f32_2, 1.0f, 2.0f));

            // VCGE     I, F    -       Compare Greater Than or Equal
#if 0
            // Halide flips these to less than instead
            check("vcge.s8", 16, select(i8_1 >= i8_2, i8(1), i8(2)));
            check("vcge.u8", 16, select(u8_1 >= u8_2, u8(1), u8(2)));
            check("vcge.s16", 8, select(i16_1 >= i16_2, i16(1), i16(2)));
            check("vcge.u16", 8, select(u16_1 >= u16_2, u16(1), u16(2)));
            check("vcge.s32", 4, select(i32_1 >= i32_2, i32(1), i32(2)));
            check("vcge.u32", 4, select(u32_1 >= u32_2, u32(1), u32(2)));
            check("vcge.f32", 4, select(f32_1 >= f32_2, 1.0f, 2.0f));
            check("vcge.s8", 8, select(i8_1 >= i8_2, i8(1), i8(2)));
            check("vcge.u8", 8, select(u8_1 >= u8_2, u8(1), u8(2)));
            check("vcge.s16", 4, select(i16_1 >= i16_2, i16(1), i16(2)));
            check("vcge.u16", 4, select(u16_1 >= u16_2, u16(1), u16(2)));
            check("vcge.s32", 2, select(i32_1 >= i32_2, i32(1), i32(2)));
            check("vcge.u32", 2, select(u32_1 >= u32_2, u32(1), u32(2)));
            check("vcge.f32", 2, select(f32_1 >= f32_2, 1.0f, 2.0f));
#endif

            // VCGT     I, F    -       Compare Greater Than
            check(arm32 ? "vcgt.s8" : "cmgt", 8 * w, select(i8_1 > i8_2, i8(1), i8(2)));
            check(arm32 ? "vcgt.u8" : "cmhi", 8 * w, select(u8_1 > u8_2, u8(1), u8(2)));
            check(arm32 ? "vcgt.s16" : "cmgt", 4 * w, select(i16_1 > i16_2, i16(1), i16(2)));
            check(arm32 ? "vcgt.u16" : "cmhi", 4 * w, select(u16_1 > u16_2, u16(1), u16(2)));
            check(arm32 ? "vcgt.s32" : "cmgt", 2 * w, select(i32_1 > i32_2, i32(1), i32(2)));
            check(arm32 ? "vcgt.u32" : "cmhi", 2 * w, select(u32_1 > u32_2, u32(1), u32(2)));
            check(arm32 ? "vcgt.f32" : "fcmgt", 2 * w, select(f32_1 > f32_2, 1.0f, 2.0f));

            // VCLS     I       -       Count Leading Sign Bits
#if 0
            // We don't currently match these, but it wouldn't be hard to do.
            check(arm32 ? "vcls.s8" : "cls", 8 * w, max(count_leading_zeros(i8_1), count_leading_zeros(~i8_1)));
            check(arm32 ? "vcls.s16" : "cls", 8 * w, max(count_leading_zeros(i16_1), count_leading_zeros(~i16_1)));
            check(arm32 ? "vcls.s32" : "cls", 8 * w, max(count_leading_zeros(i32_1), count_leading_zeros(~i32_1)));
#endif

            // VCLZ     I       -       Count Leading Zeros
            check(arm32 ? "vclz.i8" : "clz", 8 * w, count_leading_zeros(i8_1));
            check(arm32 ? "vclz.i8" : "clz", 8 * w, count_leading_zeros(u8_1));
            check(arm32 ? "vclz.i16" : "clz", 8 * w, count_leading_zeros(i16_1));
            check(arm32 ? "vclz.i16" : "clz", 8 * w, count_leading_zeros(u16_1));
            check(arm32 ? "vclz.i32" : "clz", 8 * w, count_leading_zeros(i32_1));
            check(arm32 ? "vclz.i32" : "clz", 8 * w, count_leading_zeros(u32_1));

            // VCMP     -       F, D    Compare Setting Flags
            // We skip this

            // VCNT     I       -       Count Number of Set Bits
            check(arm32 ? "vcnt.8" : "cnt", 8 * w, popcount(i8_1));
            check(arm32 ? "vcnt.8" : "cnt", 8 * w, popcount(u8_1));
            // There is only cnt for bytes, and then horizontal adds.
            check(arm32 ? "vcnt.8" : "cnt", 8 * w, popcount(i16_1));
            check(arm32 ? "vcnt.8" : "cnt", 8 * w, popcount(u16_1));
            check(arm32 ? "vcnt.8" : "cnt", 8 * w, popcount(i32_1));
            check(arm32 ? "vcnt.8" : "cnt", 8 * w, popcount(u32_1));

            // VCVT     I, F, H I, F, D, H      Convert Between Floating-Point and 32-bit Integer Types
            check(arm32 ? "vcvt.f32.u32" : "ucvtf", 2 * w, f32(u32_1));
            check(arm32 ? "vcvt.f32.s32" : "scvtf", 2 * w, f32(i32_1));
            check(arm32 ? "vcvt.u32.f32" : "fcvtzu", 2 * w, u32(f32_1));
            check(arm32 ? "vcvt.s32.f32" : "fcvtzs", 2 * w, i32(f32_1));
            // skip the fixed point conversions for now

            // VDIV     -       F, D    Divide
            // This doesn't actually get vectorized in 32-bit. Not sure cortex processors can do vectorized division.
            check(arm32 ? "vdiv.f32" : "fdiv", 2 * w, f32_1 / f32_2);
            check(arm32 ? "vdiv.f64" : "fdiv", 2 * w, f64_1 / f64_2);

            // VDUP     X       -       Duplicate
            check(arm32 ? "vdup.8" : "dup", 16 * w, i8(y));
            check(arm32 ? "vdup.8" : "dup", 16 * w, u8(y));
            check(arm32 ? "vdup.16" : "dup", 8 * w, i16(y));
            check(arm32 ? "vdup.16" : "dup", 8 * w, u16(y));
            check(arm32 ? "vdup.32" : "dup", 4 * w, i32(y));
            check(arm32 ? "vdup.32" : "dup", 4 * w, u32(y));
            check(arm32 ? "vdup.32" : "dup", 4 * w, f32(y));

            // VEOR     X       -       Bitwise Exclusive OR
            // check("veor", 4, bool1 ^ bool2);

            // VEXT     I       -       Extract Elements and Concatenate
            // unaligned loads with known offsets should use vext
#if 0
            // We currently don't do this.
            check("vext.8", 16, in_i8(x+1));
            check("vext.16", 8, in_i16(x+1));
            check("vext.32", 4, in_i32(x+1));
#endif

            // VHADD    I       -       Halving Add
            check(arm32 ? "vhadd.s8" : "shadd", 8 * w, i8((i16(i8_1) + i16(i8_2)) / 2));
            check(arm32 ? "vhadd.u8" : "uhadd", 8 * w, u8((u16(u8_1) + u16(u8_2)) / 2));
            check(arm32 ? "vhadd.s16" : "shadd", 4 * w, i16((i32(i16_1) + i32(i16_2)) / 2));
            check(arm32 ? "vhadd.u16" : "uhadd", 4 * w, u16((u32(u16_1) + u32(u16_2)) / 2));
            check(arm32 ? "vhadd.s32" : "shadd", 2 * w, i32((i64(i32_1) + i64(i32_2)) / 2));
            check(arm32 ? "vhadd.u32" : "uhadd", 2 * w, u32((u64(u32_1) + u64(u32_2)) / 2));

            // Halide doesn't define overflow behavior for i32 so we
            // can use vhadd instruction. We can't use it for unsigned u8,i16,u16,u32.
            check(arm32 ? "vhadd.s32" : "shadd", 2 * w, (i32_1 + i32_2) / 2);

            // VHSUB    I       -       Halving Subtract
            check(arm32 ? "vhsub.s8" : "shsub", 8 * w, i8((i16(i8_1) - i16(i8_2)) / 2));
            check(arm32 ? "vhsub.u8" : "uhsub", 8 * w, u8((u16(u8_1) - u16(u8_2)) / 2));
            check(arm32 ? "vhsub.s16" : "shsub", 4 * w, i16((i32(i16_1) - i32(i16_2)) / 2));
            check(arm32 ? "vhsub.u16" : "uhsub", 4 * w, u16((u32(u16_1) - u32(u16_2)) / 2));
            check(arm32 ? "vhsub.s32" : "shsub", 2 * w, i32((i64(i32_1) - i64(i32_2)) / 2));
            check(arm32 ? "vhsub.u32" : "uhsub", 2 * w, u32((u64(u32_1) - u64(u32_2)) / 2));

            check(arm32 ? "vhsub.s32" : "shsub", 2 * w, (i32_1 - i32_2) / 2);

            // VLD1     X       -       Load Single-Element Structures
            // dense loads with unknown alignments should use vld1 variants
            check(arm32 ? "vld1.8" : "ldr", 8 * w, in_i8(x + y));
            check(arm32 ? "vld1.8" : "ldr", 8 * w, in_u8(x + y));
            check(arm32 ? "vld1.16" : "ldr", 4 * w, in_i16(x + y));
            check(arm32 ? "vld1.16" : "ldr", 4 * w, in_u16(x + y));
            if (w > 1) {
                // When w == 1, llvm emits vldr instead
                check(arm32 ? "vld1.32" : "ldr", 2 * w, in_i32(x + y));
                check(arm32 ? "vld1.32" : "ldr", 2 * w, in_u32(x + y));
                check(arm32 ? "vld1.32" : "ldr", 2 * w, in_f32(x + y));
            }

            // VLD2     X       -       Load Two-Element Structures
            // These need to be vectorized at least 2 native vectors wide,
            // so we get a full vectors' worth that we know is safe to
            // access.
            check(arm32 ? "vld2.8" : "ld2", 32 * w, in_i8(x * 2) + in_i8(x * 2 + 1));
            check(arm32 ? "vld2.8" : "ld2", 32 * w, in_u8(x * 2) + in_u8(x * 2 + 1));
            check(arm32 ? "vld2.16" : "ld2", 16 * w, in_i16(x * 2) + in_i16(x * 2 + 1));
            check(arm32 ? "vld2.16" : "ld2", 16 * w, in_u16(x * 2) + in_u16(x * 2 + 1));
            check(arm32 ? "vld2.32" : "ld2", 8 * w, in_i32(x * 2) + in_i32(x * 2 + 1));
            check(arm32 ? "vld2.32" : "ld2", 8 * w, in_u32(x * 2) + in_u32(x * 2 + 1));
            check(arm32 ? "vld2.32" : "ld2", 8 * w, in_f32(x * 2) + in_f32(x * 2 + 1));

            // VLD3     X       -       Load Three-Element Structures
            check(arm32 ? "vld3.8" : "ld3", 32 * w, in_i8(x * 3));
            check(arm32 ? "vld3.8" : "ld3", 32 * w, in_u8(x * 3));
            check(arm32 ? "vld3.16" : "ld3", 16 * w, in_i16(x * 3));
            check(arm32 ? "vld3.16" : "ld3", 16 * w, in_u16(x * 3));
            check(arm32 ? "vld3.32" : "ld3", 8 * w, in_i32(x * 3));
            check(arm32 ? "vld3.32" : "ld3", 8 * w, in_u32(x * 3));
            check(arm32 ? "vld3.32" : "ld3", 8 * w, in_f32(x * 3));

            // VLD4     X       -       Load Four-Element Structures
            check(arm32 ? "vld4.8" : "ld4", 32 * w, in_i8(x * 4));
            check(arm32 ? "vld4.8" : "ld4", 32 * w, in_u8(x * 4));
            check(arm32 ? "vld4.16" : "ld4", 16 * w, in_i16(x * 4));
            check(arm32 ? "vld4.16" : "ld4", 16 * w, in_u16(x * 4));
            check(arm32 ? "vld4.32" : "ld4", 8 * w, in_i32(x * 4));
            check(arm32 ? "vld4.32" : "ld4", 8 * w, in_u32(x * 4));
            check(arm32 ? "vld4.32" : "ld4", 8 * w, in_f32(x * 4));

            // VLDM     X       F, D    Load Multiple Registers
            // VLDR     X       F, D    Load Single Register
            // We generally generate vld instead

            // VMAX     I, F    -       Maximum
            check(arm32 ? "vmax.s8" : "smax", 8 * w, max(i8_1, i8_2));
            check(arm32 ? "vmax.u8" : "umax", 8 * w, max(u8_1, u8_2));
            check(arm32 ? "vmax.s16" : "smax", 4 * w, max(i16_1, i16_2));
            check(arm32 ? "vmax.u16" : "umax", 4 * w, max(u16_1, u16_2));
            check(arm32 ? "vmax.s32" : "smax", 2 * w, max(i32_1, i32_2));
            check(arm32 ? "vmax.u32" : "umax", 2 * w, max(u32_1, u32_2));
            check(arm32 ? "vmax.f32" : "fmax", 2 * w, max(f32_1, f32_2));

            // VMIN     I, F    -       Minimum
            check(arm32 ? "vmin.s8" : "smin", 8 * w, min(i8_1, i8_2));
            check(arm32 ? "vmin.u8" : "umin", 8 * w, min(u8_1, u8_2));
            check(arm32 ? "vmin.s16" : "smin", 4 * w, min(i16_1, i16_2));
            check(arm32 ? "vmin.u16" : "umin", 4 * w, min(u16_1, u16_2));
            check(arm32 ? "vmin.s32" : "smin", 2 * w, min(i32_1, i32_2));
            check(arm32 ? "vmin.u32" : "umin", 2 * w, min(u32_1, u32_2));
            check(arm32 ? "vmin.f32" : "fmin", 2 * w, min(f32_1, f32_2));

            // VMLA     I, F    F, D    Multiply Accumulate
            check(arm32 ? "vmla.i8" : "mla", 8 * w, i8_1 + i8_2 * i8_3);
            check(arm32 ? "vmla.i8" : "mla", 8 * w, u8_1 + u8_2 * u8_3);
            check(arm32 ? "vmla.i16" : "mla", 4 * w, i16_1 + i16_2 * i16_3);
            check(arm32 ? "vmla.i16" : "mla", 4 * w, u16_1 + u16_2 * u16_3);
            check(arm32 ? "vmla.i32" : "mla", 2 * w, i32_1 + i32_2 * i32_3);
            check(arm32 ? "vmla.i32" : "mla", 2 * w, u32_1 + u32_2 * u32_3);
            if (w == 1 || w == 2) {
                // Older llvms don't always fuse this at non-native widths
                // TODO: Re-enable this after fixing https://github.com/halide/Halide/issues/3477
                // check(arm32 ? "vmla.f32" : "fmla", 2*w, f32_1 + f32_2*f32_3);
                if (!arm32)
                    check(arm32 ? "vmla.f32" : "fmla", 2 * w, f32_1 + f32_2 * f32_3);
            }

            // VMLS     I, F    F, D    Multiply Subtract
            check(arm32 ? "vmls.i8" : "mls", 8 * w, i8_1 - i8_2 * i8_3);
            check(arm32 ? "vmls.i8" : "mls", 8 * w, u8_1 - u8_2 * u8_3);
            check(arm32 ? "vmls.i16" : "mls", 4 * w, i16_1 - i16_2 * i16_3);
            check(arm32 ? "vmls.i16" : "mls", 4 * w, u16_1 - u16_2 * u16_3);
            check(arm32 ? "vmls.i32" : "mls", 2 * w, i32_1 - i32_2 * i32_3);
            check(arm32 ? "vmls.i32" : "mls", 2 * w, u32_1 - u32_2 * u32_3);
            if (w == 1 || w == 2) {
                // Older llvms don't always fuse this at non-native widths
                // TODO: Re-enable this after fixing https://github.com/halide/Halide/issues/3477
                // check(arm32 ? "vmls.f32" : "fmls", 2*w, f32_1 - f32_2*f32_3);
                if (!arm32)
                    check(arm32 ? "vmls.f32" : "fmls", 2 * w, f32_1 - f32_2 * f32_3);
            }

            // VMLAL    I       -       Multiply Accumulate Long
            // Try to trick LLVM into generating a zext instead of a sext by making
            // LLVM think the operand never has a leading 1 bit. zext breaks LLVM's
            // pattern matching of mlal.
            check(arm32 ? "vmlal.s8" : "smlal", 8 * w, i16_1 + i16(i8_2 & 0x3) * i8_3);
            check(arm32 ? "vmlal.u8" : "umlal", 8 * w, u16_1 + u16(u8_2) * u8_3);
            check(arm32 ? "vmlal.s16" : "smlal", 4 * w, i32_1 + i32(i16_2 & 0x3) * i16_3);
            check(arm32 ? "vmlal.u16" : "umlal", 4 * w, u32_1 + u32(u16_2) * u16_3);
            check(arm32 ? "vmlal.s32" : "smlal", 2 * w, i64_1 + i64(i32_2 & 0x3) * i32_3);
            check(arm32 ? "vmlal.u32" : "umlal", 2 * w, u64_1 + u64(u32_2) * u32_3);

            // VMLSL    I       -       Multiply Subtract Long
            check(arm32 ? "vmlsl.s8" : "smlsl", 8 * w, i16_1 - i16(i8_2 & 0x3) * i8_3);
            check(arm32 ? "vmlsl.u8" : "umlsl", 8 * w, u16_1 - u16(u8_2) * u8_3);
            check(arm32 ? "vmlsl.s16" : "smlsl", 4 * w, i32_1 - i32(i16_2 & 0x3) * i16_3);
            check(arm32 ? "vmlsl.u16" : "umlsl", 4 * w, u32_1 - u32(u16_2) * u16_3);
            check(arm32 ? "vmlsl.s32" : "smlsl", 2 * w, i64_1 - i64(i32_2 & 0x3) * i32_3);
            check(arm32 ? "vmlsl.u32" : "umlsl", 2 * w, u64_1 - u64(u32_2) * u32_3);

            // VMOV     X       F, D    Move Register or Immediate
            // This is for loading immediates, which we won't do in the inner loop anyway

            // VMOVL    I       -       Move Long
            // For aarch64, llvm does a widening shift by 0 instead of using the sxtl instruction.
            check(arm32 ? "vmovl.s8" : "sshll", 8 * w, i16(i8_1));
            check(arm32 ? "vmovl.u8" : "ushll", 8 * w, u16(u8_1));
            check(arm32 ? "vmovl.u8" : "ushll", 8 * w, i16(u8_1));
            check(arm32 ? "vmovl.s16" : "sshll", 4 * w, i32(i16_1));
            check(arm32 ? "vmovl.u16" : "ushll", 4 * w, u32(u16_1));
            check(arm32 ? "vmovl.u16" : "ushll", 4 * w, i32(u16_1));
            check(arm32 ? "vmovl.s32" : "sshll", 2 * w, i64(i32_1));
            check(arm32 ? "vmovl.u32" : "ushll", 2 * w, u64(u32_1));
            check(arm32 ? "vmovl.u32" : "ushll", 2 * w, i64(u32_1));

            // VMOVN    I       -       Move and Narrow
            if (Halide::Internal::get_llvm_version() >= 140 && w > 1) {
                check(arm32 ? "vmovn.i16" : "uzp1", 8 * w, i8(i16_1));
                check(arm32 ? "vmovn.i16" : "uzp1", 8 * w, u8(u16_1));
                check(arm32 ? "vmovn.i32" : "uzp1", 4 * w, i16(i32_1));
                check(arm32 ? "vmovn.i32" : "uzp1", 4 * w, u16(u32_1));
                check(arm32 ? "vmovn.i64" : "uzp1", 2 * w, i32(i64_1));
                check(arm32 ? "vmovn.i64" : "uzp1", 2 * w, u32(u64_1));
            } else {
                check(arm32 ? "vmovn.i16" : "xtn", 8 * w, i8(i16_1));
                check(arm32 ? "vmovn.i16" : "xtn", 8 * w, u8(u16_1));
                check(arm32 ? "vmovn.i32" : "xtn", 4 * w, i16(i32_1));
                check(arm32 ? "vmovn.i32" : "xtn", 4 * w, u16(u32_1));
                check(arm32 ? "vmovn.i64" : "xtn", 2 * w, i32(i64_1));
                check(arm32 ? "vmovn.i64" : "xtn", 2 * w, u32(u64_1));
            }

            // VMRS     X       F, D    Move Advanced SIMD or VFP Register to ARM compute Engine
            // VMSR     X       F, D    Move ARM Core Register to Advanced SIMD or VFP
            // trust llvm to use this correctly

            // VMUL     I, F, P F, D    Multiply
            check(arm32 ? "vmul.f64" : "fmul", 2 * w, f64_2 * f64_1);
            check(arm32 ? "vmul.i8" : "mul", 8 * w, i8_2 * i8_1);
            check(arm32 ? "vmul.i8" : "mul", 8 * w, u8_2 * u8_1);
            check(arm32 ? "vmul.i16" : "mul", 4 * w, i16_2 * i16_1);
            check(arm32 ? "vmul.i16" : "mul", 4 * w, u16_2 * u16_1);
            check(arm32 ? "vmul.i32" : "mul", 2 * w, i32_2 * i32_1);
            check(arm32 ? "vmul.i32" : "mul", 2 * w, u32_2 * u32_1);
            check(arm32 ? "vmul.f32" : "fmul", 2 * w, f32_2 * f32_1);

            // VMULL    I, F, P -       Multiply Long
            check(arm32 ? "vmull.s8" : "smull", 8 * w, i16(i8_1) * i8_2);
            check(arm32 ? "vmull.u8" : "umull", 8 * w, u16(u8_1) * u8_2);
            check(arm32 ? "vmull.s16" : "smull", 4 * w, i32(i16_1) * i16_2);
            check(arm32 ? "vmull.u16" : "umull", 4 * w, u32(u16_1) * u16_2);
            check(arm32 ? "vmull.s32" : "smull", 2 * w, i64(i32_1) * i32_2);
            check(arm32 ? "vmull.u32" : "umull", 2 * w, u64(u32_1) * u32_2);

            // integer division by a constant should use fixed point unsigned
            // multiplication, which is done by using a widening multiply
            // followed by a narrowing
            check(arm32 ? "vmull.u8" : "umull", 8 * w, i8_1 / 37);
            check(arm32 ? "vmull.u8" : "umull", 8 * w, u8_1 / 37);
            check(arm32 ? "vmull.u16" : "umull", 4 * w, i16_1 / 37);
            check(arm32 ? "vmull.u16" : "umull", 4 * w, u16_1 / 37);
            check(arm32 ? "vmull.u32" : "umull", 2 * w, i32_1 / 37);
            check(arm32 ? "vmull.u32" : "umull", 2 * w, u32_1 / 37);

            // VMVN     X       -       Bitwise NOT
            // check("vmvn", ~bool1);

            // VNEG     I, F    F, D    Negate
            check(arm32 ? "vneg.s8" : "neg", 8 * w, -i8_1);
            check(arm32 ? "vneg.s16" : "neg", 4 * w, -i16_1);
            check(arm32 ? "vneg.s32" : "neg", 2 * w, -i32_1);
            check(arm32 ? "vneg.f32" : "fneg", 4 * w, -f32_1);
            check(arm32 ? "vneg.f64" : "fneg", 2 * w, -f64_1);

            // VNMLA    -       F, D    Negative Multiply Accumulate
            // VNMLS    -       F, D    Negative Multiply Subtract
            // VNMUL    -       F, D    Negative Multiply
#if 0
            // These are vfp, not neon. They only work on scalars
            check("vnmla.f32", 4, -(f32_1 + f32_2*f32_3));
            check("vnmla.f64", 2, -(f64_1 + f64_2*f64_3));
            check("vnmls.f32", 4, -(f32_1 - f32_2*f32_3));
            check("vnmls.f64", 2, -(f64_1 - f64_2*f64_3));
            check("vnmul.f32", 4, -(f32_1*f32_2));
            check("vnmul.f64", 2, -(f64_1*f64_2));
#endif

            // VORN     X       -       Bitwise OR NOT
            // check("vorn", bool1 | (~bool2));

            // VORR     X       -       Bitwise OR
            // check("vorr", bool1 | bool2);

            {
                for (int f : {2, 4}) {
                    RDom r(0, f);

                    // A summation reduction that starts at something
                    // non-trivial, to avoid llvm simplifying accumulating
                    // widening summations into just widening summations.
                    auto sum_ = [&](Expr e) {
                        Func f;
                        f(x) = cast(e.type(), 123);
                        f(x) += e;
                        return f(x);
                    };

                    // VPADD    I, F    -       Pairwise Add
                    check(arm32 ? "vpadd.i8" : "addp", 16, sum_(in_i8(f * x + r)));
                    check(arm32 ? "vpadd.i8" : "addp", 16, sum_(in_u8(f * x + r)));
                    check(arm32 ? "vpadd.i16" : "addp", 8, sum_(in_i16(f * x + r)));
                    check(arm32 ? "vpadd.i16" : "addp", 8, sum_(in_u16(f * x + r)));
                    check(arm32 ? "vpadd.i32" : "addp", 4, sum_(in_i32(f * x + r)));
                    check(arm32 ? "vpadd.i32" : "addp", 4, sum_(in_u32(f * x + r)));
                    check(arm32 ? "vpadd.f32" : "faddp", 4, sum_(in_f32(f * x + r)));
                    // In 32-bit, we don't have a pairwise op for doubles,
                    // and expect to just get vadd instructions on d
                    // registers.
                    check(arm32 ? "vadd.f64" : "faddp", 4, sum_(in_f64(f * x + r)));

                    if (f == 2) {
                        // VPADAL   I       -       Pairwise Add and Accumulate Long

                        // If we're reducing by a factor of two, we can
                        // use the forms with an accumulator
                        check(arm32 ? "vpadal.s8" : "sadalp", 16, sum_(i16(in_i8(f * x + r))));
                        check(arm32 ? "vpadal.u8" : "uadalp", 16, sum_(i16(in_u8(f * x + r))));
                        check(arm32 ? "vpadal.u8" : "uadalp*", 16, sum_(u16(in_u8(f * x + r))));

                        check(arm32 ? "vpadal.s16" : "sadalp", 8, sum_(i32(in_i16(f * x + r))));
                        check(arm32 ? "vpadal.u16" : "uadalp", 8, sum_(i32(in_u16(f * x + r))));
                        check(arm32 ? "vpadal.u16" : "uadalp", 8, sum_(u32(in_u16(f * x + r))));

                        check(arm32 ? "vpadal.s32" : "sadalp", 4, sum_(i64(in_i32(f * x + r))));
                        check(arm32 ? "vpadal.u32" : "uadalp", 4, sum_(i64(in_u32(f * x + r))));
                        check(arm32 ? "vpadal.u32" : "uadalp", 4, sum_(u64(in_u32(f * x + r))));
                    } else {
                        // VPADDL   I       -       Pairwise Add Long

                        // If we're reducing by more than that, that's not
                        // possible.
                        check(arm32 ? "vpaddl.s8" : "saddlp", 16, sum_(i16(in_i8(f * x + r))));
                        check(arm32 ? "vpaddl.u8" : "uaddlp", 16, sum_(i16(in_u8(f * x + r))));
                        check(arm32 ? "vpaddl.u8" : "uaddlp", 16, sum_(u16(in_u8(f * x + r))));

                        check(arm32 ? "vpaddl.s16" : "saddlp", 8, sum_(i32(in_i16(f * x + r))));
                        check(arm32 ? "vpaddl.u16" : "uaddlp", 8, sum_(i32(in_u16(f * x + r))));
                        check(arm32 ? "vpaddl.u16" : "uaddlp", 8, sum_(u32(in_u16(f * x + r))));

                        check(arm32 ? "vpaddl.s32" : "saddlp", 4, sum_(i64(in_i32(f * x + r))));
                        check(arm32 ? "vpaddl.u32" : "uaddlp", 4, sum_(i64(in_u32(f * x + r))));
                        check(arm32 ? "vpaddl.u32" : "uaddlp", 4, sum_(u64(in_u32(f * x + r))));

                        // If we're widening the type by a factor of four
                        // as well as reducing by a factor of four, we
                        // expect vpaddl followed by vpadal
                        check(arm32 ? "vpaddl.s8" : "saddlp", 8, sum_(i32(in_i8(f * x + r))));
                        check(arm32 ? "vpaddl.u8" : "uaddlp", 8, sum_(i32(in_u8(f * x + r))));
                        check(arm32 ? "vpaddl.u8" : "uaddlp", 8, sum_(u32(in_u8(f * x + r))));
                        check(arm32 ? "vpaddl.s16" : "saddlp", 4, sum_(i64(in_i16(f * x + r))));
                        check(arm32 ? "vpaddl.u16" : "uaddlp", 4, sum_(i64(in_u16(f * x + r))));
                        check(arm32 ? "vpaddl.u16" : "uaddlp", 4, sum_(u64(in_u16(f * x + r))));

                        // Note that when going from u8 to i32 like this,
                        // the vpaddl is unsigned and the vpadal is a
                        // signed, because the intermediate type is u16
                        check(arm32 ? "vpadal.s16" : "sadalp", 8, sum_(i32(in_i8(f * x + r))));
                        check(arm32 ? "vpadal.u16" : "uadalp", 8, sum_(i32(in_u8(f * x + r))));
                        check(arm32 ? "vpadal.u16" : "uadalp", 8, sum_(u32(in_u8(f * x + r))));
                        check(arm32 ? "vpadal.s32" : "sadalp", 4, sum_(i64(in_i16(f * x + r))));
                        check(arm32 ? "vpadal.u32" : "uadalp", 4, sum_(i64(in_u16(f * x + r))));
                        check(arm32 ? "vpadal.u32" : "uadalp", 4, sum_(u64(in_u16(f * x + r))));
                    }

                    // VPMAX    I, F    -       Pairwise Maximum
                    check(arm32 ? "vpmax.s8" : "smaxp", 16, maximum(in_i8(f * x + r)));
                    check(arm32 ? "vpmax.u8" : "umaxp", 16, maximum(in_u8(f * x + r)));
                    check(arm32 ? "vpmax.s16" : "smaxp", 8, maximum(in_i16(f * x + r)));
                    check(arm32 ? "vpmax.u16" : "umaxp", 8, maximum(in_u16(f * x + r)));
                    check(arm32 ? "vpmax.s32" : "smaxp", 4, maximum(in_i32(f * x + r)));
                    check(arm32 ? "vpmax.u32" : "umaxp", 4, maximum(in_u32(f * x + r)));

                    // VPMIN    I, F    -       Pairwise Minimum
                    check(arm32 ? "vpmin.s8" : "sminp", 16, minimum(in_i8(f * x + r)));
                    check(arm32 ? "vpmin.u8" : "uminp", 16, minimum(in_u8(f * x + r)));
                    check(arm32 ? "vpmin.s16" : "sminp", 8, minimum(in_i16(f * x + r)));
                    check(arm32 ? "vpmin.u16" : "uminp", 8, minimum(in_u16(f * x + r)));
                    check(arm32 ? "vpmin.s32" : "sminp", 4, minimum(in_i32(f * x + r)));
                    check(arm32 ? "vpmin.u32" : "uminp", 4, minimum(in_u32(f * x + r)));
                }

                // UDOT/SDOT
                if (target.has_feature(Target::ARMDotProd)) {
                    for (int f : {4, 8}) {
                        RDom r(0, f);
                        for (int v : {2, 4}) {
                            check("udot", v, sum(u32(in_u8(f * x + r)) * in_u8(f * x + r + 32)));
                            check("sdot", v, sum(i32(in_i8(f * x + r)) * in_i8(f * x + r + 32)));
                            if (f == 4) {
                                // This doesn't generate for higher reduction factors because the
                                // intermediate is 16-bit instead of 32-bit. It seems like it would
                                // be slower to fix this (because the intermediate sum would be
                                // 32-bit instead of 16-bit).
                                check("udot", v, sum(u32(in_u8(f * x + r))));
                                check("sdot", v, sum(i32(in_i8(f * x + r))));
                            }
                        }
                    }
                }
            }
            // VPOP     X       F, D    Pop from Stack
            // VPUSH    X       F, D    Push to Stack
            // Not used by us

            // VQABS    I       -       Saturating Absolute
#if 0
            // Of questionable value. Catching abs calls is annoying, and the
            // slow path is only one more op (for the max).
            check("vqabs.s8", 16, abs(max(i8_1, -max_i8)));
            check("vqabs.s8", 8, abs(max(i8_1, -max_i8)));
            check("vqabs.s16", 8, abs(max(i16_1, -max_i16)));
            check("vqabs.s16", 4, abs(max(i16_1, -max_i16)));
            check("vqabs.s32", 4, abs(max(i32_1, -max_i32)));
            check("vqabs.s32", 2, abs(max(i32_1, -max_i32)));
#endif

            // VQADD    I       -       Saturating Add
            check(arm32 ? "vqadd.s8" : "sqadd", 8 * w, i8_sat(i16(i8_1) + i16(i8_2)));
            check(arm32 ? "vqadd.s16" : "sqadd", 4 * w, i16_sat(i32(i16_1) + i32(i16_2)));
            check(arm32 ? "vqadd.s32" : "sqadd", 2 * w, i32_sat(i64(i32_1) + i64(i32_2)));

            check(arm32 ? "vqadd.u8" : "uqadd", 8 * w, u8(min(u16(u8_1) + u16(u8_2), max_u8)));
            check(arm32 ? "vqadd.u16" : "uqadd", 4 * w, u16(min(u32(u16_1) + u32(u16_2), max_u16)));
            check(arm32 ? "vqadd.u32" : "uqadd", 2 * w, u32(min(u64(u32_1) + u64(u32_2), max_u32)));

            // Check the case where we add a constant that could be narrowed
            check(arm32 ? "vqadd.u8" : "uqadd", 8 * w, u8(min(u16(u8_1) + 17, max_u8)));
            check(arm32 ? "vqadd.u16" : "uqadd", 4 * w, u16(min(u32(u16_1) + 17, max_u16)));
            check(arm32 ? "vqadd.u32" : "uqadd", 2 * w, u32(min(u64(u32_1) + 17, max_u32)));

            // Can't do larger ones because we can't represent the intermediate 128-bit wide ops.

            // VQDMLAL  I       -       Saturating Double Multiply Accumulate Long
            // VQDMLSL  I       -       Saturating Double Multiply Subtract Long
            // We don't do these, but it would be possible.

            // VQDMULH  I       -       Saturating Doubling Multiply Returning High Half
            // VQDMULL  I       -       Saturating Doubling Multiply Long
            check(arm32 ? "vqdmulh.s16" : "sqdmulh", 4 * w, i16_sat((i32(i16_1) * i32(i16_2)) >> 15));
            check(arm32 ? "vqdmulh.s32" : "sqdmulh", 2 * w, i32_sat((i64(i32_1) * i64(i32_2)) >> 31));

            // VQMOVN   I       -       Saturating Move and Narrow
            check(arm32 ? "vqmovn.s16" : "sqxtn", 8 * w, i8_sat(i16_1));
            check(arm32 ? "vqmovn.s16" : "sqxtn", 8 * w, i8_sat(i32_1));
            check(arm32 ? "vqmovn.s16" : "sqxtn", 8 * w, i8_sat(i64_1));
            check(arm32 ? "vqmovn.s32" : "sqxtn", 4 * w, i16_sat(i32_1));
            check(arm32 ? "vqmovn.s32" : "sqxtn", 4 * w, i16_sat(i64_1));
            check(arm32 ? "vqmovn.s64" : "sqxtn", 2 * w, i32_sat(i64_1));
            check(arm32 ? "vqmovn.u16" : "uqxtn", 8 * w, u8(min(u16_1, max_u8)));
            check(arm32 ? "vqmovn.u16" : "uqxtn", 8 * w, u8(min(u32_1, max_u8)));
            check(arm32 ? "vqmovn.u16" : "uqxtn", 8 * w, u8(min(u64_1, max_u8)));
            check(arm32 ? "vqmovn.u32" : "uqxtn", 4 * w, u16(min(u32_1, max_u16)));
            check(arm32 ? "vqmovn.u32" : "uqxtn", 4 * w, u16(min(u64_1, max_u16)));
            check(arm32 ? "vqmovn.u64" : "uqxtn", 2 * w, u32(min(u64_1, max_u32)));
            // Double/Triple saturating narrow from float
            check(arm32 ? "vqmovn.s16" : "sqxtn", 8 * w, i8_sat(f32_1));
            check(arm32 ? "vqmovn.s16" : "sqxtn", 8 * w, i8_sat(f64_1));
            check(arm32 ? "vqmovn.s32" : "sqxtn", 4 * w, i16_sat(f64_1));

            // VQMOVUN  I       -       Saturating Move and Unsigned Narrow
            check(arm32 ? "vqmovun.s16" : "sqxtun", 8 * w, u8_sat(i16_1));
            check(arm32 ? "vqmovun.s16" : "sqxtun", 8 * w, u8_sat(i32_1));
            check(arm32 ? "vqmovun.s16" : "sqxtun", 8 * w, u8_sat(i64_1));
            check(arm32 ? "vqmovun.s32" : "sqxtun", 4 * w, u16_sat(i32_1));
            check(arm32 ? "vqmovun.s32" : "sqxtun", 4 * w, u16_sat(i64_1));
            check(arm32 ? "vqmovun.s64" : "sqxtun", 2 * w, u32_sat(i64_1));
            // Double/Triple saturating narrow from float
            check(arm32 ? "vqmovun.s16" : "sqxtun", 8 * w, u8_sat(f32_1));
            check(arm32 ? "vqmovun.s16" : "sqxtun", 8 * w, u8_sat(f64_1));
            check(arm32 ? "vqmovun.s32" : "sqxtun", 4 * w, u16_sat(f64_1));

            // VQNEG    I       -       Saturating Negate
            check(arm32 ? "vqneg.s8" : "sqneg", 8 * w, -max(i8_1, -max_i8));
            check(arm32 ? "vqneg.s16" : "sqneg", 4 * w, -max(i16_1, -max_i16));
            check(arm32 ? "vqneg.s32" : "sqneg", 2 * w, -max(i32_1, -max_i32));

            // VQRDMULH I       -       Saturating Rounding Doubling Multiply Returning High Half
            // Note: division in Halide always rounds down (not towards
            // zero). Otherwise these patterns would be more complicated.
            check(arm32 ? "vqrdmulh.s16" : "sqrdmulh", 4 * w, i16_sat((i32(i16_1) * i32(i16_2) + (1 << 14)) / (1 << 15)));
            check(arm32 ? "vqrdmulh.s32" : "sqrdmulh", 2 * w, i32_sat((i64(i32_1) * i64(i32_2) + (1 << 30)) / (Expr(int64_t(1)) << 31)));

            // VQRSHRN   I       -       Saturating Rounding Shift Right Narrow
            // VQRSHRUN  I       -       Saturating Rounding Shift Right Unsigned Narrow
            check(arm32 ? "vqrshrn.s16" : "sqrshrn", 8 * w, i8_sat((i32(i16_1) + 8) / 16));
            check(arm32 ? "vqrshrn.s32" : "sqrshrn", 4 * w, i16_sat((i32_1 + 8) / 16));
            check(arm32 ? "vqrshrn.s64" : "sqrshrn", 2 * w, i32_sat((i64_1 + 8) / 16));
            check(arm32 ? "vqrshrun.s16" : "sqrshrun", 8 * w, u8_sat((i32(i16_1) + 8) / 16));
            check(arm32 ? "vqrshrun.s32" : "sqrshrun", 4 * w, u16_sat((i32_1 + 8) / 16));
            check(arm32 ? "vqrshrun.s64" : "sqrshrun", 2 * w, u32_sat((i64_1 + 8) / 16));
            check(arm32 ? "vqrshrn.u16" : "uqrshrn", 8 * w, u8(min((u32(u16_1) + 8) / 16, max_u8)));
            check(arm32 ? "vqrshrn.u32" : "uqrshrn", 4 * w, u16(min((u64(u32_1) + 8) / 16, max_u16)));
            // check(arm32 ? "vqrshrn.u64" : "uqrshrn", 2 * w, u32(min((u64_1 + 8) / 16, max_u32)));

            // VQSHL    I       -       Saturating Shift Left
            check(arm32 ? "vqshl.s8" : "sqshl", 8 * w, i8_sat(i16(i8_1) * 16));
            check(arm32 ? "vqshl.s16" : "sqshl", 4 * w, i16_sat(i32(i16_1) * 16));
            check(arm32 ? "vqshl.s32" : "sqshl", 2 * w, i32_sat(i64(i32_1) * 16));
            check(arm32 ? "vqshl.u8" : "uqshl", 8 * w, u8(min(u16(u8_1) * 16, max_u8)));
            check(arm32 ? "vqshl.u16" : "uqshl", 4 * w, u16(min(u32(u16_1) * 16, max_u16)));
            check(arm32 ? "vqshl.u32" : "uqshl", 2 * w, u32(min(u64(u32_1) * 16, max_u32)));

            // VQSHLU   I       -       Saturating Shift Left Unsigned
            check(arm32 ? "vqshlu.s8" : "sqshlu", 8 * w, u8_sat(i16(i8_1) * 16));
            check(arm32 ? "vqshlu.s16" : "sqshlu", 4 * w, u16_sat(i32(i16_1) * 16));
            check(arm32 ? "vqshlu.s32" : "sqshlu", 2 * w, u32_sat(i64(i32_1) * 16));

            // VQSHRN   I       -       Saturating Shift Right Narrow
            // VQSHRUN  I       -       Saturating Shift Right Unsigned Narrow
            check(arm32 ? "vqshrn.s16" : "sqshrn", 8 * w, i8_sat(i16_1 / 16));
            check(arm32 ? "vqshrn.s32" : "sqshrn", 4 * w, i16_sat(i32_1 / 16));
            check(arm32 ? "vqshrn.s64" : "sqshrn", 2 * w, i32_sat(i64_1 / 16));
            check(arm32 ? "vqshrun.s16" : "sqshrun", 8 * w, u8_sat(i16_1 / 16));
            check(arm32 ? "vqshrun.s32" : "sqshrun", 4 * w, u16_sat(i32_1 / 16));
            check(arm32 ? "vqshrun.s64" : "sqshrun", 2 * w, u32_sat(i64_1 / 16));
            check(arm32 ? "vqshrn.u16" : "uqshrn", 8 * w, u8(min(u16_1 / 16, max_u8)));
            check(arm32 ? "vqshrn.u32" : "uqshrn", 4 * w, u16(min(u32_1 / 16, max_u16)));
            check(arm32 ? "vqshrn.u64" : "uqshrn", 2 * w, u32(min(u64_1 / 16, max_u32)));

            // VQSUB    I       -       Saturating Subtract
            check(arm32 ? "vqsub.s8" : "sqsub", 8 * w, i8_sat(i16(i8_1) - i16(i8_2)));
            check(arm32 ? "vqsub.s16" : "sqsub", 4 * w, i16_sat(i32(i16_1) - i32(i16_2)));
            check(arm32 ? "vqsub.s32" : "sqsub", 2 * w, i32_sat(i64(i32_1) - i64(i32_2)));

            // N.B. Saturating subtracts are expressed by widening to a igned* type
            check(arm32 ? "vqsub.u8" : "uqsub", 8 * w, u8_sat(i16(u8_1) - i16(u8_2)));
            check(arm32 ? "vqsub.u16" : "uqsub", 4 * w, u16_sat(i32(u16_1) - i32(u16_2)));
            check(arm32 ? "vqsub.u32" : "uqsub", 2 * w, u32_sat(i64(u32_1) - i64(u32_2)));

            // VRADDHN  I       -       Rounding Add and Narrow Returning High Half
            check(arm32 ? "vraddhn.i16" : "raddhn", 8 * w, i8((i32(i16_1 + i16_2) + 128) >> 8));
            check(arm32 ? "vraddhn.i16" : "raddhn", 8 * w, u8((u32(u16_1 + u16_2) + 128) >> 8));
            check(arm32 ? "vraddhn.i32" : "raddhn", 4 * w, i16((i32_1 + i32_2 + 32768) >> 16));
            check(arm32 ? "vraddhn.i32" : "raddhn", 4 * w, u16((u64(u32_1 + u32_2) + 32768) >> 16));
            check(arm32 ? "vraddhn.i64" : "raddhn", 2 * w, i32((i64_1 + i64_2 + (Expr(int64_t(1)) << 31)) >> 32));
            // check(arm32 ? "vraddhn.i64" : "raddhn", 2 * w, u32((u128(u64_1) + u64_2 + (Expr(uint64_t(1)) << 31)) >> 32));

            // VRECPE   I, F    -       Reciprocal Estimate
            check(arm32 ? "vrecpe.f32" : "frecpe", 2 * w, fast_inverse(f32_1));

            // VRECPS   F       -       Reciprocal Step
            check(arm32 ? "vrecps.f32" : "frecps", 2 * w, fast_inverse(f32_1));

            // VREV16   X       -       Reverse in Halfwords
            // VREV32   X       -       Reverse in Words
            // VREV64   X       -       Reverse in Doublewords

            // These reverse within each halfword, word, and doubleword
            // respectively. Sometimes llvm generates them, and sometimes
            // it generates vtbl instructions.

            // VRHADD   I       -       Rounding Halving Add
            check(arm32 ? "vrhadd.s8" : "srhadd", 8 * w, i8((i16(i8_1) + i16(i8_2) + 1) / 2));
            check(arm32 ? "vrhadd.u8" : "urhadd", 8 * w, u8((u16(u8_1) + u16(u8_2) + 1) / 2));
            check(arm32 ? "vrhadd.s16" : "srhadd", 4 * w, i16((i32(i16_1) + i32(i16_2) + 1) / 2));
            check(arm32 ? "vrhadd.u16" : "urhadd", 4 * w, u16((u32(u16_1) + u32(u16_2) + 1) / 2));
            check(arm32 ? "vrhadd.s32" : "srhadd", 2 * w, i32((i64(i32_1) + i64(i32_2) + 1) / 2));
            check(arm32 ? "vrhadd.u32" : "urhadd", 2 * w, u32((u64(u32_1) + u64(u32_2) + 1) / 2));

            // VRSHL    I       -       Rounding Shift Left
            Expr shift_8 = (i8_2 % 8) - 4;
            Expr shift_16 = (i16_2 % 16) - 8;
            Expr shift_32 = (i32_2 % 32) - 16;
            Expr shift_64 = (i64_2 % 64) - 32;
            Expr round_s8 = (i8(1) >> min(shift_8, 0)) / 2;
            Expr round_s16 = (i16(1) >> min(shift_16, 0)) / 2;
            Expr round_s32 = (i32(1) >> min(shift_32, 0)) / 2;
            Expr round_u8 = (u8(1) >> min(shift_8, 0)) / 2;
            Expr round_u16 = (u16(1) >> min(shift_16, 0)) / 2;
            Expr round_u32 = (u32(1) >> min(shift_32, 0)) / 2;
            check(arm32 ? "vrshl.s8" : "srshl", 16 * w, i8((i16(i8_1) + round_s8) << shift_8));
            check(arm32 ? "vrshl.s16" : "srshl", 8 * w, i16((i32(i16_1) + round_s16) << shift_16));
            check(arm32 ? "vrshl.s32" : "srshl", 4 * w, i32((i32_1 + round_s32) << shift_32));
            check(arm32 ? "vrshl.u8" : "urshl", 16 * w, u8((u16(u8_1) + round_u8) << shift_8));
            check(arm32 ? "vrshl.u16" : "urshl", 8 * w, u16((u32(u16_1) + round_u16) << shift_16));
            check(arm32 ? "vrshl.u32" : "urshl", 4 * w, u32((u64(u32_1) + round_u32) << shift_32));

            round_s8 = (i8(1) << max(shift_8, 0)) / 2;
            round_s16 = (i16(1) << max(shift_16, 0)) / 2;
            round_s32 = (i32(1) << max(shift_32, 0)) / 2;
            round_u8 = (u8(1) << max(shift_8, 0)) / 2;
            round_u16 = (u16(1) << max(shift_16, 0)) / 2;
            round_u32 = (u32(1) << max(shift_32, 0)) / 2;
            check(arm32 ? "vrshl.s8" : "srshl", 16 * w, i8((i16(i8_1) + round_s8) >> shift_8));
            check(arm32 ? "vrshl.s16" : "srshl", 8 * w, i16((i32(i16_1) + round_s16) >> shift_16));
            check(arm32 ? "vrshl.s32" : "srshl", 4 * w, i32((i32_1 + round_s32) >> shift_32));
            check(arm32 ? "vrshl.u8" : "urshl", 16 * w, u8((u16(u8_1) + round_u8) >> shift_8));
            check(arm32 ? "vrshl.u16" : "urshl", 8 * w, u16((u32(u16_1) + round_u16) >> shift_16));
            check(arm32 ? "vrshl.u32" : "urshl", 4 * w, u32((u64(u32_1) + round_u32) >> shift_32));

            // VRSHR    I       -       Rounding Shift Right
            check(arm32 ? "vrshr.s8" : "srshr", 16 * w, i8((i16(i8_1) + 1) >> 1));
            check(arm32 ? "vrshr.s16" : "srshr", 8 * w, i16((i32(i16_1) + 2) >> 2));
            check(arm32 ? "vrshr.s32" : "srshr", 4 * w, i32((i32_1 + 4) >> 3));
            check(arm32 ? "vrshr.u8" : "urshr", 16 * w, u8((u16(u8_1) + 8) >> 4));
            check(arm32 ? "vrshr.u16" : "urshr", 8 * w, u16((u32(u16_1) + 16) >> 5));
            check(arm32 ? "vrshr.u32" : "urshr", 4 * w, u32((u64(u32_1) + 32) >> 6));

            // VRSHRN   I       -       Rounding Shift Right Narrow
            if (Halide::Internal::get_llvm_version() >= 140) {
                // LLVM14 converts RSHRN/RSHRN2 to RADDHN/RADDHN2 when the shift amount is half the width of the vector element
                // See https://reviews.llvm.org/D116166
                check(arm32 ? "vrshrn.i16" : "raddhn", 8 * w, i8((i32(i16_1) + 128) >> 8));
                check(arm32 ? "vrshrn.i32" : "rshrn", 4 * w, i16((i32_1 + 256) >> 9));
                check(arm32 ? "vrshrn.i64" : "rshrn", 2 * w, i32((i64_1 + 8) >> 4));
                check(arm32 ? "vrshrn.i16" : "raddhn", 8 * w, u8((u32(u16_1) + 128) >> 8));
                check(arm32 ? "vrshrn.i32" : "rshrn", 4 * w, u16((u64(u32_1) + 1024) >> 11));
                // check(arm32 ? "vrshrn.i64" : "raddhn", 2 * w, u32((u64_1 + 64) >> 7));
            } else {
                check(arm32 ? "vrshrn.i16" : "rshrn", 8 * w, i8((i32(i16_1) + 128) >> 8));
                check(arm32 ? "vrshrn.i32" : "rshrn", 4 * w, i16((i32_1 + 256) >> 9));
                check(arm32 ? "vrshrn.i64" : "rshrn", 2 * w, i32((i64_1 + 8) >> 4));
                check(arm32 ? "vrshrn.i16" : "rshrn", 8 * w, u8((u32(u16_1) + 128) >> 8));
                check(arm32 ? "vrshrn.i32" : "rshrn", 4 * w, u16((u64(u32_1) + 1024) >> 11));
                // check(arm32 ? "vrshrn.i64" : "rshrn", 2 * w, u32((u64_1 + 64) >> 7));
            }

            // VRSQRTE  I, F    -       Reciprocal Square Root Estimate
            check(arm32 ? "vrsqrte.f32" : "frsqrte", 4 * w, fast_inverse_sqrt(f32_1));

            // VRSQRTS  F       -       Reciprocal Square Root Step
            check(arm32 ? "vrsqrts.f32" : "frsqrts", 4 * w, fast_inverse_sqrt(f32_1));

            // VRSRA    I       -       Rounding Shift Right and Accumulate
            check(arm32 ? "vrsra.s8" : "srsra", 16 * w, i8_2 + i8((i16(i8_1) + 4) >> 3));
            check(arm32 ? "vrsra.s16" : "srsra", 8 * w, i16_2 + i16((i32(i16_1) + 8) >> 4));
            check(arm32 ? "vrsra.s32" : "srsra", 4 * w, i32_2 + ((i32_1 + 16) >> 5));
            check(arm32 ? "vrsra.u8" : "ursra", 16 * w, u8_2 + u8((u16(u8_1) + 32) >> 6));
            check(arm32 ? "vrsra.u16" : "ursra", 8 * w, u16_2 + u16((u32(u16_1) + 64) >> 7));
            check(arm32 ? "vrsra.u32" : "ursra", 4 * w, u32_2 + u32((u64(u32_1) + 128) >> 8));

            // VRSUBHN  I       -       Rounding Subtract and Narrow Returning High Half
            check(arm32 ? "vrsubhn.i16" : "rsubhn", 8 * w, i8((i32(i16_1 - i16_2) + 128) >> 8));
            check(arm32 ? "vrsubhn.i16" : "rsubhn", 8 * w, u8((u32(u16_1 - u16_2) + 128) >> 8));
            check(arm32 ? "vrsubhn.i32" : "rsubhn", 4 * w, i16((i32_1 - i32_2 + 32768) >> 16));
            check(arm32 ? "vrsubhn.i32" : "rsubhn", 4 * w, u16((u64(u32_1 - u32_2) + 32768) >> 16));
            check(arm32 ? "vrsubhn.i64" : "rsubhn", 2 * w, i32((i64_1 - i64_2 + (Expr(int64_t(1)) << 31)) >> 32));
            // check(arm32 ? "vrsubhn.i64" : "rsubhn", 2 * w, u32((u64_1 - u64_2 + (Expr(uint64_t(1)) << 31)) >> 32));

            // VSHL     I       -       Shift Left
            check(arm32 ? "vshl.i8" : "shl", 8 * w, i8_1 * 16);
            check(arm32 ? "vshl.i16" : "shl", 4 * w, i16_1 * 16);
            check(arm32 ? "vshl.i32" : "shl", 2 * w, i32_1 * 16);
            check(arm32 ? "vshl.i64" : "shl", 2 * w, i64_1 * 16);
            check(arm32 ? "vshl.i8" : "shl", 8 * w, u8_1 * 16);
            check(arm32 ? "vshl.i16" : "shl", 4 * w, u16_1 * 16);
            check(arm32 ? "vshl.i32" : "shl", 2 * w, u32_1 * 16);
            check(arm32 ? "vshl.i64" : "shl", 2 * w, u64_1 * 16);
            check(arm32 ? "vshl.s8" : "sshl", 8 * w, i8_1 << shift_8);
            check(arm32 ? "vshl.s8" : "sshl", 8 * w, i8_1 >> shift_8);
            check(arm32 ? "vshl.s16" : "sshl", 4 * w, i16_1 << shift_16);
            check(arm32 ? "vshl.s16" : "sshl", 4 * w, i16_1 >> shift_16);
            check(arm32 ? "vshl.s32" : "sshl", 2 * w, i32_1 << shift_32);
            check(arm32 ? "vshl.s32" : "sshl", 2 * w, i32_1 >> shift_32);
            check(arm32 ? "vshl.s64" : "sshl", 2 * w, i64_1 << shift_64);
            check(arm32 ? "vshl.s64" : "sshl", 2 * w, i64_1 >> shift_64);
            check(arm32 ? "vshl.u8" : "ushl", 8 * w, u8_1 << shift_8);
            check(arm32 ? "vshl.u8" : "ushl", 8 * w, u8_1 >> shift_8);
            check(arm32 ? "vshl.u16" : "ushl", 4 * w, u16_1 << shift_16);
            check(arm32 ? "vshl.u16" : "ushl", 4 * w, u16_1 >> shift_16);
            check(arm32 ? "vshl.u32" : "ushl", 2 * w, u32_1 << shift_32);
            check(arm32 ? "vshl.u32" : "ushl", 2 * w, u32_1 >> shift_32);
            check(arm32 ? "vshl.u64" : "ushl", 2 * w, u64_1 << shift_64);
            check(arm32 ? "vshl.u64" : "ushl", 2 * w, u64_1 >> shift_64);

            // VSHLL    I       -       Shift Left Long
            check(arm32 ? "vshll.s8" : "sshll", 8 * w, i16(i8_1) * 16);
            check(arm32 ? "vshll.s16" : "sshll", 4 * w, i32(i16_1) * 16);
            check(arm32 ? "vshll.s32" : "sshll", 2 * w, i64(i32_1) * 16);
            check(arm32 ? "vshll.u8" : "ushll", 8 * w, u16(u8_1) * 16);
            check(arm32 ? "vshll.u16" : "ushll", 4 * w, u32(u16_1) * 16);
            check(arm32 ? "vshll.u32" : "ushll", 2 * w, u64(u32_1) * 16);

            // VSHR     I       -       Shift Right
            check(arm32 ? "vshr.s8" : "sshr", 8 * w, i8_1 / 16);
            check(arm32 ? "vshr.s16" : "sshr", 4 * w, i16_1 / 16);
            check(arm32 ? "vshr.s32" : "sshr", 2 * w, i32_1 / 16);
            check(arm32 ? "vshr.s64" : "sshr", 2 * w, i64_1 / 16);
            check(arm32 ? "vshr.u8" : "ushr", 8 * w, u8_1 / 16);
            check(arm32 ? "vshr.u16" : "ushr", 4 * w, u16_1 / 16);
            check(arm32 ? "vshr.u32" : "ushr", 2 * w, u32_1 / 16);
            check(arm32 ? "vshr.u64" : "ushr", 2 * w, u64_1 / 16);

            // VSHRN    I       -       Shift Right Narrow
            check(arm32 ? "vshrn.i16" : "shrn", 8 * w, i8(i16_1 / 256));
            check(arm32 ? "vshrn.i32" : "shrn", 4 * w, i16(i32_1 / 65536));
            check(arm32 ? "vshrn.i64" : "shrn", 2 * w, i32(i64_1 >> 32));
            check(arm32 ? "vshrn.i16" : "shrn", 8 * w, u8(u16_1 / 256));
            check(arm32 ? "vshrn.i32" : "shrn", 4 * w, u16(u32_1 / 65536));
            check(arm32 ? "vshrn.i64" : "shrn", 2 * w, u32(u64_1 >> 32));
            check(arm32 ? "vshrn.i16" : "shrn", 8 * w, i8(i16_1 / 16));
            check(arm32 ? "vshrn.i32" : "shrn", 4 * w, i16(i32_1 / 16));
            check(arm32 ? "vshrn.i64" : "shrn", 2 * w, i32(i64_1 / 16));
            check(arm32 ? "vshrn.i16" : "shrn", 8 * w, u8(u16_1 / 16));
            check(arm32 ? "vshrn.i32" : "shrn", 4 * w, u16(u32_1 / 16));
            check(arm32 ? "vshrn.i64" : "shrn", 2 * w, u32(u64_1 / 16));

            // VSLI     X       -       Shift Left and Insert
            // I guess this could be used for (x*256) | (y & 255)? We don't do bitwise ops on integers, so skip it.

            // VSQRT    -       F, D    Square Root
            check(arm32 ? "vsqrt.f32" : "fsqrt", 4 * w, sqrt(f32_1));
            check(arm32 ? "vsqrt.f64" : "fsqrt", 2 * w, sqrt(f64_1));

            // VSRA     I       -       Shift Right and Accumulate
            check(arm32 ? "vsra.s8" : "ssra", 8 * w, i8_2 + i8_1 / 16);
            check(arm32 ? "vsra.s16" : "ssra", 4 * w, i16_2 + i16_1 / 16);
            check(arm32 ? "vsra.s32" : "ssra", 2 * w, i32_2 + i32_1 / 16);
            check(arm32 ? "vsra.s64" : "ssra", 2 * w, i64_2 + i64_1 / 16);
            check(arm32 ? "vsra.u8" : "usra", 8 * w, u8_2 + u8_1 / 16);
            check(arm32 ? "vsra.u16" : "usra", 4 * w, u16_2 + u16_1 / 16);
            check(arm32 ? "vsra.u32" : "usra", 2 * w, u32_2 + u32_1 / 16);
            check(arm32 ? "vsra.u64" : "usra", 2 * w, u64_2 + u64_1 / 16);

            // VSRI     X       -       Shift Right and Insert
            // See VSLI

            // VSUB     I, F    F, D    Subtract
            check(arm32 ? "vsub.i8" : "sub", 8 * w, i8_1 - i8_2);
            check(arm32 ? "vsub.i8" : "sub", 8 * w, u8_1 - u8_2);
            check(arm32 ? "vsub.i16" : "sub", 4 * w, i16_1 - i16_2);
            check(arm32 ? "vsub.i16" : "sub", 4 * w, u16_1 - u16_2);
            check(arm32 ? "vsub.i32" : "sub", 2 * w, i32_1 - i32_2);
            check(arm32 ? "vsub.i32" : "sub", 2 * w, u32_1 - u32_2);
            check(arm32 ? "vsub.i64" : "sub", 2 * w, i64_1 - i64_2);
            check(arm32 ? "vsub.i64" : "sub", 2 * w, u64_1 - u64_2);
            check(arm32 ? "vsub.f32" : "fsub", 4 * w, f32_1 - f32_2);
            check(arm32 ? "vsub.f32" : "fsub", 2 * w, f32_1 - f32_2);

            // VSUBHN   I       -       Subtract and Narrow
            check(arm32 ? "vsubhn.i16" : "subhn", 8 * w, i8((i16_1 - i16_2) / 256));
            check(arm32 ? "vsubhn.i16" : "subhn", 8 * w, u8((u16_1 - u16_2) / 256));
            check(arm32 ? "vsubhn.i32" : "subhn", 4 * w, i16((i32_1 - i32_2) / 65536));
            check(arm32 ? "vsubhn.i32" : "subhn", 4 * w, u16((u32_1 - u32_2) / 65536));
            check(arm32 ? "vsubhn.i64" : "subhn", 2 * w, i32((i64_1 - i64_2) >> 32));
            check(arm32 ? "vsubhn.i64" : "subhn", 2 * w, u32((u64_1 - u64_2) >> 32));

            // VSUBL    I       -       Subtract Long
            check(arm32 ? "vsubl.s8" : "ssubl", 8 * w, i16(i8_1) - i16(i8_2));
            check(arm32 ? "vsubl.u8" : "usubl", 8 * w, u16(u8_1) - u16(u8_2));
            check(arm32 ? "vsubl.s16" : "ssubl", 4 * w, i32(i16_1) - i32(i16_2));
            check(arm32 ? "vsubl.u16" : "usubl", 4 * w, u32(u16_1) - u32(u16_2));
            check(arm32 ? "vsubl.s32" : "ssubl", 2 * w, i64(i32_1) - i64(i32_2));
            check(arm32 ? "vsubl.u32" : "usubl", 2 * w, u64(u32_1) - u64(u32_2));

            check(arm32 ? "vsubl.s8" : "ssubl", 8 * w, i16(i8_1) - i16(in_i8(0)));
            check(arm32 ? "vsubl.u8" : "usubl", 8 * w, u16(u8_1) - u16(in_u8(0)));
            check(arm32 ? "vsubl.s16" : "ssubl", 4 * w, i32(i16_1) - i32(in_i16(0)));
            check(arm32 ? "vsubl.u16" : "usubl", 4 * w, u32(u16_1) - u32(in_u16(0)));
            check(arm32 ? "vsubl.s32" : "ssubl", 2 * w, i64(i32_1) - i64(in_i32(0)));
            check(arm32 ? "vsubl.u32" : "usubl", 2 * w, u64(u32_1) - u64(in_u32(0)));

            // VSUBW    I       -       Subtract Wide
            check(arm32 ? "vsubw.s8" : "ssubw", 8 * w, i16_1 - i8_1);
            check(arm32 ? "vsubw.u8" : "usubw", 8 * w, u16_1 - u8_1);
            check(arm32 ? "vsubw.s16" : "ssubw", 4 * w, i32_1 - i16_1);
            check(arm32 ? "vsubw.u16" : "usubw", 4 * w, u32_1 - u16_1);
            check(arm32 ? "vsubw.s32" : "ssubw", 2 * w, i64_1 - i32_1);
            check(arm32 ? "vsubw.u32" : "usubw", 2 * w, u64_1 - u32_1);
        }

        // VST2 X       -       Store two-element structures
        for (int sign = 0; sign <= 1; sign++) {
            for (int width = 128; width <= 128 * 4; width *= 2) {
                for (int bits = 8; bits < 64; bits *= 2) {
                    if (width <= bits * 2) continue;
                    Func tmp1, tmp2;
                    tmp1(x) = cast(sign ? Int(bits) : UInt(bits), x);
                    tmp1.compute_root();
                    tmp2(x, y) = select(x % 2 == 0, tmp1(x / 2), tmp1(x / 2 + 16));
                    tmp2.compute_root().vectorize(x, width / bits);
                    string op = "vst2." + std::to_string(bits);
                    check(arm32 ? op : string("st2"), width / bits, tmp2(0, 0) + tmp2(0, 63));
                }
            }
        }

        // Also check when the two expressions interleaved have a common
        // subexpression, which results in a vector var being lifted out.
        for (int sign = 0; sign <= 1; sign++) {
            for (int width = 128; width <= 128 * 4; width *= 2) {
                for (int bits = 8; bits < 64; bits *= 2) {
                    if (width <= bits * 2) continue;
                    Func tmp1, tmp2;
                    tmp1(x) = cast(sign ? Int(bits) : UInt(bits), x);
                    tmp1.compute_root();
                    Expr e = (tmp1(x / 2) * 2 + 7) / 4;
                    tmp2(x, y) = select(x % 2 == 0, e * 3, e + 17);
                    tmp2.compute_root().vectorize(x, width / bits);
                    string op = "vst2." + std::to_string(bits);
                    check(arm32 ? op : string("st2"), width / bits, tmp2(0, 0) + tmp2(0, 127));
                }
            }
        }

        // VST3 X       -       Store three-element structures
        for (int sign = 0; sign <= 1; sign++) {
            for (int width = 192; width <= 192 * 4; width *= 2) {
                for (int bits = 8; bits < 64; bits *= 2) {
                    if (width <= bits * 3) continue;
                    Func tmp1, tmp2;
                    tmp1(x) = cast(sign ? Int(bits) : UInt(bits), x);
                    tmp1.compute_root();
                    tmp2(x, y) = select(x % 3 == 0, tmp1(x / 3),
                                        x % 3 == 1, tmp1(x / 3 + 16),
                                        tmp1(x / 3 + 32));
                    tmp2.compute_root().vectorize(x, width / bits);
                    string op = "vst3." + std::to_string(bits);
                    check(arm32 ? op : string("st3"), width / bits, tmp2(0, 0) + tmp2(0, 127));
                }
            }
        }

        // VST4 X       -       Store four-element structures
        for (int sign = 0; sign <= 1; sign++) {
            for (int width = 256; width <= 256 * 4; width *= 2) {
                for (int bits = 8; bits < 64; bits *= 2) {
                    if (width <= bits * 4) continue;
                    Func tmp1, tmp2;
                    tmp1(x) = cast(sign ? Int(bits) : UInt(bits), x);
                    tmp1.compute_root();
                    tmp2(x, y) = select(x % 4 == 0, tmp1(x / 4),
                                        x % 4 == 1, tmp1(x / 4 + 16),
                                        x % 4 == 2, tmp1(x / 4 + 32),
                                        tmp1(x / 4 + 48));
                    tmp2.compute_root().vectorize(x, width / bits);
                    string op = "vst4." + std::to_string(bits);
                    check(arm32 ? op : string("st4"), width / bits, tmp2(0, 0) + tmp2(0, 127));
                }
            }
        }

        // VSTM X       F, D    Store Multiple Registers
        // VSTR X       F, D    Store Register
        // we trust llvm to use these

        // VSWP I       -       Swap Contents
        // Swaps the contents of two registers. Not sure why this would be useful.

        // VTBL X       -       Table Lookup
        // Arm's version of shufps. Allows for arbitrary permutations of a
        // 64-bit vector. We typically use vrev variants instead.

        // VTBX X       -       Table Extension
        // Like vtbl, but doesn't change any elements where the index was
        // out of bounds. Not sure how we'd use this.

        // VTRN X       -       Transpose
        // Swaps the even elements of one vector with the odd elements of
        // another. Not useful for us.

        // VTST I       -       Test Bits
        // check("vtst.32", 4, (bool1 & bool2) != 0);

        // VUZP X       -       Unzip
        // VZIP X       -       Zip
        // Interleave or deinterleave two vectors. Given that we use
        // interleaving loads and stores, it's hard to hit this op with
        // halide.
    }

    void check_altivec_all() {
        Expr f32_1 = in_f32(x), f32_2 = in_f32(x + 16), f32_3 = in_f32(x + 32);
        Expr f64_1 = in_f64(x), f64_2 = in_f64(x + 16), f64_3 = in_f64(x + 32);
        Expr i8_1 = in_i8(x), i8_2 = in_i8(x + 16), i8_3 = in_i8(x + 32);
        Expr u8_1 = in_u8(x), u8_2 = in_u8(x + 16), u8_3 = in_u8(x + 32);
        Expr i16_1 = in_i16(x), i16_2 = in_i16(x + 16), i16_3 = in_i16(x + 32);
        Expr u16_1 = in_u16(x), u16_2 = in_u16(x + 16), u16_3 = in_u16(x + 32);
        Expr i32_1 = in_i32(x), i32_2 = in_i32(x + 16), i32_3 = in_i32(x + 32);
        Expr u32_1 = in_u32(x), u32_2 = in_u32(x + 16), u32_3 = in_u32(x + 32);
        Expr i64_1 = in_i64(x), i64_2 = in_i64(x + 16), i64_3 = in_i64(x + 32);
        Expr u64_1 = in_u64(x), u64_2 = in_u64(x + 16), u64_3 = in_u64(x + 32);
        // Expr bool_1 = (f32_1 > 0.3f), bool_2 = (f32_1 < -0.3f), bool_3 = (f32_1 != -0.34f);

        // Basic AltiVec SIMD instructions.
        for (int w = 1; w <= 4; w++) {
            // Vector Integer Add Instructions.
            check("vaddsbs", 16 * w, i8_sat(i16(i8_1) + i16(i8_2)));
            check("vaddshs", 8 * w, i16_sat(i32(i16_1) + i32(i16_2)));
            check("vaddsws", 4 * w, i32_sat(i64(i32_1) + i64(i32_2)));
            check("vaddubm", 16 * w, i8_1 + i8_2);
            check("vadduhm", 8 * w, i16_1 + i16_2);
            check("vadduwm", 4 * w, i32_1 + i32_2);
            check("vaddubs", 16 * w, u8(min(u16(u8_1) + u16(u8_2), max_u8)));
            check("vadduhs", 8 * w, u16(min(u32(u16_1) + u32(u16_2), max_u16)));
            check("vadduws", 4 * w, u32(min(u64(u32_1) + u64(u32_2), max_u32)));

            // Vector Integer Subtract Instructions.
            check("vsubsbs", 16 * w, i8_sat(i16(i8_1) - i16(i8_2)));
            check("vsubshs", 8 * w, i16_sat(i32(i16_1) - i32(i16_2)));
            check("vsubsws", 4 * w, i32_sat(i64(i32_1) - i64(i32_2)));
            check("vsububm", 16 * w, i8_1 - i8_2);
            check("vsubuhm", 8 * w, i16_1 - i16_2);
            check("vsubuwm", 4 * w, i32_1 - i32_2);
            check("vsububs", 16 * w, u8(max(i16(u8_1) - i16(u8_2), 0)));
            check("vsubuhs", 8 * w, u16(max(i32(u16_1) - i32(u16_2), 0)));
            check("vsubuws", 4 * w, u32(max(i64(u32_1) - i64(u32_2), 0)));
            check("vsububs", 16 * w, absd(i8_1, i8_2));
            check("vsubuhs", 16 * w, absd(i16_1, i16_2));
            check("vsubuws", 16 * w, absd(i32_1, i32_2));

            // Vector Integer Average Instructions.
            check("vavgsb", 16 * w, i8((i16(i8_1) + i16(i8_2) + 1) / 2));
            check("vavgub", 16 * w, u8((u16(u8_1) + u16(u8_2) + 1) / 2));
            check("vavgsh", 8 * w, i16((i32(i16_1) + i32(i16_2) + 1) / 2));
            check("vavguh", 8 * w, u16((u32(u16_1) + u32(u16_2) + 1) / 2));
            check("vavgsw", 4 * w, i32((i64(i32_1) + i64(i32_2) + 1) / 2));
            check("vavguw", 4 * w, u32((u64(u32_1) + u64(u32_2) + 1) / 2));

            // Vector Integer Maximum and Minimum Instructions
            check("vmaxsb", 16 * w, max(i8_1, i8_2));
            check("vmaxub", 16 * w, max(u8_1, u8_2));
            check("vmaxsh", 8 * w, max(i16_1, i16_2));
            check("vmaxuh", 8 * w, max(u16_1, u16_2));
            check("vmaxsw", 4 * w, max(i32_1, i32_2));
            check("vmaxuw", 4 * w, max(u32_1, u32_2));
            check("vminsb", 16 * w, min(i8_1, i8_2));
            check("vminub", 16 * w, min(u8_1, u8_2));
            check("vminsh", 8 * w, min(i16_1, i16_2));
            check("vminuh", 8 * w, min(u16_1, u16_2));
            check("vminsw", 4 * w, min(i32_1, i32_2));
            check("vminuw", 4 * w, min(u32_1, u32_2));

            // Vector Floating-Point Arithmetic Instructions
            check(use_vsx ? "xvaddsp" : "vaddfp", 4 * w, f32_1 + f32_2);
            check(use_vsx ? "xvsubsp" : "vsubfp", 4 * w, f32_1 - f32_2);
            check(use_vsx ? "xvmaddasp" : "vmaddfp", 4 * w, f32_1 * f32_2 + f32_3);
            // check("vnmsubfp", 4, f32_1 - f32_2 * f32_3);

            // Vector Floating-Point Maximum and Minimum Instructions
            check("vmaxfp", 4 * w, max(f32_1, f32_2));
            check("vminfp", 4 * w, min(f32_1, f32_2));
        }

        // Check these if target supports VSX.
        if (use_vsx) {
            for (int w = 1; w <= 4; w++) {
                // VSX Vector Floating-Point Arithmetic Instructions
                check("xvadddp", 2 * w, f64_1 + f64_2);
                check("xvmuldp", 2 * w, f64_1 * f64_2);
                check("xvsubdp", 2 * w, f64_1 - f64_2);
                check("xvaddsp", 4 * w, f32_1 + f32_2);
                check("xvmulsp", 4 * w, f32_1 * f32_2);
                check("xvsubsp", 4 * w, f32_1 - f32_2);
                check("xvmaxdp", 2 * w, max(f64_1, f64_2));
                check("xvmindp", 2 * w, min(f64_1, f64_2));
            }
        }

        // Check these if target supports POWER ISA 2.07 and above.
        // These also include new instructions in POWER ISA 2.06.
        if (use_power_arch_2_07) {
            for (int w = 1; w <= 4; w++) {
                check("vaddudm", 2 * w, i64_1 + i64_2);
                check("vsubudm", 2 * w, i64_1 - i64_2);

                check("vmaxsd", 2 * w, max(i64_1, i64_2));
                check("vmaxud", 2 * w, max(u64_1, u64_2));
                check("vminsd", 2 * w, min(i64_1, i64_2));
                check("vminud", 2 * w, min(u64_1, u64_2));
            }
        }
    }

    void check_wasm_all() {
        Expr f64_1 = in_f64(x), f64_2 = in_f64(x + 16), f64_3 = in_f64(x + 32);
        Expr f32_1 = in_f32(x), f32_2 = in_f32(x + 16), f32_3 = in_f32(x + 32);
        Expr i8_1 = in_i8(x), i8_2 = in_i8(x + 16), i8_3 = in_i8(x + 32);
        Expr u8_1 = in_u8(x), u8_2 = in_u8(x + 16), u8_3 = in_u8(x + 32);
        Expr i16_1 = in_i16(x), i16_2 = in_i16(x + 16), i16_3 = in_i16(x + 32);
        Expr u16_1 = in_u16(x), u16_2 = in_u16(x + 16), u16_3 = in_u16(x + 32);
        Expr i32_1 = in_i32(x), i32_2 = in_i32(x + 16), i32_3 = in_i32(x + 32);
        Expr u32_1 = in_u32(x), u32_2 = in_u32(x + 16), u32_3 = in_u32(x + 32);
        Expr i64_1 = in_i64(x), i64_2 = in_i64(x + 16), i64_3 = in_i64(x + 32);
        Expr u64_1 = in_u64(x), u64_2 = in_u64(x + 16), u64_3 = in_u64(x + 32);
        Expr bool_1 = (f32_1 > 0.3f), bool_2 = (f32_1 < -0.3f), bool_3 = (f32_1 != -0.34f);

        check("f32.sqrt", 1, sqrt(f32_1));
        check("f32.min", 1, min(f32_1, f32_2));
        check("f32.max", 1, max(f32_1, f32_2));
        check("f32.ceil", 1, ceil(f32_1));
        check("f32.floor", 1, floor(f32_1));
        check("f32.trunc", 1, trunc(f32_1));
        check("f32.nearest", 1, round(f32_1));
        check("f32.abs", 1, abs(f32_1));
        check("f32.neg", 1, -f32_1);

        if (use_wasm_sat_float_to_int) {
            check("i32.trunc_sat_f32_s", 1, i32(f32_1));
            check("i32.trunc_sat_f32_u", 1, u32(f32_1));
            check("i32.trunc_sat_f64_s", 1, i32(f64_1));
            check("i32.trunc_sat_f64_u", 1, u32(f64_1));

            check("i64.trunc_sat_f32_s", 1, i64(f32_1));
            check("i64.trunc_sat_f32_u", 1, u64(f32_1));
            check("i64.trunc_sat_f64_s", 1, i64(f64_1));
            check("i64.trunc_sat_f64_u", 1, u64(f64_1));
        }

        if (use_wasm_sign_ext) {
            // TODO(https://github.com/halide/Halide/issues/5130):
            // current LLVM doesn't reliably emit i32.extend8_s here --
            // but the same bitcode does work when run thru llc. Very odd.
            //
            // check("i32.extend8_s", 1, i32(i8(x) ^ 1));
            // check("i32.extend16_s", 1, i32(i16(x) ^ 1));
            // check("i64.extend8_s", 1, i64(i8(x) ^ 1));
            // check("i64.extend16_s", 1, i64(i16(x) ^ 1));
            // check("i64.extend32_s", 1, i64(i32(x) ^ 1));
        }

        if (use_wasm_simd128) {
            for (int w = 1; w <= 4; w <<= 1) {
                // create arbitrary 16-byte constant
                if (Halide::Internal::get_llvm_version() >= 130) {
                    check("v128.const", 16 * w, u8_1 * u8(42 + x));
                }

                // Create vector with identical lanes
                // (Note that later LLVMs will use 64-bit constants for some smaller splats)
                check("i8x16.splat", 16 * w, u8_1 * u8(42));
                if (Halide::Internal::get_llvm_version() >= 130) {
                    // LLVM13 likes to emit all of these as v128.const
                    check("v128.const", 8 * w, u16_1 * u16(42));
                    check("v128.const", 4 * w, u32_1 * u32(42));
                    check("v128.const", 2 * w, u64_1 * u64(42));
                    check("v128.const", 8 * w, f32_1 * f32(42));
                    check("v128.const", 4 * w, f64_1 * f64(42));
                } else {
                    check("i64x2.splat", 8 * w, u16_1 * u16(42));
                    check("i64x2.splat", 4 * w, u32_1 * u32(42));
                    check("i64x2.splat", 2 * w, u64_1 * u64(42));
                    check("f32x4.splat", 8 * w, f32_1 * f32(42));
                    check("f64x2.splat", 4 * w, f64_1 * f64(42));
                }

                // Extract lane as a scalar (extract_lane)
                // Replace lane value (replace_lane)
                // Skipped: there aren't really idioms where we desire these
                // to be used explicitly

                // Shuffling using immediate indices
                check("i8x16.shuffle", 16 * w, in_u8(2 * x));
                check("i8x16.shuffle", 8 * w, in_u16(2 * x));
                check("i8x16.shuffle", 4 * w, in_u32(2 * x));

                // Swizzling using variable indices
                // (This fails to generate, but that's not entirely surprising -- I don't
                // think we ever attempt to emit the most general-purpose swizzles in Halide
                // code, so this may or may not be a defect.)
                //
                // TODO: this currently emits a bunch of extract_lane / replace_lane ops,
                // so we should definitely try to do better.
                // check("v8x16.swizzle", 16*w, in_u8(in_u8(x+32)));

                // Integer addition
                check("i8x16.add", 16 * w, i8_1 + i8_2);
                check("i16x8.add", 8 * w, i16_1 + i16_2);
                check("i32x4.add", 4 * w, i32_1 + i32_2);
                check("i64x2.add", 2 * w, i64_1 + i64_2);

                // Integer subtraction
                check("i8x16.sub", 16 * w, i8_1 - i8_2);
                check("i16x8.sub", 8 * w, i16_1 - i16_2);
                check("i32x4.sub", 4 * w, i32_1 - i32_2);
                check("i64x2.sub", 2 * w, i64_1 - i64_2);

                // Integer multiplication
                // WASM-simd doesn't have an i8x16.mul operation.
                // check("i8x16.mul", 16 * w, i8_1 * i8_2);
                check("i16x8.mul", 8 * w, i16_1 * i16_2);
                check("i32x4.mul", 4 * w, i32_1 * i32_2);
                check("i64x2.mul", 2 * w, i64_1 * i64_2);

                if (Halide::Internal::get_llvm_version() >= 130) {
                    // Integer dot product (16 -> 32)
                    for (int f : {2, 4, 8}) {
                        RDom r(0, f);
                        for (int v : {1, 2, 4}) {
                            check("i32x4.dot_i16x8_s", w * v, sum(i32(in_i16(f * x + r)) * in_i16(f * x + r + 32)));
                        }
                    }
                }

                // Integer negation
                check("i8x16.neg", 16 * w, -i8_1);
                check("i16x8.neg", 8 * w, -i16_1);
                check("i32x4.neg", 4 * w, -i32_1);
                check("i64x2.neg", 2 * w, -i64_1);

                if (Halide::Internal::get_llvm_version() >= 130) {
                    // At present, we only attempt to generate these for LLVM >= 13.

                    // Extended (widening) integer multiplication
                    if (w > 1) {
                        // Need a register wider than 128 bits for us to generate these
                        check("i16x8.extmul_low_i8x16_s", 8 * w, i16(i8_1) * i8_2);
                        check("i32x4.extmul_low_i16x8_s", 4 * w, i32(i16_1) * i16_2);
                        check("i64x2.extmul_low_i32x4_s", 2 * w, i64(i32_1) * i32_2);
                        check("i16x8.extmul_low_i8x16_u", 8 * w, u16(u8_1) * u8_2);
                        check("i32x4.extmul_low_i16x8_u", 4 * w, u32(u16_1) * u16_2);
                        check("i64x2.extmul_low_i32x4_u", 2 * w, u64(u32_1) * u32_2);
                        check("i16x8.extmul_high_i8x16_s", 8 * w, i16(i8_1) * i8_2);
                        check("i32x4.extmul_high_i16x8_s", 4 * w, i32(i16_1) * i16_2);
                        check("i64x2.extmul_high_i32x4_s", 2 * w, i64(i32_1) * i32_2);
                        check("i16x8.extmul_high_i8x16_u", 8 * w, u16(u8_1) * u8_2);
                        check("i32x4.extmul_high_i16x8_u", 4 * w, u32(u16_1) * u16_2);
                        check("i64x2.extmul_high_i32x4_u", 2 * w, u64(u32_1) * u32_2);
                    }

                    // Extended pairwise integer addition
                    for (int f : {2, 4}) {
                        RDom r(0, f);

                        // A summation reduction that starts at something
                        // non-trivial, to avoid llvm simplifying accumulating
                        // widening summations into just widening summations.
                        auto sum_ = [&](Expr e) {
                            Func f;
                            f(x) = cast(e.type(), 123);
                            f(x) += e;
                            return f(x);
                        };

                        check("i16x8.extadd_pairwise_i8x16_s", 8 * w, sum_(i16(in_i8(f * x + r))));
                        check("i16x8.extadd_pairwise_i8x16_u", 8 * w, sum_(u16(in_u8(f * x + r))));
                        // The u8->i16 op uses the unsigned variant
                        check("i16x8.extadd_pairwise_i8x16_u", 8 * w, sum_(i16(in_u8(f * x + r))));

                        check("i32x4.extadd_pairwise_i16x8_s", 8 * w, sum_(i32(in_i16(f * x + r))));
                        check("i32x4.extadd_pairwise_i16x8_u", 8 * w, sum_(u32(in_u16(f * x + r))));
                        // The u16->i32 op uses the unsigned variant
                        check("i32x4.extadd_pairwise_i16x8_u", 8 * w, sum_(i32(in_u16(f * x + r))));
                    }
                }

                // Saturating integer addition
                std::string sat = Halide::Internal::get_llvm_version() >= 130 ? "sat" : "saturate";
                check("i8x16.add_" + sat + "_s", 16 * w, i8_sat(i16(i8_1) + i16(i8_2)));
                check("i8x16.add_" + sat + "_u", 16 * w, u8_sat(u16(u8_1) + u16(u8_2)));
                check("i16x8.add_" + sat + "_s", 8 * w, i16_sat(i32(i16_1) + i32(i16_2)));
                check("i16x8.add_" + sat + "_u", 8 * w, u16_sat(u32(u16_1) + u32(u16_2)));

                // Saturating integer subtraction
                check("i8x16.sub_" + sat + "_s", 16 * w, i8_sat(i16(i8_1) - i16(i8_2)));
                check("i16x8.sub_" + sat + "_s", 8 * w, i16_sat(i32(i16_1) - i32(i16_2)));
                // N.B. Saturating subtracts are expressed by widening to a *signed* type
                check("i8x16.sub_" + sat + "_u", 16 * w, u8_sat(i16(u8_1) - i16(u8_2)));
                check("i16x8.sub_" + sat + "_u", 8 * w, u16_sat(i32(u16_1) - i32(u16_2)));

                if (Halide::Internal::get_llvm_version() >= 130) {
                    // Saturating integer Q-format rounding multiplication
                    // Note: division in Halide always rounds down (not towards
                    // zero). Otherwise these patterns would be more complicated.
                    check("i16x8.q15mulr_sat_s", 8 * w, i16_sat((i32(i16_1) * i32(i16_2) + (1 << 14)) / (1 << 15)));
                }

                // Lane-wise integer minimum
                check("i8x16.min_s", 16 * w, min(i8_1, i8_2));
                check("i16x8.min_s", 8 * w, min(i16_1, i16_2));
                check("i32x4.min_s", 4 * w, min(i32_1, i32_2));
                check("i8x16.min_u", 16 * w, min(u8_1, u8_2));
                check("i16x8.min_u", 8 * w, min(u16_1, u16_2));
                check("i32x4.min_u", 4 * w, min(u32_1, u32_2));

                // Lane-wise integer maximum
                check("i8x16.max_s", 16 * w, max(i8_1, i8_2));
                check("i16x8.max_s", 8 * w, max(i16_1, i16_2));
                check("i32x4.max_s", 4 * w, max(i32_1, i32_2));
                check("i8x16.max_u", 16 * w, max(u8_1, u8_2));
                check("i16x8.max_u", 8 * w, max(u16_1, u16_2));
                check("i32x4.max_u", 4 * w, max(u32_1, u32_2));

                // Lane-wise integer rounding average
                check("i8x16.avgr_u", 8 * w, u8((u16(u8_1) + u16(u8_2) + 1) / 2));
                check("i8x16.avgr_u", 8 * w, u8((u16(u8_1) + u16(u8_2) + 1) >> 1));
                check("i16x8.avgr_u", 4 * w, u16((u32(u16_1) + u32(u16_2) + 1) / 2));
                check("i16x8.avgr_u", 4 * w, u16((u32(u16_1) + u32(u16_2) + 1) >> 1));

                // Lane-wise integer absolute value
                check("i8x16.abs", 16 * w, abs(i8_1));
                check("i16x8.abs", 8 * w, abs(i16_1));
                check("i32x4.abs", 4 * w, abs(i32_1));
                if (Halide::Internal::get_llvm_version() >= 130) {
                    check("i64x2.abs", 2 * w, abs(i64_1));
                }

                // Left shift by constant scalar
                check("i8x16.shl", 16 * w, i8_1 << i8(7));
                check("i16x8.shl", 8 * w, i16_1 << i16(7));
                check("i32x4.shl", 4 * w, i32_1 << i32(7));
                check("i64x2.shl", 2 * w, i64_1 << i64(7));
                // unsigned
                check("i8x16.shl", 16 * w, u8_1 << u8(7));
                check("i16x8.shl", 8 * w, u16_1 << u16(7));
                check("i32x4.shl", 4 * w, u32_1 << u32(7));
                check("i64x2.shl", 2 * w, u64_1 << u64(7));

                // Left shift by variable-but-uniform-across-all-lanes scalar
                // TODO(https://github.com/halide/Halide/issues/5130): NOT BEING GENERATED AT TRUNK
                // check("i8x16.shl",   16*w, i8_1 << in_i8(0));
                // check("i16x8.shl",   8*w, i16_1 << in_i16(0));
                // check("i32x4.shl",   4*w, i32_1 << in_i32(0));
                // check("i64x2.shl",   2*w, i64_1 << in_i64(0));
                // check("i8x16.shl",   16*w, u8_1 << in_u8(0));
                // check("i16x8.shl",   8*w, u16_1 << in_u16(0));
                // check("i32x4.shl",   4*w, u32_1 << in_u32(0));
                // check("i64x2.shl",   2*w, u64_1 << in_u64(0));

                // Right shift by constant scalar
                check("i8x16.shr_s", 16 * w, i8_1 >> i8(7));
                check("i16x8.shr_s", 8 * w, i16_1 >> i16(7));
                check("i32x4.shr_s", 4 * w, i32_1 >> i32(7));
                check("i64x2.shr_s", 2 * w, i64_1 >> i64(7));
                // unsigned
                check("i8x16.shr_u", 16 * w, u8_1 >> i8(7));
                check("i16x8.shr_u", 8 * w, u16_1 >> i16(7));
                check("i32x4.shr_u", 4 * w, u32_1 >> i32(7));
                check("i64x2.shr_u", 2 * w, u64_1 >> i64(7));

                // Right shift by variable-but-uniform-across-all-lanes scalar
                // TODO(https://github.com/halide/Halide/issues/5130): NOT BEING GENERATED AT TRUNK
                // check("i8x16.shr_s",   16*w, i8_1 >> in_i8(0));
                // check("i16x8.shr_s",   8*w, i16_1 >> in_i16(0));
                // check("i32x4.shr_s",   4*w, i32_1 >> in_i32(0));
                // check("i64x2.shr_s",   2*w, i64_1 >> in_i64(0));
                // check("i8x16.shr_u",   16*w, u8_1 >> in_i8(0));
                // check("i16x8.shr_u",   8*w, u16_1 >> in_i16(0));
                // check("i32x4.shr_u",   4*w, u32_1 >> in_i32(0));
                // check("i64x2.shr_u",   2*w, u64_1 >> in_i64(0));

                // Bitwise logic
                check("v128.and", 16 * w, i8_1 & i8_2);
                check("v128.and", 8 * w, i16_1 & i16_2);
                check("v128.and", 4 * w, i32_1 & i32_2);
                check("v128.and", 2 * w, i64_1 & i64_2);

                check("v128.or", 16 * w, i8_1 | i8_2);
                check("v128.or", 8 * w, i16_1 | i16_2);
                check("v128.or", 4 * w, i32_1 | i32_2);
                check("v128.or", 2 * w, i64_1 | i64_2);

                check("v128.xor", 16 * w, i8_1 ^ i8_2);
                check("v128.xor", 8 * w, i16_1 ^ i16_2);
                check("v128.xor", 4 * w, i32_1 ^ i32_2);
                check("v128.xor", 2 * w, i64_1 ^ i64_2);

                check("v128.not", 16 * w, ~i8_1);
                check("v128.not", 8 * w, ~i16_1);
                check("v128.not", 4 * w, ~i32_1);
                check("v128.not", 2 * w, ~i64_1);

                check("v128.andnot", 16 * w, i8_1 & ~i8_2);
                check("v128.andnot", 8 * w, i16_1 & ~i16_2);
                check("v128.andnot", 4 * w, i32_1 & ~i32_2);
                check("v128.andnot", 2 * w, i64_1 & ~i64_2);

                // Bitwise select
                check("v128.bitselect", 16 * w, ((u8_1 & u8_3) | (u8_2 & ~u8_3)));
                check("v128.bitselect", 8 * w, ((u16_1 & u16_3) | (u16_2 & ~u16_3)));
                check("v128.bitselect", 4 * w, ((u32_1 & u32_3) | (u32_2 & ~u32_3)));
                check("v128.bitselect", 2 * w, ((u64_1 & u64_3) | (u64_2 & ~u64_3)));

                check("v128.bitselect", 16 * w, select(bool_1, u8_1, u8_2));
                check("v128.bitselect", 8 * w, select(bool_1, u16_1, u16_2));
                check("v128.bitselect", 4 * w, select(bool_1, u32_1, u32_2));
                check("v128.bitselect", 2 * w, select(bool_1, u64_1, u64_2));
                check("v128.bitselect", 4 * w, select(bool_1, f32_1, f32_2));
                check("v128.bitselect", 2 * w, select(bool_1, f64_1, f64_2));

                // Lane-wise Population Count
                check("i8x16.popcnt", 8 * w, popcount(i8_1));
                check("i8x16.popcnt", 8 * w, popcount(u8_1));

                // Any lane true -- for VectorReduce::Or on 8-bit data
                // All lanes true  -- for VectorReduce::And on 8-bit data
                // TODO: does Halide have any idiom that could usefully use these?
                // - v128.any_true could be used for VectorReduce::Or with type bool.
                // - i8x16.all_true could be used for VectorReduce::And with type bool.
                // - the other all_true variants seem unlikely to be obviously useful in Halide.

                // Bitmask extraction
                // TODO: does Halide have any idiom that could usefully use these?
                // They all extract the high bit of each lane and return a scalar mask of them.
                // These all seem unlikely to be obviously useful in Halide.
                // check("i8x16.bitmask", 16 * w, ???);
                // check("i16x8.bitmask", 8 * w, ???);
                // check("i32x4.bitmask", 4 * w, ???);
                // check("i64x2.bitmask", 2 * w, ???);

                // Equality
                check("i8x16.eq", 16 * w, i8_1 == i8_2);
                check("i16x8.eq", 8 * w, i16_1 == i16_2);
                check("i32x4.eq", 4 * w, i32_1 == i32_2);
                if (Halide::Internal::get_llvm_version() >= 130) {
                    check("i64x2.eq", 2 * w, i64_1 == i64_2);
                }
                check("f32x4.eq", 4 * w, f32_1 == f32_2);
                check("f64x2.eq", 2 * w, f64_1 == f64_2);

                // Non-equality
                check("i8x16.ne", 16 * w, i8_1 != i8_2);
                check("i16x8.ne", 8 * w, i16_1 != i16_2);
                check("i32x4.ne", 4 * w, i32_1 != i32_2);
                if (Halide::Internal::get_llvm_version() >= 130) {
                    check("i64x2.ne", 2 * w, i64_1 != i64_2);
                }
                check("f32x4.ne", 4 * w, f32_1 != f32_2);
                check("f64x2.ne", 2 * w, f64_1 != f64_2);

                // Less than
                check("i8x16.lt_s", 16 * w, i8_1 < i8_2);
                check("i8x16.lt_u", 16 * w, u8_1 < u8_2);
                check("i16x8.lt_s", 8 * w, i16_1 < i16_2);
                check("i16x8.lt_u", 8 * w, u16_1 < u16_2);
                check("i32x4.lt_s", 4 * w, i32_1 < i32_2);
                check("i32x4.lt_u", 4 * w, u32_1 < u32_2);
                if (Halide::Internal::get_llvm_version() >= 130) {
                    check("i64x2.lt_s", 2 * w, i64_1 < i64_2);
                }
                check("f32x4.lt", 4 * w, f32_1 < f32_2);
                check("f64x2.lt", 2 * w, f64_1 < f64_2);

                // Less than or equal
                check("i8x16.le_s", 16 * w, i8_1 <= i8_2);
                check("i8x16.le_u", 16 * w, u8_1 <= u8_2);
                check("i16x8.le_s", 8 * w, i16_1 <= i16_2);
                check("i16x8.le_u", 8 * w, u16_1 <= u16_2);
                check("i32x4.le_s", 4 * w, i32_1 <= i32_2);
                check("i32x4.le_u", 4 * w, u32_1 <= u32_2);
                if (Halide::Internal::get_llvm_version() >= 130) {
                    check("i64x2.le_s", 2 * w, i64_1 <= i64_2);
                }
                check("f32x4.le", 4 * w, f32_1 <= f32_2);
                check("f64x2.le", 2 * w, f64_1 <= f64_2);

                // Greater than
                // SKIPPED: Halide aggressively simplifies > into <= so we shouldn't see these

                // Greater than or equal
                // SKIPPED: Halide aggressively simplifies >= into < so we shouldn't see these

                // Load
                check("v128.load", 16 * w, i8_1);
                check("v128.load", 8 * w, i16_1);
                check("v128.load", 4 * w, i32_1);
                check("v128.load", 4 * w, f32_1);
                check("v128.load", 2 * w, f64_1);

                // Load and Zero-Pad
                // TODO
                // check("v128.load32_zero", 2 * w, in_u32(0));
                // check("v128.load64_zero", 2 * w, in_u64(0));

                // Load vector with identical lanes
                check("v128.load8_splat", 16 * w, in_u8(0));
                check("v128.load16_splat", 8 * w, in_u16(0));
                check("v128.load32_splat", 4 * w, in_u32(0));
                check("v128.load64_splat", 2 * w, in_u64(0));

                // Load Lane
                // TODO: does Halide have any idiom that obviously generates these?

                // Load and Extend
                if (w == 1) {
                    check("i16x8.load8x8_s", 8 * w, i16(i8_1));
                    check("i16x8.load8x8_u", 8 * w, u16(u8_1));
                    check("i32x4.load16x4_s", 4 * w, i32(i16_1));
                    check("i32x4.load16x4_u", 4 * w, u32(u16_1));
                    check("i64x2.load32x2_s", 2 * w, i64(i32_1));
                    check("i64x2.load32x2_u", 2 * w, u64(u32_1));
                }

                // Store
                check("v128.store", 16 * w, i8_1);
                check("v128.store", 8 * w, i16_1);
                check("v128.store", 4 * w, i32_1);
                check("v128.store", 4 * w, f32_1);
                check("v128.store", 2 * w, f64_1);

                // Store Lane
                // TODO: does Halide have any idiom that obviously generates these?

                // Negation
                check("f32x4.neg", 4 * w, -f32_1);
                check("f64x2.neg", 2 * w, -f64_1);

                // Absolute value
                check("f32x4.abs", 4 * w, abs(f32_1));
                check("f64x2.abs", 2 * w, abs(f64_1));

                // NaN-propagating minimum
                check("f32x4.min", 4 * w, min(f32_1, f32_2));
                check("f64x2.min", 2 * w, min(f64_1, f64_2));

                // NaN-propagating maximum
                check("f32x4.max", 4 * w, max(f32_1, f32_2));
                check("f64x2.max", 2 * w, max(f64_1, f64_2));

                // Pseudo-minimum
                // Pseudo-maximum
                // TODO: does Halide have any idiom that obviously generates these?

                // Floating-point addition
                check("f32x4.add", 4 * w, f32_1 + f32_2);
                check("f64x2.add", 2 * w, f64_1 + f64_2);

                // Floating-point subtraction
                check("f32x4.sub", 4 * w, f32_1 - f32_2);
                check("f64x2.sub", 2 * w, f64_1 - f64_2);

                // Floating-point division
                check("f32x4.div", 4 * w, f32_1 / f32_2);
                check("f64x2.div", 2 * w, f64_1 / f64_2);

                // Floating-point multiplication
                check("f32x4.mul", 4 * w, f32_1 * f32_2);
                check("f64x2.mul", 2 * w, f64_1 * f64_2);

                // Square root
                check("f32x4.sqrt", 4 * w, sqrt(f32_1));
                check("f64x2.sqrt", 2 * w, sqrt(f64_1));

                if (Halide::Internal::get_llvm_version() >= 130) {
                    // Round to integer above (ceiling)
                    check("f32x4.ceil", 4 * w, ceil(f32_1));
                    check("f64x2.ceil", 2 * w, ceil(f64_1));

                    // Round to integer below (floor)
                    check("f32x4.floor", 4 * w, floor(f32_1));
                    check("f64x2.floor", 2 * w, floor(f64_1));

                    // Round to integer toward zero (truncate to integer)
                    check("f32x4.trunc", 4 * w, trunc(f32_1));
                    check("f64x2.trunc", 2 * w, trunc(f64_1));

                    // Round to nearest integer, ties to even)
                    check("f32x4.nearest", 4 * w, round(f32_1));
                    check("f64x2.nearest", 2 * w, round(f64_1));
                }

                // Integer to single-precision floating point
                check("f32x4.convert_i32x4_s", 8 * w, cast<float>(i32_1));
                check("f32x4.convert_i32x4_u", 8 * w, cast<float>(u32_1));

                // Integer to double-precision floating point
                if (Halide::Internal::get_llvm_version() >= 140) {
                    check("f64x2.convert_low_i32x4_s", 2 * w, cast<double>(i32_1));
                    check("f64x2.convert_low_i32x4_u", 2 * w, cast<double>(u32_1));
                }

                // Single-precision floating point to integer with saturation
                check("i32x4.trunc_sat_f32x4_s", 4 * w, cast<int32_t>(f32_1));
                check("i32x4.trunc_sat_f32x4_u", 4 * w, cast<uint32_t>(f32_1));

                // Double-precision floating point to integer with saturation
                // TODO(https://github.com/halide/Halide/issues/5130): NOT BEING GENERATED AT TRUNK
                // check("i32x4.trunc_sat_f64x2_s_zero", 4 * w, cast<int32_t>(f64_1));
                // check("i32x4.trunc_sat_f64x2_u_zero", 4 * w, cast<uint32_t>(f64_1));

                // Double-precision floating point to single-precision
                // TODO(https://github.com/halide/Halide/issues/5130): NOT BEING GENERATED AT TRUNK
                // check("f32x4.demote_f64x2_zero", 4 * w, ???);

                // Single-precision floating point to double-precision
                if (Halide::Internal::get_llvm_version() >= 140) {
                    // TODO(https://github.com/halide/Halide/issues/5130): broken for > 128bit vector widths
                    if (w < 2) {
                        check("f64x2.promote_low_f32x4", 2 * w, cast<double>(f32_1));
                    }
                } else if (Halide::Internal::get_llvm_version() >= 130) {
                    check("f64x2.promote_low_f32x4", 2 * w, cast<double>(f32_1));
                }

                // Integer to integer narrowing
                if (Halide::Internal::get_llvm_version() >= 130) {
                    check("i8x16.narrow_i16x8_s", 16 * w, i8_sat(i16_1));
                    check("i8x16.narrow_i16x8_u", 16 * w, u8_sat(i16_1));
                    check("i16x8.narrow_i32x4_s", 8 * w, i16_sat(i32_1));
                    check("i16x8.narrow_i32x4_u", 8 * w, u16_sat(i32_1));
                }

                // Integer to integer widening
                check("i16x8.extend_low_i8x16_s", 16 * w, i16(i8_1));
                check("i16x8.extend_high_i8x16_s", 16 * w, i16(i8_1));
                check("i16x8.extend_low_i8x16_u", 16 * w, u16(u8_1));
                check("i16x8.extend_high_i8x16_u", 16 * w, u16(u8_1));
                check("i32x4.extend_low_i16x8_s", 8 * w, i32(i16_1));
                check("i32x4.extend_high_i16x8_s", 8 * w, i32(i16_1));
                check("i32x4.extend_low_i16x8_u", 8 * w, u32(u16_1));
                check("i32x4.extend_high_i16x8_u", 8 * w, u32(u16_1));
                check("i64x2.extend_low_i32x4_s", 4 * w, i64(i32_1));
                check("i64x2.extend_high_i32x4_s", 4 * w, i64(i32_1));
                check("i64x2.extend_low_i32x4_u", 4 * w, u64(u32_1));
                check("i64x2.extend_high_i32x4_u", 4 * w, u64(u32_1));
            }
        }
    }

private:
    bool use_avx2{false};
    bool use_avx512{false};
    bool use_avx{false};
    bool use_power_arch_2_07{false};
    bool use_sse41{false};
    bool use_sse42{false};
    bool use_ssse3{false};
    bool use_vsx{false};
    bool use_wasm_simd128{false};
    bool use_wasm_sat_float_to_int{false};
    bool use_wasm_sign_ext{false};
    const Var x{"x"}, y{"y"};
};
}  // namespace

int main(int argc, char **argv) {
    Target host = get_host_target();
    Target hl_target = get_target_from_environment();
    printf("host is:      %s\n", host.to_string().c_str());
    printf("HL_TARGET is: %s\n", hl_target.to_string().c_str());

    SimdOpCheck test(hl_target);

    if (argc > 1) {
        test.filter = argv[1];
        test.set_num_threads(1);
    }

    if (getenv("HL_SIMD_OP_CHECK_FILTER")) {
        test.filter = getenv("HL_SIMD_OP_CHECK_FILTER");
    }

    const int seed = argc > 2 ? atoi(argv[2]) : time(nullptr);
    std::cout << "simd_op_check test seed: " << seed << "\n";
    test.set_seed(seed);

    // TODO: multithreading here is the cause of https://github.com/halide/Halide/issues/3669;
    // the fundamental issue is that we make one set of ImageParams to construct many
    // Exprs, then realize those Exprs on arbitrary threads; it is known that sharing
    // one Func across multiple threads is not guaranteed to be safe, and indeed, TSAN
    // reports data races, of which some are likely 'benign' (e.g. Function.freeze) but others
    // are highly suspect (e.g. Function.lock_loop_levels). Since multithreading here
    // was added just to avoid having this test be the last to finish, the expedient 'fix'
    // for now is to remove the multithreading. A proper fix could be made by restructuring this
    // test so that every Expr constructed for testing was guaranteed to share no Funcs
    // (Function.deep_copy() perhaps). Of course, it would also be desirable to allow Funcs, Exprs, etc
    // to be usable across multiple threads, but that is a major undertaking that is
    // definitely not worthwhile for present Halide usage patterns.
    test.set_num_threads(1);

    if (argc > 2) {
        // Don't forget: if you want to run the standard tests to a specific output
        // directory, you'll need to invoke with the first arg enclosed
        // in quotes (to avoid it being wildcard-expanded by the shell):
        //
        //    correctness_simd_op_check "*" /path/to/output
        //
        test.output_directory = argv[2];
    }

    bool success = test.test_all();

    // Compile a runtime for this target, for use in the static test.
    compile_standalone_runtime(test.output_directory + "simd_op_check_runtime.o", test.target);

    if (!success) {
        return -1;
    }

    printf("Success!\n");
    return 0;
}